首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinetics of refolding and unfolding of staphylococcal nuclease and its six mutants, each carrying single or double amino acid substitutions, are studied by stopped-flow circular dichroism measurements. A transient kinetic intermediate formed within 10 ms after refolding starts possesses a substantial part of the N-domain core β-structure, whereas helices are formed at the later stages. The structure of the kinetic intermediate is less organized than the structure that is known to be formed by a nuclease 1-136 fragment. Only the refolding kinetics are affected by the mutations in all the mutants except two in which the mutations have changed the native structure. From this result and also from the locations of the mutation sites, the major N-terminal domain of the nuclease in the transition state of folding has a structure nearly identical to the native one. On the other hand, the minor C-terminal domain has previously been shown to be still disorganized in the transition state. The effects of the amino acid substitutions on the stability of the native and the transition states are in good agreement with the changes in the hydration free energy, expected for the corresponding amino acid replacements in the unfolded polypeptide. Since side chains of all the mutated residues are not accessible to solvent in the native structure, the result suggests that it is the unfolded state that is mainly affected by the mutations. © 1995 Wiley-Liss, Inc.  相似文献   

2.
L King  S S Lehrer 《Biochemistry》1989,28(8):3498-3502
Rabbit skeletal myosin rod, which is the coiled-coil alpha-helical portion of myosin, contains two tryptophan residues located in the light meromyosin (LMM) portion whose fluorescence contributes 27% to the fluorescence of the entire myosin molecule. The temperature dependence of several fluorescence parameters (quantum yield, spectral position, polarization) of the rod and its LMM portion was compared to the thermal unfolding of the helix measured with circular dichroism. Rod unfolds with three major helix unfolding transitions: at 43, 47, and 53 degrees C, with the 43 and 53 degrees C transitions mainly located in the LMM region and the 47 degrees C transition mainly located in the subfragment 2 region. The fluorescence study showed that the 43 degrees C transition does not involve the tryptophan-containing region and that the 47 degrees C transition produces an intermediate with different fluorescence properties from both the completely helical and fully unfolded states. That is, although the fluorescence of the 47 degrees C intermediate is markedly quenched, the tryptophyl residues do not become appreciably exposed to solvent until the 53 degrees C transition. It is suggested that although the intermediate that is formed in the 47 degrees C transition contains an extensive region which is devoid of alpha-helix, the unfolded region is not appreciably solvated or flexible. It appears to have the properties of a collapsed nonhelical state rather than a classical random coil.  相似文献   

3.
Fibronectin (FN) is an extracellular matrix (ECM) protein found soluble in corporal fluids or as an insoluble fibrillar component incorporated in the ECM. This phenomenon implicates structural changes that expose FN binding sites and activate the protein to promote intermolecular interactions with other FN. We have investigated, using fluorescence and circular dichroism spectroscopy, the unfolding process of human fibronectin induced by urea in different ionic strength conditions. At any ionic strength, the equilibrium unfolding data are well described by a four-state equilibrium model N <= => I(1) <= =>I(2) <= => U. Fitting this model to experimental values, we have determined the free energy change for the different steps. We found that the N <= => I(1) transition corresponds to a free energy of 10.5 +/- 0.4 kcal/mol. Comparable values of free energy change are generally associated with a partial unfolding of the type III domain. For the I(1) <= => I(2) transition, the free energy change is 7.6 +/- 0.4 kcal/mol at low ionic strength but is twice as low at high ionic strength. This result is consistent with observations indicating that the complete unfolding of the type III domain from partially unfolded forms necessitates about 5 kcal/mol. The third step, I(2) <= => U, which leads to the complete unfolding of fibronectin, corresponds to a free energy change of 14.4 +/- 0.9 kcal/mol at low ionic strength whereas this energy is again twice as low under high ionic strength conditions. This hierarchical unfolding of fibronectin, as well as the stability of the different intermediates controlled by ionic strength demonstrated here, could be important for the understanding of activation of the matrix assembly.  相似文献   

4.
5.
The delta H associated with the thermal unfolding of G-actin has been determined by differential scanning calorimetry (DSC) to be 142 +/- 5 kcal/mol, with the Tm (melting temperature) at 57.2 +/- 0.5 degrees C, at pH 8.0 (heating rate 0.5 K/min). The transition is broad and cannot be treated as a single transition that mimics a two-state process, suggesting the existence of domains. Deconvolution is done to fit it into two quasi-independent two-state transitions. For F-actin, the transition is more cooperative, with a cooperative ratio (the ratio of van't Hoff enthalpy and calorimetric enthalpy) of 1.4, indicating intermonomer interaction. The delta H of the thermal unfolding of F-actin is 162 +/- 10 kcal/mol with a Tm at 67.0 +/- 0.5 degrees C. A state of G-actin similar to that of the heat-denatured form, designated D-actin, is obtained by removing tightly bound Ca2+ with EGTA. The DSC-detectable cooperative transition is completely lost when the free calcium concentration of the medium is 1 x 10(-11) M or lower, using a Ca2+/EGTA buffer system. However, circular dichroism (CD) shows that the helix content of actin, 32% in the G-form, is only partially reduced to 19% in this apo form. The CD spectrum and the helix content of the calcium-depleted actin are almost identical with those of the heat-denatured D form. This loss of 40% of the native helical content is irreversible in both cases. The remaining 60% of the native helical content cannot be further eliminated by heating to 95 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Kornblatt JA  Rajotte I  Heitz F 《Biochemistry》2001,40(12):3639-3647
The thermodynamics of the binding of 6-aminohexanoate (6-AH) to dog glu-plasminogen has been studied. Fluorescence titrations revealed four binding sites. Three yielded positive fluorescence changes on ligand binding; one yielded a negative fluorescence change. The fluorescence data gave no indication of cooperative interactions. Binding was studied using circular dichroism (CD). Near 295 nm there were small changes associated with binding ligand. These were magnified at 235 nm, a wavelength that is mainly associated with tryptophan bands. The dissociation constants obtained from the fluorescence were applied to the CD data and fit quite well. Below 220 nm, there were no significant differences between samples with or without 6-AH and, therefore, no substantial change in the secondary structure of the protein. Isothermal titration calorimetry was used in combination with the binding constants from fluorescence to study the enthalpy and entropy contributions to 6-AH binding. The enthalpies of association for the four sites are all negative. Their absolute values are small for the tight sites and large for the weakest. -TDeltaS is negative for the tight sites and positive for the weakest. The binding of 6-AH to plasminogen is entropically driven for the two tightest sites and enthalpically driven for the weakest site. The binding of 6-AH to lys-plasminogen has been studied and differs slightly from binding to glu-plasminogen. Most importantly, the binding of 6-AH for the weak site goes from enthalpy- to entropy-driven as is found with the other sites.  相似文献   

7.
Zaiss K  Jaenicke R 《Biochemistry》1999,38(14):4633-4639
The folding of phosphoglycerate kinase (PGK) from the hyperthermophilic bacterium Thermotoga maritima and its isolated N- and C-terminal domains (N1/2 and C1/2) was characterized by differential scanning calorimetry (DSC) and circular dichroism (CD) spectroscopy. At pH 3.0-4.0, reversible thermal denaturation of TmPGK occurred below 90 degrees C. The corresponding peaks in the partial molar heat capacity function were fitted by a four-state model, describing three well-defined unfolding transitions. Using CD spectroscopy, these are ascribed to the disruption of the domain interactions and subsequent sequential unfolding of the two domains. The isolated N-terminal domain unfolds reversibly between pH 3.0 and pH 4.0 to >90% and at pH 7.0 to about 70%. In contrast, the isolated engineered C-terminal domain only shows reversible thermal denaturation between pH 3.0 and pH 3.5. Neither N1/2 nor C1/2 obeys the simple two-state mechanism of unfolding. Instead, both unfold via a partially structured intermediate. In the case of N1/2, the intermediate exhibits native secondary structure and perturbed tertiary structure, whereas for C1/2 the intermediate could not be defined with certainty.  相似文献   

8.
The thermal unfolding of xylanase A from Streptomyces lividans, and of its isolated substrate binding and catalytic domains, was studied by differential scanning calorimetry and Fourier transform infrared and circular dichroism spectroscopy. Our calorimetric studies show that the thermal denaturation of the intact enzyme is a complex process consisting of two endothermic events centered near 57 and 64 degrees C and an exothermic event centered near 75 degrees C, all of which overlap slightly on the temperature scale. A comparison of the data obtained with the intact enzyme and isolated substrate binding and catalytic domains indicate that the lower- and higher-temperature endothermic events are attributable to the thermal unfolding of the xylan binding and catalytic domains, respectively, whereas the higher-temperature exothermic event arises from the aggregation and precipitation of the denatured catalytic domain. Moreover, the thermal unfolding of the two domains of the native enzyme are thermodynamically independent and differentially sensitive to pH. The unfolding of the substrate binding domain is a reversible two-state process and, under appropriate conditions, the refolding of this domain to its native conformation can occur. In contrast, the unfolding of the catalytic domain is a more complex process in which two subdomains unfold independently over a similar temperature range. Also, the unfolding of the catalytic domain leads to aggregation and precipitation, which effectively precludes the refolding of the protein to its native conformation. These observations are compatible with the results of our spectroscopic studies, which show that the catalytic and substrate binding domains of the enzyme are structurally dissimilar and that their native conformations are unaffected by their association in the intact enzyme. Thus, the calorimetric and spectroscopic data demonstrate that the S. lividans xylanase A consists of structurally dissimilar catalytic and substrate binding domains that, although covalently linked, undergo essentially independent thermal denaturation. These observations provide valuable new insights into the structure and thermal stability of this enzyme and should assist our efforts at engineering xylanases that are more thermally robust and otherwise better suited for industrial applications.  相似文献   

9.
Fluorescence and circular dichroism spectroscopic studies were carried out on the galactose-specific lectin from Dolichos lablab seeds (DLL-II). The microenvironment of the tryptophan residues in the lectin under native and denaturing conditions were investigated by quenching of the intrinsic fluorescence of the protein by a neutral quencher (acrylamide), an anionic quencher (iodide ion) and a cationic quencher (cesium ion). The results obtained indicate that the tryptophan residues of DLL-II are largely buried in the hydrophobic core of the protein matrix, with positively charged side chains residing close to at least some of the tryptophan residues under the experimental conditions. Analysis of the far UV CD spectrum of DLL-II revealed that the secondary structure of the lectin consists of 57% alpha-helix, 21% beta-sheet, 7% beta-turns and 15% unordered structures. Carbohydrate binding did not significantly alter the secondary and tertiary structures of the lectin. Thermal unfolding of DLL-II, investigated by monitoring CD signals, showed a sharp transition around 75 degrees C both in the far UV region (205 nm) and the near UV region (289 nm), which shifted to ca. 77-78 degrees C in the presence of 0.1 M methyl-beta-D-galactopyranoside, indicating that ligand binding leads to a moderate stabilization of the lectin structure.  相似文献   

10.
Amphiphilic and hydrophobic peptides play a key role in many biological processes. We have developed a reference system for evaluating the insertion of such peptides bearing Trp fluorescent reporter groups into membrane mimetic systems. This system involves a set of six 25-amino acid synthetic peptides that are models of transmembrane alpha-helices. They are Lys-flanked polyLeu sequences, each containing a single Trp residue at a different position (P i, with i=3, 5, 7, 9, 11 and 13). These peptides were inserted into micelles of a non-ionic detergent, dodecylmaltoside (DM). We analyzed this system by use of circular dichroism and steady-state and time-resolved fluorescence in combination with Trp quenching with two brominated DM analogs. We found significant variations in the Trp emission maximum according to its position in each peptide (from 327 to 313 nm). This is consistent with the radial insertion of the peptides within DM micelles. We observed characteristic patterns of fluorescence quenching of these peptides in mixed micelles of DM, with either 7,8-dibromododecylmaltoside (BrDM) or 10,11-dibromoundecanoylmaltoside (BrUM), that reflect differences in the accessibility of the Trp residue to the bromine atoms located on the detergent acyl chain. In the isotropic reference solvent, methanol, the alpha-helix content was high and identical (approximately 76%) for all peptides. In DM micelles, the alpha-helix content for P9 to P13 was similar to that in methanol, but slightly lower for P3 to P7. The fluorescence intensity decays were heterogeneous and depended upon the position of the Trp. The Trp dynamics of each peptide are described by sub-nanosecond and nanosecond rotational motions that were significantly lower than those observed in methanol. These results, which precisely describe structural, dynamic and microenvironment parameters of peptide Trp in micelles according to its depth, should be useful for describing the interactions of peptides of biological interest with micelles.  相似文献   

11.
Thermal conformational changes of human serum albumin (HSA) in phosphate buffer, 10 mM at pH = 7 are investigated using differential scanning calorimetric (DSC), circular dichroism (CD) and UV spectroscopic methods. The results indicate that temperature increment from 25 degrees C to 55 degrees C induces reversible conformational changes in the structure of HSA. Conformational change of HSA are shown to be a three-step process. Interestingly, melting temperature of the last domain is equal to the maximum value of fever in pathological conditions, i.e. 42 degrees C. These conformational alterations are accompanied by a mild alteration of secondary structures. Study of HSA-SDS (sodium dodecyl sulphate) interaction at 45 degrees C and 35 degrees C reveals that SDS affects the HSA structure at least in three steps: the first two steps result in more stabilization and compactness of HSA structure, while the last one induces the unfolding of HSA. Since HSA has a more affinity for SDS at 45 degrees C compared to 35 degrees C, It is suggested that the net negative charge of HSA is decreased in fever, which results in the decrease of HSA-associated cations and plasma osmolarity, and consequently, heat removal via the increase in urine volume.  相似文献   

12.
13.
14.
15.
In a previous paper (Ramsay and Eftink, Biophys. J. 66:516-523) we reported the development of a modified spectrophotometer that can make nearly simultaneous circular dichroism (CD) and fluorescence measurements. This arrangement allows multiple data sets to be collected during a single experiment, resulting in a saving of time and material, and improved correlation between the different types of measurements. The usefulness of the instrument was shown by thermal melting experiments on several different protein systems. This CD/fluorometer spectrophotometer has been further modified by interfacing with a syringe pump and a pH meter. This arrangement allows ligand, pH, and chemical denaturation titration experiments to be performed while monitoring changes in the sample's CD, absorbance, fluorescence, and light scattering properties. Our data acquisition program also has an ability to check whether the signals have approached equilibrium before the data is recorded. For performing pH titrations we have developed a procedure which uses the signal from a pH meter in a feedback circuit in order to collect data at evenly spaced pH intervals. We demonstrate the use of this instrument with studies of the unfolding of sperm whale apomyoglobin, as induced by acid pH and by the addition of guanidine-HCI.  相似文献   

16.
An IPTF-regulated broad host range expression system was constructed using compatible broad host range plasmids, the T7 RNA polymerase, and T7 promoter sequences. The system is implemented by the coexistence of two plasmids. The first contains the T7 RNA polymerase gene under the control of lacl or lacl(q) genes and lacUV5 promoter. The second encodes the T7 promoter upstream of a multicloning site. IncP1 or IncP4 T7 promoter plasmids, and IncP1, IncP4 or IncW T7 RNA polymerase plasmids were constructed. The expression from the IncP1 promoter plasmids in the presence of the IncP4 polymerase plasmids was tested by in vivo lacZ fusions and vivo labeling of proteins. In this combination, the use of lac(q) improves the regulation levels in Escherichia coli, whereas, in Pseudomonas phaseolicola, a 28.5-fold regulation was obtained with lacl, Although the level of lacZ expression from the T7 promoter in P. phaseolicola is low compared with E. coli, it is similar to levels obtained with the pm promoter in Pseudomonas putida when the differences in the copy number of the expression vectors are taken into consideration (c) 1993 Wiley & Sons, Inc.  相似文献   

17.
S G Melberg  W C Johnson 《Proteins》1990,8(3):280-286
Vacuum UV circular dichroism spectra measured down to 178 nm for hexameric 2-zinc human insulin, zinc-free human insulin, and the two engineered and biologically active monomeric mutants, [B/S9D] and [B/S9D,T27E] human insulin, show significant differences. The secondary structure analysis of the 2-zinc human insulin (T6) in neutral solution was determined: 57% helix, 1% beta-strand, 18% turn, and 24% random coil. This is very close to the corresponding crystal structure showing that the solution and solid structures are similar. The secondary structure of the monomer shows a 10-15% increase in antiparallel beta-structure and a corresponding reduction in random coil structure. These structural changes are consistent with an independent analysis of the corresponding difference spectra. The advantage of secondary structure analyses of difference spectra is that the contribution of odd spectral features stemming mainly from side chain chromophores is minimized and the sensitivity of the analyses improved. Analysis of the CD spectra of T6 2-zinc, zinc-free human insulin and monomeric mutant insulin by singular value decomposition indicates that the secondary structure changes following the dissociation of hexamers into dimers and monomers are two-state processes.  相似文献   

18.
Three scorpion toxins have been analyzed by circular dichroism in water and in 2,2,2-trifluoroethanol (TFE) solutions. These toxins were chosen because they are representative of three kinds of pharmacological activities: (1) toxin AaH IT2, an antiinsect toxin purified from the venom of Androctonus australis Hector, which is able to bind to insect nervous system preparation, (2) toxin Css II, from the venom of Centruroides suffusus suffusus, which is a beta-type antimammal toxin capable of binding to mammal nervous system preparation, and (3) the toxin Ts VII from the venom of Tityus serrulatus, which is able to bind to both types of nervous systems. In order to minimize bias, CD data were analyzed by a predictive algorithm to assess secondary structure content. Among the three molecules, Ts VII presented the most unordered secondary structure in water, but it gained in ordered forms when solubilized in TFE. These results indicated that the Ts VII backbone is the most flexible, which might result in a more pronounced tendency for this toxin molecule to undergo conformational changes. This is consistent with the fact that it competes with both antiinsect and beta-type antimammal toxins for the binding to the sodium channel.  相似文献   

19.
All-trans retinoic acid derived from vitamin A is an essential component for the modulation of angiogenesis, the process of blood vessel formation. We have investigated the binding of all-trans retinoic acid to the carrier protein, human serum albumin (HSA) under physiological conditions. Fluorescence quenching methods in combination with Fourier transform infrared (FT-IR) spectroscopy and circular dichroism (CD) spectroscopy were used for the biophysical studies. The binding parameters were determined by a Scatchard plot and the results found to be consistent with those obtained from a modified Stern–Volmer equation. From the thermodynamic parameters calculated according to the van’t Hoff equation, the enthalpy change ΔH0 and entropy change ΔS0 are found to be 106.17 and 106.14 J/mol K, respectively. These values suggest that apart from hydrophobic interactions electrostatic interactions are present. Changes in the CD spectra and FT-IR spectra were observed upon ligand binding along with a significant degree of tryptophan fluorescence quenching on complex formation. Docking studies performed substantiated our experimental findings and it was observed that all-trans retinoic acid hydrogen bonded with Trp 214 and Asp 451 residues of subdomain IIA and IIIA of HSA, respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号