首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Ultrastructure and development of apoplastic barriers within indeterminate root nodules formed by Vicia faba L. were examined by light and electron microscopy. The nodule outer cortex is separated from the inner cortex by a heavily suberized nodule endodermis, which matures in submeristematic regions and possesses suberin lamellae. Unsuberized passage cells are present near vascular strands, which are surrounded by a vascular endodermis attached on the inner side of the nodule endodermal cell walls. The vascular endodermis appears immediately below the meristematic apex in developmental state I (Casparian bands), gradually develops suberin lamellae, and attains developmental state II at the base of the nodule. For chemical analysis apoplastic barrier tissues were dissected after enzymatic digestion of non-impregnated tissues. Root epidermal and endodermal cell walls as well as nodule outer cortex could be isolated as pure fractions; nodule endodermal cell walls could not be separated from vascular endodermal cell walls and enclosed xylem vessels. Gas chromatography-flame ionization detection and gas chromatography-mass spectrometry were applied for quantitative and qualitative analysis of suberin and lignin in isolated cell walls of these tissues. The suberin content of isolated endodermal cell walls of nodules was approximately twice that of the root endodermal cell walls. The suberin content of the nodule outer cortex and root epidermal cell walls was less than one-tenth of that of the nodule endodermal cell wall. Substantial amounts of lignin could only be found in the nodule endodermal cell wall fraction. Organic solvent extracts of the isolated tissues revealed long-chain aliphatic acids, steroids, and triterpenoid structures of the lupeol type. Surprisingly, extract from the outer cortex consisted of 89% triterpenoids whereas extracts from all other cell wall isolates contained not more than 16% total triterpenoids. The results of ultrastructural and chemical composition are in good correspondence and underline the important role of the examined tissues as apoplastic barriers.  相似文献   

2.
Adventitious roots of Primula acaulis Jacq. are characterized by broad cortex and narrow stele during the primary development. Secondary thickening of roots occurs through limited cambial growth together with secondary dilatation growth of the persisting cortex. Close to the root tip, at a distance of ca. 4 mm from the apex, Casparian bands (state I of endodermal development) within endodermal cells develop synchronously. During late, asynchronous deposition of suberin lamellae (state II of endodermal development), a positional effect is clearly expressed - suberization starts in the cells opposite to the phloem sectors of the vascular cylinder at a distance of 30 – 40 mm from the root tip. The formation of secondary walls in endodermis (state III of endodermal development) correlates with the beginning of secondary growth of the root at a distance of ca. 60 mm. Endodermis is the only cortical layer of primrose, where not only cell enlargement but also renewed cell division participate in the secondary dilatation growth. The original endodermal cells additionally divide anticlinally only once. Newly-formed radial walls acquire a typical endodermal character by forming Casparian bands and deposition of suberin lamellae. A network of endodermal Casparian bands of equal density develops during the root thickening by the tangential expansion of cells and by the formation of new radial walls with characteristic wall modifications. These data are important since little attention has been paid up till now to the density of endodermal network as a generally significant structural and functional trait of the root. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Sorghum belongs to a group of economically important, silicon accumulating plants. X-ray microanalysis coupled with environmental scanning electron microscopy (ESEM) of fresh root endodermal and leaf epidermal samples confirms histological and cultivar specificity of silicification. In sorghum roots, silicon is accumulated mostly in endodermal cells. Specialized silica aggregates are formed predominantly in a single row in the form of wall outgrowths on the inner tangential endodermal walls. The density of silica aggregates per square mm of inner tangential endodermal cell wall is around 2700 and there is no significant difference in the cultivars with different content of silicon in roots. In the leaf epidermis, silicon deposits were present in the outer walls of all cells, with the highest concentration in specialized idioblasts termed 'silica cells'. These cells are dumb-bell shaped in sorghum. In both the root endodermis and leaf epidermis, silicification was higher in a drought tolerant cultivar Gadambalia compared with drought sensitive cultivar Tabat. Silicon content per dry mass was higher in leaves than in roots in both cultivars. The values for cv. Gadambalia in roots and leaves are 3.5 and 4.1% Si, respectively, and for cv. Tabat 2.2 and 3.3%. However, based on X-ray microanalysis the amount of Si deposited in endodermal cell walls in drought tolerant cultivar (unlike the drought susceptible cultivar) is higher than that deposited in the leaf epidermis. The high root endodermal silicification might be related to a higher drought resistance.  相似文献   

4.
Silicon is deposited in the endodermal tissue in sorghum (Sorghum bicolor L. Moench) roots. Its deposition is thought to protect vascular tissues in the stele against invasion by parasites and drying soil via hardening of endodermal cells. We studied the silicon-induced changes in mechanical properties of cell walls to clarify the role of silicon in sorghum root. Sorghum seedlings were grown in nutrient solution with or without silicon. The mechanical properties of cell walls were measured in three separated root zones: basal, apical and subapical. Silicon treatment decreased cell-wall extensibility in the basal zone of isolated stele tissues covered by endodermal inner tangential walls. The silicon-induced hardening of cell walls was also measured with increases in elastic moduli (E) and viscosity coefficients (eta). These results provided new evidence that silicon deposition might protect the stele as a mechanical barrier by hardening the cell walls of stele and endodermal tissues. In contrast to the basal zone, silicon treatment increased cell-wall extensibility in the apical and subapical zones with concomitant decrease in E and eta. Simultaneously, silicon promoted root elongation. When root elongation is promoted by silicon, one of the causal factors maybe the silicon-enhanced extensibility of cell walls in the growing zone.  相似文献   

5.
Bamboo is a silicon accumulating plant. In leaves, the major place of silicon (Si) deposition is the epidermis, with the highest concentration of Si in silica cells. In bamboo roots, the deposition of Si is found only in endodermal cell walls. The silicification of leaves and roots was examined in the economically important bamboo plant Phyllostachys heterocycla, using an environmental scanning electron microscope coupled with X-ray microanalysis, as well as gravimetric quantification. The content of Si on a dry weight basis measured by gravimetric quantification was 7.6% in leaves and 2.4% in roots, respectively. Moreover, quantification of EDX data showed high Si impregnation of the inner tangential endodermal walls. Si content in this part of the root endodermal cell walls was even higher than that in the outer leaf epidermal walls, where conspicuous deposition of Si often occurs in grass plants.  相似文献   

6.
Yokoyama M  Karahara I 《Planta》2001,213(3):474-477
The Casparian strip, the barrier to apoplastic transport that is located at the endodermis in roots and stems, is formed by individual endodermal cells and is constructed as a highly organized mesh within the primary wall. Since little is known about the mechanism of formation of the strip, we tried to obtain morphological evidence for the existence, prior to suberization and lignification, of some regulatory system at the expected site of the strip. Endodermal cells in etiolated pea stems were induced to expand in the radial direction by piercing the stems through the cortex before formation of the strip. The radial width of the strip increased significantly with the expansion of the radial walls of these endodermal cells. The expansion of the cells occurred before the formation of the strip. However, strips that had already been formed when the stems were pierced did not increase in width despite an induced expansion of the radial walls. These observations suggest that some positional information exists in the radial wall of endodermal cells that defines the future site of formation of the strip and its width.  相似文献   

7.
The root endodermis forms a selective barrier that prevents the free diffusion of solutes into the vasculature; to make this barrier, endodermal cells deposit hydrophobic compounds in their cell walls, forming the Casparian strip. Here, we showed that, in contrast to vascular and epidermal root cells, endodermal root cells do not divide alongside the root apical meristem in Arabidopsis thaliana. Auxin treatment induced division of endodermal cells in wild-type plants, but not in the auxin signaling mutant auxin resistant3-1. Endodermis-specific activation of auxin responses by expression of truncated AUXIN-RESPONSIVE FACTOR5 (ΔARF5) in root endodermal cells under the control of the ENDODERMIS7 promoter (EN7::ΔARF5) also induced endodermal cell division. We used an auxin transport inhibitor to cause accumulation of auxin in endodermal cells, which induced endodermal cell division. In addition, knockout of P-GLYCOPROTEIN1 (PGP1) and PGP19, which mediate centripetal auxin flow, promoted the division of endodermal cells. Together, these findings reveal a tight link between the endodermal auxin response and endodermal cell division, suggesting that auxin is a key regulator controlling the division of root endodermal cells, and that PGP1 and PGP19 are involved in regulating endodermal cell division.

The endodermal auxin response, which is regulated by centripetal auxin flow, determines division of the endodermal cells.  相似文献   

8.

CWM, isolated cell wall material
ECW, isolated endodermal cell walls
G, guaiacyl monomer
H, p-hydroxyphenyl monomer
HCW, isolated hypodermal cell walls
RHCW, isolated rhizodermal and hypodermal cell walls
S, syringyl monomer
XV, isolated xylem vessels

Endodermal cell walls of the three dicotyledoneous species Pisum sativum L., Cicer arietinum L. and Ricinus communis L. were isolated enzymatically and analysed for the occurrence of the biopolymers lignin and suberin. From P. sativum, endodermal cell walls in their primary state of development (Casparian strips) were isolated. Related to the dry weight, these isolates contained equal amounts of suberin (2·5%) and lignin (2·7%). In contrast, the endodermal cell walls of C. arietinum and R. communis, which were nearly exclusively in their secondary state of development, contained significantly higher proportions of suberin (10–20%) and only traces of lignin (1–2%). The results of the chemical analyses were supported by a microscopic investigation of Sudan III-stained root cross-sections, showing a Casparian strip restricted to the radial walls of the endodermis of P. sativum and well-pronounced red suberin lamellae in C. arietinum and R. communis roots. Compared with recently investigated monocotyledoneous species, higher amounts of suberin by one order of magnitude were detected with the secondary state of development of dicotyledoneous species. Furthermore, the carbohydrate and protein contents of primary (Clivia miniata Reg. and Monstera deliciosa Liebm.), secondary (C. arietinum and R. communis) and tertiary endodermal cell walls (Allium cepa L. and Iris germanica L.) were determined. The relative carbohydrate content of secondary endodermal cell walls was low (14–20%) compared with the content of primary (42–50%) and tertiary endodermal cell walls (60%), whereas the protein content of isolated endodermal cell walls was high in primary (13%) and secondary (8%) and low in tertiary endodermal cell walls (0·9–2%). The results presented here indicate that the quantitative chemical composition of primary, secondary, and tertiary endodermal cell walls varies significantly. Finally, cell wall proteins are described as an additional important constituent of endodermal cell walls, with the highest concentrations occurring in primary (Casparian strips) and secondary endodermal cell walls.  相似文献   

9.
Wang  Pei  Wang  Chun-Mei  Gao  Li  Cui  Yan-Nong  Yang  Hai-Li  de Silva  Nayana D. G.  Ma  Qing  Bao  Ai-Ke  Flowers  Timothy J.  Rowland  Owen  Wang  Suo-Min 《Plant and Soil》2020,448(1-2):603-620
Plant and Soil - Uncontrolled uptake of Na+ is the reason that many species are sensitive to salinity. Suberin is a protective barrier found in the walls of root endodermal cells that appears to be...  相似文献   

10.
Silicon transport and incorporation into plant tissue is important to both plant physiological function and to the influence plants have on ecosystem silica cycling. However, the mechanisms controlling this transport have only begun to be explored. In this study, we used secondary ion mass spectrometry (SIMS) to image concentrations of Si in root and shoot tissues of annual blue grass (Poa annua L.) and orchard grass (Dactylis glomerata L.) with the goal of identifying control points in the plant silica uptake pathway. In addition, we used SIMS to describe the distributions of germanium (Ge); the element used to trace Si in biogeochemical studies. Within root tissue, Si and Ge were localized in the suberized thick-walled region of endodermal cells, i.e. the proximal side of endodermal cells which is in close association to the casparian strip. In leaves, Si was present in the cell walls, but Ge was barely detectable. The selective localization of Si and Ge in the proximal side of endodermal cell walls of roots suggests transport control is exerted upon Si and Ge by the plant. The absence of Si in most root cell walls and its presence in the cell walls of leaves (in areas outside of the transpiration terminus) suggests modifications in the chemical form of Si to a form that favors Si complexation in the cell walls of leaf tissue. The low abundance of Ge in leaf tissue is consistent with previous studies that suggest preferential transport of Si relative to Ge.  相似文献   

11.
Lux A  Morita S  Abe J  Ito K 《Annals of botany》2005,96(6):989-996
BACKGROUND AND AIMS: Free-hand sectioning of living plant tissues allows fast microscopic observation of internal structures. The aim of this study was to improve the quality of preparations from roots with suberized cell walls. A whole-mount procedure that enables visualization of exo- and endodermal cells along the root axis was also established. METHODS: Free-hand sections were cleared with lactic acid saturated with chloral hydrate, and observed with or without post-staining in toluidine blue O or aniline blue. Both white light and UV light were used for observation. Lactic acid was also used as a solvent for berberine, and fluorol yellow for clearing and staining the samples used for suberin observation. This procedure was also applied to whole-mount roots with suberized celllayers. KEY RESULTS: Clearing of sections results in good image quality to observe the tissue structure and cell walls compared with non-cleared sections. The use of lactic acid as a solvent for fluorol yellow proved superior to previously used solvents such as polyethylene glycol-glycerol. Clearing and fluorescence staining of thin roots such as those of Arabidopsis thaliana were successful for suberin visualization in endodermal cells within whole-mount roots. For thicker roots, such as those of maize, sorghum or tea, this procedure could be used for visualizing the exodermis in a longitudinal view. Clearing and staining of peeled maize root segments enabled observation of endodermal cell walls. CONCLUSIONS: The clearing procedure using lactic acid improves the quality of images from free-hand sections and clearings. This method enhances the study of plant root anatomy, in particular the histological development and changes of cell walls, when used in combination with fluorescence microscopy.  相似文献   

12.
Based on the characterization of the chemical composition of endodermal and hypodermal cell walls isolated from seven monocotyledonous and three dicotyledonous plant species, a model of the composition of apoplastic barriers in roots is proposed. Depending on the species, endodermal and hypodermal cell walls of roots contained varying amounts of the biopolymers suberin, lignin, cell wall proteins, and carbohydrates. Although analysis of the chemical composition of these apoplastic barriers of roots is now possible, it is pointed out that conclusions from these data concerning the functional properties of these cell walls can not easily be drawn. However, in analogy to suberized periderms it is argued that the suberin should play a role in establishing an apoplastic transport barrier in roots, albeit not a perfect barrier. Furthermore, due to the combined occurrence of suberin, lignin and cell wall proteins it is argued that endodermal and hypodermal cell walls also have an important function as barriers towards pathogens. Finally, it is pointed out that additional experimental approaches combining the investigation of transport properties and of the chemical composition of apoplastic transport barriers in roots are necessary before the function of endodermal and hypodermal cell walls in roots can be fully understood.  相似文献   

13.
Electron-probe Microanalysis of Silicon in the Roots of Oryza sativa L.   总被引:1,自引:0,他引:1  
Employing the electron-probe microanalyser, the localizationof silicon in the different tissues of the mature root of ricehas been investigated. Deposition of silicon is specific tothe endodermis. The heaviest accumulation is associated withthe inner tangential walls and to some extent the radial wallsof the endodermal cells.  相似文献   

14.
Martinka M  Dolan L  Pernas M  Abe J  Lux A 《Annals of botany》2012,110(2):361-371

Background and Aims

Apoplasmic barriers in plants fulfil important roles such as the control of apoplasmic movement of substances and the protection against invasion of pathogens. The aim of this study was to describe the development of apoplasmic barriers (Casparian bands and suberin lamellae) in endodermal cells of Arabidopsis thaliana primary root and during lateral root initiation.

Methods

Modifications of the endodermal cell walls in roots of wild-type Landsberg erecta (Ler) and mutants with defective endodermal development – scarecrow-3 (scr-3) and shortroot (shr) – of A. thaliana plants were characterized by light, fluorescent, confocal laser scanning, transmission and cryo-scanning electron microscopy.

Key Results

In wild-type plant roots Casparian bands initiate at approx. 1600 µm from the root cap junction and suberin lamellae first appear on the inner primary cell walls at approx. 7000–8000 µm from the root apex in the region of developing lateral root primordia. When a single cell replaces a pair of endodermal and cortical cells in the scr-3 mutant, Casparian band-like material is deposited ectopically at the junction between this ‘cortical’ cell and adjacent pericycle cells. Shr mutant roots with an undeveloped endodermis deposit Casparian band-like material in patches in the middle lamellae of cells of the vascular cylinder. Endodermal cells in the vicinity of developing lateral root primordia develop suberin lamellae earlier, and these are thicker, compared wih the neighbouring endodermal cells. Protruding primordia are protected by an endodermal pocket covered by suberin lamellae.

Conclusions

The data suggest that endodermal cell–cell contact is required for the spatial control of Casparian band development. Additionally, the endodermal cells form a collet (collar) of short cells covered by a thick suberin layer at the base of lateral root, which may serve as a barrier constituting a ‘safety zone’ protecting the vascular cylinder against uncontrolled movement of water, solutes or various pathogens.  相似文献   

15.
Summary Suberin lamellae and a tertiary cellulose wall in endodermal cells are deposited much closer to the tip of apple roots than of annual roots. Casparian strips and lignified thickenings differentiate in the anticlinal walls of all endodermal andphi layer cells respectively, 4–5 mm from the root tip. 16 mm from the root tip and only in the endodermis opposite the phloem poles, suberin lamellae are laid down on the inner surface of the cell walls, followed 35 mm from the root tip by an additional cellulosic layer. Coincidentally with this last development, the suberin and cellulose layers detach from the outer tangential walls and the cytoplasm fragments. 85 mm from the root tip the xylem pole endodermis (50% of the endodermis) develops similarly, but does not collapse. 100–150 mm from the root tip, the surface colour of the root changes from white to brown, a phellogen develops from the pericycle and sloughing of the cortex begins. A few secondary xylem elements are visible at this stage.Plasmodesmata traverse the suberin and cellulose layers of the endodermis, but their greater frequency in the outer tangential and radial walls of thephi layer when compared with the endodermis suggests that this layer may regulate the inflow of water and nutrients to the stele.  相似文献   

16.
Tomato seedlings five through ten days old were used for this investigation. Adventitious roots were initiated from the pericycle of the tomato hypocotyl. The position of adventitious root development was irregular in the rhizogenic hypocotyl; however, the cellular pattern of individual root development was very regular. Four layers of pericycle derivatives participated in root histogenesis and a bi- or triseriate endodermal cover was derived from the endodermis. Fluorescent microscopy showed that Casparian strips on the meristematic endodermal cell walls were not removed biochemically but were displaced around the root primordium by anticlinal divisions and cell enlargement. Casparian strips were not synthesized by endodermal cover cells. The emergent root had a typical three tiered or closed pattern of apical organization, and quiescent centers were present in all emergent roots longer than 0.5–0.6 cm.  相似文献   

17.
The chemical composition of isolated endodermal cell walls from the roots of the five monocotyledoneous species Monstera deliciosa Liebm., Iris germanica L., Allium cepa L., Aspidistra elatior Bl. and Agapanthus africanus (L.) Hoffmgg. was determined. Endodermal cell walls isolated from aerial roots of M. deliciosa were in their primary developmental state (Casparian bands). They contained large amounts of lignin (6.5% w/w) and only traces of suberin (0.5% w/w). Endodermal cell walls isolated from the other four species were in their tertiary developmental state. Lignin was still the more abundant cell wall polymer with amounts ranging from 3.8% (w/w, A. cepa) to 4.5% (w/w, I. germanica). However, compared to endodermal cell walls in their primary state of development (Casparian bands), tertiary endodermal cell walls contained significantly higher amounts of suberin, ranging from 1.8% (w/w, I. germanica) to 3.0% (w/w, A. africanus). Thus, chemical characterization of endodermal cell walls from five different species revealed that lignin was the dominant cell wall polymer in the Casparian band of M. deliciosa, whereas tertiary endodermal cell walls contained, in addition to lignin, increasing amounts of suberin (I. germanica, A. cepa, A. elatior and A. africanus). Besides the two biopolymers lignin and suberin, cell wall carbohydrates in the range of between 40 and 60% were also quantified. The sum of all cell wall compounds investigated by gas chromatography resulted in a recovery of 50–80% of the dry weight of the isolated cell wall material. Quantitative chromatographic results in combination with microscopic studies are consistent with the existence of a distinct suberin lamella and lignified tertiary wall deposits. From these data it can be concluded that the barrier properties of the endodermis towards the apoplastic transport of ions and water will increase from primary to tertiary endodermal cell walls due to their increasing amounts of suberin. Received: 23 August 1997 / Accepted: 28 January 1998  相似文献   

18.
Details of mouth formation in normal and exogastrulated Pisaster ochraceus larvae have been studied by light microscopy and transmission and scanning electron microscopy. As the archenteron begins to bend, the cells in the presumptive mouth region dissociate and migrate into the blastocoele where they become mesenchyme cells. This leaves a defect in the “blind” endodermal tube, which is covered by a basal lamina. Subsequently this exposed basal lamina bulges to form a blister which appears to extend across the blastocoele to make contact with spikelike projections from the future stomodeal region of the ectoderm. Mesenchyme cell processes are associated with both the basal lamina blister and the ectoderm in this region and may provide both motive power and guidance for contact. Shortly after contact is made the blister of basal lamina from the endoderm fuses with the basal lamina of the ectodermal cells and the ectoderm begins to invaginate. At this time the lateral walls of the presumptive oesophagus are largely formed of naked basal lamina with some loosely associated cells on the endodermal side. Eventually the lateral walls of the proximal part of the oesophagus become cellular, giving rise to an epithelium. A cell plug located between the stomodeum and oesophagus persists for some time before finally breaking down to complete the larval digestive tract. Experiments with exogastrulae suggest that many of these developmental patterns are determined before gastrulation.  相似文献   

19.
Summary Mineral distribution in the roots of wheat (Triticum aestivum L. cv. Wheaton) was investigated using X-ray microanalysis of bulk frozen hydrated roots in SEM and of freeze substituted sections in TEM. Results obtained using the two methods agreed reasonably well. A total often elements were detected: Na, Mg, Si, P, S, Cl, K, Ca, Mn, and Fe. Of these Si, P, Ca, and Mn were incorporated into biomineralized structures. Silica was deposited in the endodermal walls in the older parts of the root. Silicon was also detected in the large central metaxylem lumina in the basal zone of the root, and in the smaller peripheral metaxylem and the immediately contiguous pericycle and outer parenchyma cells bridging the small metaxylem vessels to the endodermal layer. In the basal zone of the root some of the inner cortical cells contained intracellular electron opaque deposits. These were associated with the cell walls, had non-opaque inclusions and microanalysis revealed that they consisted of calcium, phosphorus and manganese.Abbreviations A apical zone of root - M midzone of root - B basal zone of root - SEM scanning electron microscope - TEM transmission electron microscope  相似文献   

20.
Summary Three successive states are recognized in the development of endodermal cells in seminal and nodal axes and primary lateral roots of barley: 1. Casparian bands in the anticlinal walls; 2. suberin lamella around the whole inner face of the wall; 3. unevenly deposited cellulosic wall thickening. These states develop asynchronously, the cells adjacent to the protoxylem pole cells always being last to mature. All cells have progressed to at least the secondary state by 32 cm from the tip in seminal axes, 48 cm from the tip in nodal axes, but only 6 cm from the tip in primary laterals. The asynchronous development gives the appearance of passage cells adjacent to the protoxylem pole cells, although all cells eventually attain the same state and degree of wall thickening. Long distance transport of calcium shows a close correlation with the incidence of suberin lamellae in the three types of root examined; it is suggested that formation of a suberin lamella effectively blocks calcium movement into the stele and, therefore, long distance transport. Plasmodesmata are present in comparable frequencies through both tangential and radial endodermal walls; they appear to maintain intercellular continuity until a late stage in development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号