共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
UDP-N-acetylglucosamine:alpha-3-D-mannoside beta-1,2-N-acetylglucosaminyltransferase I (GnT I) and UDP-N-acetylglucosamine:alpha-6-D-mannoside beta-1,2-N-acetylglucosaminyltransferase II (GnT II) are key enzymes in the synthesis of Asn-linked hybrid and complex glycans. We have cloned cDNAs from Caenorhabditis elegans for three genes homologous to mammalian GnT I (designated gly-12, gly-13 and gly-14) and one gene homologous to mammalian GnT II. All four cDNAs encode proteins which have the domain structure typical of previously cloned Golgi-type glycosyltransferases and show enzymatic activity (GnT I and GnT II, respectively) on expression in transgenic worms. We have isolated worm mutants lacking the three GnT I genes by the method of ultraviolet irradiation in the presence of trimethylpsoralen (TMP); null mutants for GnT II have not yet been obtained. The gly-12 and gly-14 mutants as well as the gly-14;gly-12 double mutant displayed wild-type phenotypes indicating that neither gly-12 nor gly-14 is necessary for worm development under standard laboratory conditions. This finding and other data indicate that the GLY-13 protein is the major functional GnT I in C. elegans. The mutation lacking the gly-13 gene is partially lethal and the few survivors display severe morphological and behavioral defects. We have shown that the observed phenotype co-segregates with the gly-13 deletion in genetic mapping experiments although a second mutation near the gly-13 gene cannot as yet be ruled out. Our data indicate that complex and hybrid N-glycans may play critical roles in the morphogenesis of C. elegans, as they have been shown to do in mice and men. 相似文献
3.
Mucin biosynthesis. Properties of a bovine tracheal mucin beta-6-N-acetylglucosaminyltransferase. 下载免费PDF全文
We have characterized a bovine tracheal mucin beta-6-N-acetylglucosaminyltransferase that catalyses the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to the C-6 of the N-acetylgalactosamine residue of galactosyl-beta 1----3-N-acetylgalactosamine. Optimal enzyme activity was obtained between pH 7.5-8.5, at 5mM-MnCl2, and at 0.06-0.08% (v/v) Triton X-100 (or Nonidet P-40), or 0.5-5.0% (v/v) Tween 20. Ba2+, Mg2+ and Ca2+ could partially replace Mn2+, but Co2+, Fe2+, Cd2+ and Zn2+ could not. Sodium dodecyl sulphate, cetylpyridinium chloride, sodium deoxycholate, octyl beta-D-glucoside, digitonin and alkyl alcohols were less effective in enhancing enzyme activity, and dimethyl sulphoxide was ineffective. The apparent Michaelis constants were 1.25 mM for UDP-N-acetylglucosamine, 0.94-3.34 mM for freezing-point-depressing glycoprotein and 0.19 mM for periodate-treated blood-group-A porcine submaxillary mucin. Asialo ovine submaxillary mucin could not serve as the glycosyl acceptor. The structure of the 14C-labelled oligosaccharide obtained by alkaline-borohydride treatment of the product was identified as Gal beta 1----3(Glc-NAc beta 1----6)N-acetylgalactosaminitol by beta-hexosaminidase treatment, gas chromatography-mass spectrometry and 1H-n.m.r. (270 MHz) analysis. The enzyme is important in the regulation of mucin oligosaccharide biosynthesis. 相似文献
4.
S Yousefi E Higgins Z Daoling A Pollex-Krüger O Hindsgaul J W Dennis 《The Journal of biological chemistry》1991,266(3):1772-1782
Malignant transformation of rodent cell lines by polyoma virus and by activated ras genes is associated with increased UDP-GlcNAc:Man alpha-R beta-1,6-N-acetylglucosaminyltransferase V (GlcNAc-transferase V) activity and it product -GlcNAc beta 1-6Man alpha 1-6Man beta 1-branched Asn-linked oligosaccharides. In this report, we have compared beta 1-6GlcNAc branching of core O- and N-linked oligosaccharides in three experimental models of malignancy, namely (a) rat2 fibroblasts and their malignant T24H-ras-transfected counterpart; (b) benign SP1 mammary carcinoma cells and two metastic sublines of SP1; and (c) the metastatic MDAY-D2 lymphoma cell line and its poorly metastatic glycosylation mutant KBL-1. In addition to the previously reported increase in GlcNAc-transferase V activity, UDP-GlcNAc:Gal beta 1-3GalNAc alpha-R (GlcNAc to GalNAc) beta-1,6-N-acetylglucosaminyltransferase (core 2 GlcNAc-transferase, EC 2.4.1.102) activity was found to be elevated by 70% in the malignant rat2 and SP1 cell lines while several other glycosyltransferase activities were not significantly different. The action of core 2 GlcNAc-transferase followed by beta 1-4Gal-transferase provides an N-acetyllactosamine antenna that can be extended with polylactosamine (i.e. repeating Gal beta 1-4GlcNAc beta 1-3) provided UDP-GlcNAc:Gal beta-R beta 1-3GlcNAc-transferase (GlcNAc-transferase) (i)) activity is present. Polylactosamine content in microsomal membrane glycoproteins was quantitated by labeling the GlcNAc termini resulting from the action of Escherichia freundii endo-beta-galactosidase with bovine galactosyltransferase/UDP-[3H] Gal. Glycopeptidase F- sensitive and -insensitive fractions were measured to assess the N- and O-linked components. In the SP1 tumor model, the metastatic sublines showed increased core 2 GlcNAc-transferase and GlcNAc-transferase V activities but no change in GlcNAc-transferase (i) activity, yet polylactosamine was increased in both O- and N-linked oligosaccharides. In rat2 cells, down-regulation of GlcNAc-transferase (i) following transformation was associated with decreased polyactosamine even though core 2 GlcNAc-transferase and GlcNAc-transferase V were elevated in the cells. Finally, a 3-fold decrease in GlcNAc-transferase V in KBL-1, the glycosylation mutant of MDAY-D2 cells, resulted in complete loss of polylactosamine in N-linked but no change in O-linked polylactosamine content. These results suggest that, provided GlcNAc-transferase (i) is not limiting, the beta 1-6-branching enzymes core 2 GlcNAc-transferase and GlcNAc-transferase V regulate the levels of polyactosamine in O- and N-linked oligosaccharides, respectively.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
5.
We have characterized a UDP-GlcNAc:Gal beta-3-GalNAc (GlcNAc----GalNAc) beta-6-N-acetylglucosaminyltransferase from rabbit small intestinal epithelium by using freezing point depression glycoprotein as the acceptor. Optimal enzyme activity was obtained at pH 7.0-7.5, at 3 mM MnCl2, and at 0.08% Triton X-100. Ca2+, Mg2+, and Ba2+ also enhanced enzyme activity. The apparent Michaelis constant was 4.80 mM for freezing point depression glycoprotein, 0.59 mM for periodate-treated porcine submaxillary mucin, 0.49 mM for Gal beta 1----3 GalNAc alpha Ph, and 1.03 mM for UDP-GlcNAc. No enzyme activity was observed when asialo ovine submaxillary mucin was used as the acceptor. The 14C-labeled oligosaccharide obtained by alkaline borohydride treatment of the product was shown to be a homogeneous trisaccharide by compositional analysis, Bio-Gel P-4 gel filtration, and high-performance liquid chromatography. The structure of the trisaccharide was identified as Gal beta 1----3-(GlcNAc beta 1----6)GalNAc-H2 by (a) identification of 2,3,4,6-tetramethyl-1,5-diacetylgalactitol and 1,4,5-trimethyl-3,6-diacetyl-2-N-methylacetamidogalactitol by gas-liquid chromatography-mass spectrometry and (b) the complete cleavage of the newly formed glycosidic bond by jack bean beta-hexosaminidase. The structure of the trisaccharide was confirmed by 1H nuclear magnetic resonance (270 MHz) and also by periodate oxidation of the trisaccharide followed by NaBH4 reduction, 4 N HCl hydrolysis, a second NaBH4 reduction, and the identification of threosaminitol on an amino acid analyzer. By acceptor competition studies, the enzyme activity was shown to be a much N-acetylglucosaminyltransferase. We postulate that this glycosyltransferase may play a key role in the regulation of mucin oligosaccharide synthesis. 相似文献
6.
In order to investigate the molecular mechanism of the specific increase of UDP-N-acetylglucosamine:alpha-6-D-mannoside beta-1,6-N-acetylglucosaminyltransferase (GlcNAcT-V, EC 2.4.1.155) activity after viral or oncogenic transformation, we have purified the enzyme from a Triton X-100 extract of rat kidney acetone powder. GlcNAcT-V was purified by sequential affinity chromatography using first UDP-hexanolamine-agarose and then a synthetic oligosaccharide inhibitor-agarose column. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme revealed two major bands at apparent molecular masses of 69 and 75 kDa. The enzyme was recovered in a 26% final yield with a 450,000-fold increase in specific activity to a Vmax of 18.8 mumols/(mg.min). Enzyme activity was stabilized and enhanced by the addition of 20% glycerol, 0.5 mg/ml IgG, and 0.2 M NaCl. The optimal ranges of pH and Triton X-100 concentrations for enzyme activity were 6.5-7.0 and 1.0-1.5%, respectively. The divalent cations, Mn2+, Ca2+, and Mg2+, were each found to have a negligible (less than 10%) effect on activity; moreover, the enzyme was fully active in the presence of 20 mM EDTA. The Km value of the purified enzyme toward a synthetic trisaccharide acceptor was 90 microM, and the Ki value toward a synthetic active site inhibitor was 140 microM. 相似文献
7.
8.
9.
Takahashi S Sasaki T Manya H Chiba Y Yoshida A Mizuno M Ishida H Ito F Inazu T Kotani N Takasaki S Takeuchi M Endo T 《Glycobiology》2001,11(1):37-45
Recent studies have shown that O-mannosyl glycans are present in several mammalian glycoproteins. Although knowledge on the functional roles of these glycans is accumulating, their biosynthetic pathways are poorly understood. Here we report the identification and initial characterization of a novel enzyme capable of forming GlcNAc beta 1-2Man linkage, namely UDP-N-acetylglucosamine: O-linked mannose beta-1,2-N-acetylglucosaminyltransferase in the microsome fraction of newborn rat brains. The enzyme transfers GlcNAc to beta-linked mannose residues, and the formed linkage was confirmed to be beta 1-2 on the basis of diplococcal beta-N-acetylhexosaminidase susceptibility and by high-pH anion-exchange chromatography. Its activity is linearly dependent on time, protein concentration, and substrate concentration and is enhanced in the presence of manganese ion. Its activity is not due to UDP-N-acetylglucosamine: alpha-3-D-mannoside beta-1,2-N-acetylglucosaminyltransferase I (GnT-I) or UDP-N-acetylglucosamine: alpha-6-D-mannoside beta-1,2-D-acetylglucosaminyltransferase II (GnT-II), which acts on the early steps of N-glycan biosynthesis, because GnT-I or GnT-II expressed in yeast cells did not show any GlcNAc transfer activity against a synthetic mannosyl peptide. Taken together, the results suggest that the GlcNAc transferase activity described here is relevant to the O-mannosyl glycan pathway in mammals. 相似文献
10.
Zhuo Y Hoyle GW Zhang J Morris G Lasky JA 《Biochemical and biophysical research communications》2003,308(1):126-132
Platelet-derived growth factor (PDGF) is a potent mesenchymal cell mitogen and chemoattractant involved in the pathogenesis of fibroproliferative diseases. There are four known PDGF ligand isoforms designated A-D, two of which, C and D, were only recently discovered. We have identified a splicing variant in the PDGF-D isoform that occurs in mice, but not in humans. The presence of the splicing variant in murine PDGF-D appears to be due to an aberration in the splicing site at the junction of exons 5 and 6. The splicing variant results in a deletion predicted to have significant effects on peptide activity since it results in the deletion of bases within the cysteine knot domain that are important for peptide dimerization and receptor binding. It is important to appreciate differences between murine and human PDGF gene expression because PDGF is a key mitogen in the pathogenesis of fibrosis and mice are commonly employed as models for human disease. 相似文献
11.
J Gu A Nishikawa S Fujii S Gasa N Taniguchi 《The Journal of biological chemistry》1992,267(5):2994-2999
The beta-galactoside beta 1-6- and beta 1-3-N-acetylglucosaminyltransferases (beta 1-6GnT and beta 1-3GnT) that synthesize blood group I and i antigens were identified in rat tissues, using pyridylaminated lacto-N-neotetraose (Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc-PA) as an acceptor. The products of the transferase reactions were separated on high performance liquid chromatography. The products of the transferase reactions were identified by 1H NMR as (formula; see text) and GlcNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc-PA. The product for beta 1-6GnT was also identified by methylation analysis. Kinetic experiments were carried out using rat serum for beta 1-3GnT and partially purified enzyme from rat intestine for beta 1-6GnT. beta 1-3GnT has a pH optimum of 7.5 and requires Mn2+ for optimal activity. beta 1-6GnT has a pH optimum of 7.0 and does not require Mn2+. Studies on the substrate specificity of each enzyme indicated that the preferred substrate for beta 1-3GnT had the general structure Gal beta 1-4GlcNAc-OR and, for beta 1-6GnT, Gal beta 1-4GlcNAc beta 1-3Gal-OR where R = sugar. This is the first demonstration that the beta 1-6GnT acts on an internal galactose of lacto-N-neotetraose and paragloboside, and the enzyme appears to be a novel enzyme in terms of substrate specificity. 相似文献
12.
UDP-N-acetylglucosamine:alpha-6-d-mannoside beta-1, 6-N-acetylglucosaminyltransferase V (GlcNAcT-V) has been purified from cell extracts of the human hepatoma cell line, Hep3B, with 8.7% recovery. The purified enzymes had molecular masses of about 67 and 65 kDa on denaturated and natural conditions, respectively. The values of pI was 5.9. The GlcNAcT-V, when resolved by SDS-PAGE, was positive for Schiff staining, suggesting that the enzyme is glycoprotein. When GlcN,GlcN-biant-PA and UDP-GlcNAc were used as substrates, the enzyme displayed a temperature optimum of around 50 degrees C and optimum an pH of 6.5. The enzyme was stable in response to incubation from pH 4.5 to pH 10.5 at 4 degrees C for 24 h. The presence of UDP-GlcNAc and GlcN,GlcN-bi-PA protected the enzyme from heat inactivation, the extent depending upon the substrate concentration. The activity of the enzyme was stimulated by Mn2+ ion; however, it was inhibited by Fe3+. The enzyme activity was inhibited by another series of NDP-sugars including ADP-, CDP-, GDP-, and TDP-GlcNAc. Studies on the activity of the enzyme toward a variety of pyridylaminated sugars showed that the enzyme is most active toward biantennary (GlcN,GlcN-bi-PA) sugars. The enzymes had apparent Km values of 1.28 and 5.8 mM for GlcN,GlcN-bi-PA and UDP-GlcNAc, respectively. In order to isolate the GlcNAcT-V gene, PCR primers of GNN-1 and GNN-8 were designed and the amplified PCR product carrying the gene was cloned and sequenced. Nucleotide sequence analysis showed a 2220-bp open reading frame encoding a 740-amino-acid protein. This was almost same as the previously reported human sequences, except for some sequence differences in three amino acids. The three amino acid changes were as follows: 375V --> L, 555T --> R, and 592A --> G. These studies represent the detailed characterization of a purified GlcNAcT-V from human hepatoma cell Hep3B. 相似文献
13.
14.
Lisheng Ge Christina A. Samathanam Christina Delgado Qinghong Dan Neil Hoa Reza Alipanah Ramon Sanchez Timothy R. Morgan Martin R. Jadus 《Cellular immunology》2009,259(2):117-1323
Mouse Hepa1-6 hepatocellular carcinoma (HCC) cells were transduced with the membrane form of macrophage colony stimulating factor (mM-CSF). When mM-CSF transduced Hepa1-6 cells were injected subcutaneously into mice, these cells did not form tumors. The spleens of these immunized mice contained cytotoxic CD8+ T lymphocytes (CTL) that killed the unmodified Hepa1-6 cells. We show that the alternative form of macrophage colony stimulating factor (altM-CSF) induced CTL-mediated immunity against Hepa1-6 cells. AltM-CSF is restricted to the H-2Db allele. CTLs killed RMA-S cells loaded with exogenous altM-CSF peptide. Vaccination of mice with dendritic cells pulsed with the altM-CSF peptide stimulated anti-Hepa1-6 CTLs. Hyper-immunization of mice with mM-CSF Hepa1-6 cells showed inflammation of the liver and kidneys. Although altM-CSF was expressed within liver and kidney cells, its intensity was lower than Hepa1-6 cells. AltM-CSF was detected within the human HepG2 cell line. These studies suggest that altM-CSF may be a tumor antigen for HCC. 相似文献
15.
I Brockhausen E Hull O Hindsgaul H Schachter R N Shah S W Michnick J P Carver 《The Journal of biological chemistry》1989,264(19):11211-11221
Hen oviduct membranes were shown to contain high activity of a novel enzyme, UDP-GlcNac:GlcNAc beta 1-6(GlcNAc beta 1-2) Man alpha-R (GlcNAc to Man) beta 4-GlcNAc-transferase VI. The enzyme was shown to transfer GlcNAc in beta 1-4 linkage to the D-mannose residue of GlcNAc beta 1-6 (GlcNAc beta 1-2) Man alpha-R where R is either 1-6Man beta-(CH2)8COOCH3 or methyl. Radioactive enzyme products were purified by several chromatographic steps, including high performance liquid chromatography, and structures were determined by proton nmr, fast atom bombardment-mass spectrometry, and methylation analysis to be GlcNAc beta 1-6 ([14C]GlcNAc beta 1-4) (GlcNAc beta 1-2) Man alpha-R. The enzyme is stimulated by Triton X-100 and has optimum activity at a relatively high MnCl2 concentration of about 100 mM; Co2+, Mg2+, and Ca2+ could partially substitute for Mn2+. A tissue survey demonstrated high GlcNAc-transferase VI activity in hen oviduct and lower activity in chicken liver and colon, duck colon, and turkey intestine. No activity was found in mammalian tissues. Hen oviduct membranes cannot act on GlcNAc beta 1-6Man alpha-R but have a beta 4-GlcNAc-transferase activity that converts GlcNAc beta 1-2Man alpha-R to GlcNAc beta 1-4(GlcNAc beta 1-2) Man alpha-R where R is either 1-6Man beta-(CH2)8COOCH3 or 1-6Man beta methyl. The latter activity is probably due to GlcNAc-transferase IV which preferentially adds GlcNAc in beta 1-4 linkage to the Man alpha 1-3 arm of the GlcNAc beta 1-2Man alpha 1-6(GlcNAc beta 1-2Man alpha 1-3)Man beta 1-4GlcNAc beta 1-4GlcNAc-Asn core structure of asparagine-linked glycans. The minimum structural requirement for a substrate of beta 4-GlcNAc-transferase VI is therefore the trisaccharide GlcNAc beta 1-6(GlcNAc beta 1-2) Man alpha-; this trisaccharide is found on the Man alpha 6 arm of many branched complex asparagine-linked oligosaccharides. The data suggest that GlcNAc-transferase VI acts after the synthesis of the GlcNAc beta 1-2Man alpha 1-3-, GlcNAc beta 1-2Man alpha 1-6-, and GlcNAc beta 1-6 Man alpha 1-6-branches by GlcNAc-transferases I, II, and V, respectively, and is responsible for the synthesis of branched oligosaccharides containing the GlcNAc beta 1-6(GlcNAc beta 1-4)(GlcNAc beta 1-2)Man alpha 1-6Man beta moiety. 相似文献
16.
J J O'Rear 《The Journal of biological chemistry》1992,267(29):20555-20557
Two distinct recombinant cDNA clones having homology to mouse laminin B1 have been isolated from an adult chicken eye library by cross-species nucleic acid hybridization. DNA sequence analysis identified one cDNA as the chicken homologue of the prototypic EHS laminin B1 chain. The second recombinant cDNA encodes a portion of a laminin B1-like protein, which is neither the chicken homologue of laminin B1 nor s-laminin, and thus represents a new laminin B1 variant. 相似文献
17.
A novel beta1,3-N-acetylglucosaminyltransferase involved in invasion of cancer cells as assayed in vitro 总被引:1,自引:0,他引:1
Using a two-step screening system for genes involved in tissue invasion [Kataoka et al., Cancer Lett. 163(2) (2001) 213], we identified a cDNA whose expression level was higher in mouse placenta at later stages of gestation and in sublines of cancer cells with low degrees of invasiveness. The deduced amino acid sequence showed relatively high similarity with beta1,3-N-acetylglucosaminyltransferase2 approximately 5 (beta3GnT2 approximately 5), and the protein was therefore named beta3GnT7. A possible human ortholog was identified and its chromosomal locus was determined to be 2q37.1. In the mouse, beta3GnT7 was most strongly expressed in the placenta and colon. Moderate amounts of mRNA were detected in the lung, stomach, small intestine, and kidney. The expression of beta3GnT7 was very weak in the cerebrum, cerebellum, heart, and testis. Transfection of the antisense oligonucleotide significantly enhanced the motility of a lung cancer cell line (KLN205-MUC1) in a monolayer compared to the controls. Furthermore, the antisense oligonucleotide increased the number of cells that invaded the matrix-coated membrane in an in vitro invasion model. These results indicate that beta3GnT7 may play a role in preventing cells from migrating out of the original tissues and invading surrounding tissues. 相似文献
18.
A novel multicellular form of Methanosarcina mazei S-6 is described. It was termed lamina, and it formed during the exponential growth phase when packets or single cells were grown in 40 mM trimethylamine and a total concentration of 8.3 to 15.6 mM Ca2+ and/or Mg2+, in cultures that were not shaken. A distinct molecular event represented by the increment in expression and a spatial redistribution of an antigen during lamina formation is documented. 相似文献
19.
20.
Nadège Moïse Dharmendra Dingar Aida M. Mamarbachi Louis R. Villeneuve Nada Farhat Matthias Gaestel Maya Khairallah Bruce G. Allen 《Cellular signalling》2010,22(10):1502-1512
p38 MAP kinase (MAPK) isoforms α, β, and γ, are expressed in the heart. p38α appears pro-apoptotic whereas p38β is pro-hypertrophic. The mechanisms mediating these divergent effects are unknown; hence elucidating the downstream signaling of p38 should further our understanding. Downstream effectors include MAPK-activated protein kinase (MK)-3, which is expressed in many tissues including skeletal muscles and heart. We cloned full-length MK3 (MK3.1, 384 aa) and a novel splice variant (MK3.2, 266 aa) from murine heart. For MK3.2, skipping of exons 8 and 9 resulted in a frame-shift in translation of the first 85 base pairs of exon 10 followed by an in-frame stop codon. Of 3 putative phosphorylation sites for p38 MAPK, only Thr-203 remained functional in MK3.2. In addition, MK3.2 lacked nuclear localization and export signals. Quantitative real-time PCR confirmed the presence of these mRNA species in heart and skeletal muscle; however, the relative abundance of MK3.2 differed. Furthermore, whereas total MK3 mRNA was increased, the relative abundance of MK3.2 mRNA decreased in MK2?/? mice. Immunoblotting revealed 2 bands of MK3 immunoreactivity in ventricular lysates. Ectopically expressed MK3.1 localized to the nucleus whereas MK3.2 was distributed throughout the cell; however, whereas MK3.1 translocated to the cytoplasm in response to osmotic stress, MK3.2 was degraded. The p38α/β inhibitor SB203580 prevented the degradation of MK3.2. Furthermore, replacing Thr-203 with alanine prevented the loss of MK3.2 following osmotic stress, as did pretreatment with the proteosome inhibitor MG132. In vitro, GST-MK3.1 was strongly phosphorylated by p38α and p38β, but a poor substrate for p38δ and p38γ. GST-MK3.2 was poorly phosphorylated by p38α and p38β and not phosphorylated by p38δ and p38γ. Hence, differential regulation of MKs may, in part, explain diverse downstream effects mediated by p38 signaling. 相似文献