首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Influenza B virus requires BM2 protein for replication   总被引:1,自引:0,他引:1       下载免费PDF全文
Hatta M  Goto H  Kawaoka Y 《Journal of virology》2004,78(11):5576-5583
The BM2 protein of influenza B virus functions as an ion channel, which is suggested to be important for virus uncoating in endosomes of virus-infected cells. Because direct support for this function is lacking, whether BM2 plays an essential role in the viral life cycle remains unknown. We therefore attempted to generate BM2 knockout viruses by reverse genetics. Mutant viruses possessing M segments with the mutated initiation codon of BM2 protein at the stop-start pentanucleotide were viable and still expressed BM2. The introduction of multiple stop codons and a one-nucleotide deletion downstream of the stop-start pentanucleotide, in addition to disablement of the BM2 initiation codon, failed to generate viable mutant viruses, but the mutant M segments still expressed proteins that reacted with the BM2 peptide antiserum. To completely abolish BM2 expression, we generated a mutant M gene whose BM2 open reading frame was deleted. Although this mutant was not able to replicate in normal MDCK cells, it did replicate in a cell line that we established which constitutively expresses BM2. Furthermore, a virus possessing the mutant M gene lacking the BM2 open reading frame and a mutant NA gene containing the BM2 open reading frame instead of the NA open reading frame underwent multiple cycles of replication in MDCK cells, with exogenous sialidase used to supplement the deleted viral sialidase activity. These findings demonstrate that the BM2 protein is essential for influenza B virus replication.  相似文献   

2.
Influenza B virus BM2 is a type III integral membrane protein that displays H+ ion channel activity. Analysis of BM2 knockout mutants has suggested that this protein is a necessary component for the capture of M1-viral ribonucleoprotein (vRNP) complex at the plasma membrane and for incorporation of vRNP complex into the virion during the assembly process. BM2 comprises 109 amino acid residues and possesses a longer cytoplasmic domain than the other 3 integral membrane proteins (hemagglutinin, neuraminidase, and NB). To explore whether the cytoplasmic domain of BM2 is important for infectious virus production, a series of BM2 deletion mutants lacking three to nine amino acid residues at the carboxyl terminus, BM2Δ107-109, BM2Δ104-109, and BM2Δ101-109, was generated by reverse genetics. Intracellular transport and incorporation into virions were indistinguishable between truncated BM2 proteins and wild-type BM2. The BM2Δ107-109 mutant produced levels of infectious virus similar to those of wild-type virus and displayed a spherical shape. However, the BM2Δ104-109 and BM2Δ101-109 mutants produced viruses containing dramatically reduced vRNP complex, as with BM2 knockout mutants, and formed enlarged, irregularly shaped virions. Moreover, gradient separation of membranes indicated that membrane association of M1 from mutants was greatly affected by carboxyl-terminal truncations of BM2. Studies of alanine substitution mutants further suggested that amino acid sequences in the 98-109 region are variable while those in the 86-97 region are a prerequisite for innate BM2 function. These results indicate that the cytoplasmic domain of the BM2 protein is required for firm association of the M1 protein with lipid membranes, vRNP complex incorporation into virions, and virion morphology.  相似文献   

3.
The M2 integral membrane protein encoded by influenza A virus possesses an ion channel activity that is required for efficient virus entry into host cells. The role of the M2 protein cytoplasmic tail in virus replication was examined by generating influenza A viruses encoding M2 proteins with truncated C termini. Deletion of 28 amino acids (M2Stop70) resulted in a virus that produced fourfold-fewer particles but >1,000-fold-fewer infectious particles than wild-type virus. Expression of the full-length M2 protein in trans restored the replication of the M2 truncated virus. Although the M2Stop70 virus particles were similar to wild-type virus in morphology, the M2Stop70 virions contained reduced amounts of viral nucleoprotein and genomic RNA, indicating a defect in vRNP packaging. The data presented indicate the M2 cytoplasmic tail plays a role in infectious virus production by coordinating the efficient packaging of genome segments into influenza virus particles.  相似文献   

4.
5.
It is well documented that influenza A viruses selectively package 8 distinct viral ribonucleoprotein complexes (vRNPs) into each virion; however, the role of host factors in genome assembly is not completely understood. To evaluate the significance of cellular factors in genome assembly, we generated a reporter virus carrying a tetracysteine tag in the NP gene (NP-Tc virus) and assessed the dynamics of vRNP localization with cellular components by fluorescence microscopy. At early time points, vRNP complexes were preferentially exported to the MTOC; subsequently, vRNPs associated on vesicles positive for cellular factor Rab11a and formed distinct vRNP bundles that trafficked to the plasma membrane on microtubule networks. In Rab11a deficient cells, however, vRNP bundles were smaller in the cytoplasm with less co-localization between different vRNP segments. Furthermore, Rab11a deficiency increased the production of non-infectious particles with higher RNA copy number to PFU ratios, indicative of defects in specific genome assembly. These results indicate that Rab11a+ vesicles serve as hubs for the congregation of vRNP complexes and enable specific genome assembly through vRNP:vRNP interactions, revealing the importance of Rab11a as a critical host factor for influenza A virus genome assembly.  相似文献   

6.
The viral replication cycle concludes with the assembly of viral components to form progeny virions. For influenza A viruses, the matrix M1 protein and two membrane integral glycoproteins, hemagglutinin and neuraminidase, function cooperatively in this process. Here, we asked whether another membrane protein, the M2 protein, plays a role in virus assembly. The M2 protein, comprising 97 amino acids, possesses the longest cytoplasmic tail (54 residues) of the three transmembrane proteins of influenza A viruses. We therefore generated a series of deletion mutants of the M2 cytoplasmic tail by reverse genetics. We found that mutants in which more than 22 amino acids were deleted from the carboxyl terminus of the M2 tail were viable but grew less efficiently than did the wild-type virus. An analysis of the virions suggested that viruses with M2 tail deletions of more than 22 carboxy-terminal residues apparently contained less viral ribonucleoprotein complex than did the wild-type virus. These M2 tail mutants also differ from the wild-type virus in their morphology: while the wild-type virus is spherical, some of the mutants were filamentous. Alanine-scanning experiments further indicated that amino acids at positions 74 to 79 of the M2 tail play a role in virion morphogenesis and affect viral infectivity. We conclude that the M2 cytoplasmic domain of influenza A viruses plays an important role in viral assembly and morphogenesis.  相似文献   

7.
The influenza virus genome replicates and forms a viral ribonucleoprotein complex (vRNP) with nucleoprotein (NP) and RNA polymerases in the nuclei of host cells. vRNP is then exported into the cytoplasm for viral morphogenesis at the cell membrane. Matrix protein 1 (M1) and nonstructural protein 2/nuclear export protein (NS2/NEP) work in the nuclear export of vRNP by associating with it. It was previously reported that influenza virus production was inhibited in Madin-Darby canine kidney (MDCK) cells cultured at 41 degrees C because nuclear export of vRNP was blocked by the dissociation of M1 from vRNP (A. Sakaguchi, E. Hirayama, A. Hiraki, Y. Ishida, and J. Kim, Virology 306:244-253, 2003). Previous data also suggested that a certain protein(s) synthesized only at 41 degrees C inhibited the association of M1 with vRNP. The potential of heat shock protein 70 (HSP70) as a candidate obstructive protein was investigated. Induction of HSP70 by prostaglandin A1 (PGA1) at 37 degrees C caused the suppression of virus production. The nuclear export of viral proteins was inhibited by PGA1, and M1 was not associated with vRNP, indicating that HSP70 prevents M1 from binding to vRNP. An immunoprecipitation assay showed that HSP70 was bound to vRNP, suggesting that the interaction of HSP70 with vRNP is the reason for the dissociation of M1. Moreover, NS2 accumulated in the nucleoli of host cells cultured at 41 degrees C, showing that the export of NS2 was also disturbed at 41 degrees C. However, NS2 was exported normally from the nucleus, irrespective of PGA1 treatment at 37 degrees C, suggesting that HSP70 does not influence NS2.  相似文献   

8.
The amantadine-sensitive ion channel activity of influenza A virus M2 protein was discovered through understanding the two steps in the virus life cycle that are inhibited by the antiviral drug amantadine: virus uncoating in endosomes and M2 protein-mediated equilibration of the intralumenal pH of the trans Golgi network. Recently it was reported that influenza virus can undergo multiple cycles of replication without M2 ion channel activity (T. Watanabe, S. Watanabe, H. Ito, H. Kida, and Y. Kawaoka, J. Virol. 75:5656-5662, 2001). An M2 protein containing a deletion in the transmembrane (TM) domain (M2-del(29-31)) has no detectable ion channel activity, yet a mutant virus was obtained containing this deletion. Watanabe and colleagues reported that the M2-del(29-31) virus replicated as efficiently as wild-type (wt) virus. We have investigated the effect of amantadine on the growth of four influenza viruses: A/WSN/33; N31S-M2WSN, a mutant in which an asparagine residue at position 31 in the M2 TM domain was replaced with a serine residue; MUd/WSN, which possesses seven RNA segments from WSN plus the RNA segment 7 derived from A/Udorn/72; and A/Udorn/72. N31S-M2WSN was amantadine sensitive, whereas A/WSN/33 was amantadine resistant, indicating that the M2 residue N31 is the sole determinant of resistance of A/WSN/33 to amantadine. The growth of influenza viruses inhibited by amantadine was compared to the growth of an M2-del(29-31) virus. We found that the M2-del(29-31) virus was debilitated in growth to an extent similar to that of influenza virus grown in the presence of amantadine. Furthermore, in a test of biological fitness, it was found that wt virus almost completely outgrew M2-del(29-31) virus in 4 days after cocultivation of a 100:1 ratio of M2-del(29-31) virus to wt virus, respectively. We conclude that the M2 ion channel protein, which is conserved in all known strains of influenza virus, evolved its function because it contributes to the efficient replication of the virus in a single cycle.  相似文献   

9.
The SD0 mutant of influenza virus A/WSN/33 (WSN), characterized by a 24-amino-acid deletion in the neuraminidase (NA) stalk, does not grow in embryonated chicken eggs because of defective NA function. Continuous passage of SD0 in eggs yielded 10 independent clones that replicated efficiently. Characterization of these egg-adapted viruses showed that five of the viruses contained insertions in the NA gene from the PB1, PB2, or NP gene, in the region linking the transmembrane and catalytic head domains, demonstrating that recombination of influenza viral RNA segments occurs relatively frequently. The other five viruses did not contain insertions in this region but displayed decreased binding affinity toward sialylglycoconjugates, compared with the binding properties of the parental virus. Sequence analysis of one of the latter viruses revealed mutations in the hemagglutinin (HA) gene, at sites in close proximity to the sialic acid receptor-binding pocket. These mutations appear to compensate for reduced NA function due to stalk deletions. Thus, balanced HA-NA functions are necessary for efficient influenza virus replication.  相似文献   

10.
Influenza A virus PB1-F2 protein contributes to viral pathogenesis in mice   总被引:1,自引:0,他引:1  
The influenza virus PB1-F2 protein is a novel protein previously shown to be involved in induction of cell death. Here we characterize the expression and the function of the protein within the context of influenza viral infection in tissue culture and a mouse model. We show that the C-terminal region of the protein can be expressed from a downstream initiation codon and is capable of interaction with the full-length protein. Using this knowledge, we generated influenza viruses knocked out for the expression of PB1-F2 protein and its downstream truncation products. Knocking out the PB1-F2 protein had no effect on viral replication in tissue culture but diminished virus pathogenicity and mortality in mice. The viruses replicated to similar levels in mouse lungs by day 3 postinfection, suggesting that the knockout did not impair viral replication. However, while the PB1-F2 knockout viruses were cleared after day 5, the wild-type viruses were detectable in mouse lungs until day 7, implying that expression of PB1-F2 resulted in delayed clearance of the viruses by the host immune system. Based on our findings and on the fact that the PB1 genomic segment was always newly introduced into some pandemic influenza viruses of the last century, we speculate that the PB1-F2 protein plays an important role in pathogenesis of influenza virus infection and may be an important contributor to pathogenicity of pandemic influenza viruses.  相似文献   

11.
The protein kinase inhibitor H7 blocks influenza virus replication, inhibits production of the matrix protein (M1), and leads to a retention of the viral ribonucleoproteins (vRNPs) in the nucleus at late times of infection (K. Martin and A. Helenius, Cell 67:117-130, 1991). We show here that production of assembled vRNPs occurs normally in H7-treated cells, and we have used H7 as a biochemical tool to trap vRNPs in the nucleus. When H7 was removed from the cells, vRNP export was specifically induced in a CHO cell line stably expressing recombinant M1. Similarly, fusion of cells expressing recombinant M1 from a Semliki Forest virus vector allowed nuclear export of vRNPs. However, export was not rescued when H7 was present in the cells, implying an additional role for phosphorylation in this process. The viral NS2 protein was undetectable in these systems. We conclude that influenza virus M1 is required to induce vRNP nuclear export but that cellular phosphorylation is an additional factor.  相似文献   

12.
Wu CY  Jeng KS  Lai MM 《Journal of virology》2011,85(13):6618-6628
SUMOylation is an important posttranslational modification for regulation of cellular functions and viral replication. Here, we report that protein SUMOylation regulates the replication of influenza A virus at the steps of viral maturation and assembly. Knocking down the SUMO-conjugating enzyme Ubc9 resulted in the reduction of virus production. Dissection of the virus life cycle revealed that SUMOylation is involved in the processes of virus maturation and assembly. The viral matrix protein M1 is SUMOylated at K242. A virus carrying the SUMO-defective M1 produced a lower titer of virus, while its viral proteins and viral RNA (vRNA) accumulated in the cells. Furthermore, the mechanistic studies showed that the SUMOylation of M1 is required for the interaction between M1 and viral RNP (vRNP) to form the M1-vRNP complex. The lack of M1 SUMOylation prevented the nuclear export of vRNP and subsequent viral morphogenesis. Taken together, our findings elucidate that the maturation and assembly of influenza A virus is controlled by the SUMO modification of M1 protein. Therefore, we suggest that M1 can serve as a target for developing a new generation of drugs for flu therapy.  相似文献   

13.
Influenza virus contains three integral membrane proteins: haemagglutinin, neuraminidase, and matrix protein (M1 and M2). Among them, M2 protein functions as an ion channel, important for virus uncoating in endosomes of virus-infected cells and essential for virus replication. In an effort to explore potential new functions of M2 in the virus life cycle, we used yeast two-hybrid system to search for M2-associated cellular proteins. One of the positive clones was identified as human Hsp40/Hdj1, a DnaJ/Hsp40 family protein. Here, we report that both BM2 (M2 of influenza B virus) and A/M2 (M2 of influenza A virus) interacted with Hsp40 in vitro and in vivo. The region of M2-Hsp40 interaction has been mapped to the CTD1 domain of Hsp40. Hsp40 has been reported to be a regulator of PKR signaling pathway by interacting with p58IPK that is a cellular inhibitor of PKR. PKR is a crucial component of the host defense response against virus infection. We therefore attempted to understand the relationship among M2, Hsp40 and p58IPK by further experimentation. The results demonstrated that both A/M2 and BM2 are able to bind to p58IPKin vitro and in vivo and enhance PKR autophosphorylation probably via forming a stable complex with Hsp40 and P58IPK, and consequently induce cell death. These results suggest that influenza virus M2 protein is involved in p58IPK-mediated PKR regulation during influenza virus infection, therefore affecting infected-cell life cycle and virus replication.  相似文献   

14.
G Whittaker  M Bui    A Helenius 《Journal of virology》1996,70(5):2743-2756
The influenza virus nucleoprotein (NP), matrix protein (M1), and ribonucleoproteins (vRNPs) undergo regulated nuclear import and export during infection. Their trafficking was analyzed by using interspecies heterokaryons containing nuclei from infected and uninfected cells. Under normal conditions, it was demonstrated that the vRNPs which were assembled in the nucleus and transported to the cytosol were prevented from reimport into the nucleus. To be import competent, they must first assemble into virions and enter by the endosomal entry pathway. In influenza virus mutant ts51, in which M1 is defective, direct reimport took place but was inhibited by heterologous expression of wild-type M1. These data confirm M1's role as the inhibitor of premature nuclear import and as the main regulator of nuclear transport of vRNPs. In addition to this vRNP shuttling, M1 also shuttled between the nucleus and the cytoplasm in ts51-infected cells. When NP was expressed in the absence of virus infection, it was also found to be a shuttling protein.  相似文献   

15.
The C terminus of the influenza virus hemagglutinin (HA) contains three cysteine residues that are highly conserved among HA subtypes, two in the cytoplasmic tail and one in the transmembrane domain. All of these C-terminal cysteine residues are modified by the covalent addition of palmitic acid through a thio-ether linkage. To investigate the role of HA palmitylation in virus assembly, we used reverse genetics technique to introduce substitutions and deletions that affected the three conserved cysteine residues into the H3 subtype HA. The rescued viruses contained the HA of subtype H3 (A/Udorn/72) in a subtype H1 helper virus (A/WSN/33) background. Rescued viruses which do not contain a site for palmitylation (by residue substitution or substitution combined with deletion of the cytoplasmic tail) were obtained. Rescued virions had a normal polypeptide composition. Analysis of the kinetics of HA low-pH-induced fusion of the mutants showed no major change from that of virus with wild-type (wt) HA. The PFU/HA ratio of the rescued viruses grown in eggs ranged from that of virus with wt HA to 16-fold lower levels, whereas the PFU/HA ratio of the rescued viruses grown in MDCK cells varied only 2-fold from that of virus with wt HA. However, except for one rescued mutant virus (CAC), the mutant viruses were attenuated in mice, as indicated by a > or = 400-fold increase in the 50% lethal dose. Interestingly, except for one mutant virus (CAC), all of the rescued mutant viruses were restricted for replication in the upper respiratory tract but much less restricted in the lungs. Thus, the HA cytoplasmic tail may play a very important role in the generation of virus that can replicate in multiple cell types.  相似文献   

16.
The influenza B virus BM2 proton-selective ion channel is essential for virus uncoating, a process that occurs in the acidic environment of the endosome. The BM2 channel causes acidification of the interior of the virus particle, which results in dissociation of the viral membrane protein from the ribonucleo-protein core. The BM2 protein is similar to the A/M2 protein ion channel of influenza A virus (A/M2) in that it contains an HXXXW motif. Unlike the A/M2 protein, the BM2 protein is not inhibited by the antiviral drug amantadine. We used mutagenesis to ascertain the pore-lining residues of the BM2 ion channel. The specific activity (relative to wild type), reversal voltage, and susceptibility to modification by (2-aminoethyl)-methane thiosulfonate and N-ethylmaleimide of cysteine mutant proteins were measured in oocytes. It was found that mutation of transmembrane domain residues Ser(9), Ser(12), Phe(13), Ser(16), His(19), and Trp(23) to cysteine were most disruptive for ion channel function. These cysteine mutants were also most susceptible to (2-aminoethyl)-methane thiosulfonate and N-ethylmaleimide modification. Furthermore, considerable amounts of dimer were formed in the absence of oxidative reagents when cysteine was introduced at positions Ser(9), Ser(12), Ser(16), or Trp(23). Based on these experimental data, a BM2 transmembrane domain model is proposed. The presence of polar residues in the pore is a probable explanation for the amantadine insensitivity of the BM2 protein and suggests that related but more polar compounds might serve as useful inhibitors of the protein.  相似文献   

17.
Chen BJ  Leser GP  Jackson D  Lamb RA 《Journal of virology》2008,82(20):10059-10070
The cytoplasmic tail of the influenza A virus M2 proton-selective ion channel has been shown to be important for virus replication. Previous analysis of M2 cytoplasmic tail truncation mutants demonstrated a defect in incorporation of viral RNA (vRNA) into virions, suggesting a role for M2 in the recruitment of M1-vRNA complexes. To further characterize the effect of the M2 cytoplasmic tail mutations on virus assembly and budding, we constructed a series of alanine substitution mutants of M2 with mutations in the cytoplasmic tail, from residues 71 to 97. Mutant proteins M2-Mut1 and M2-Mut2, with mutations of residues 71 to 73 and 74 to 76, respectively, appeared to have the greatest effect on virus-like particle and virus budding, showing a defect in M1 incorporation. Mutant viruses containing M2-Mut1 and M2-Mut2 failed to replicate in multistep growth analyses on wild-type (wt) MDCK cells and were able to form plaques only on MDCK cells stably expressing wt M2 protein. Compared to wt M2 protein, M2-Mut1 and M2-Mut2 were unable to efficiently coimmunoprecipitate with M1. Furthermore, statistical analysis of planar sheets of membrane from cells infected by virus containing M2-Mut1 revealed a reduction in M1-hemagglutinin (HA) and M2-HA clustering as well as a severe loss of clustering between M1 and M2. These results suggest an essential, direct interaction between the cytoplasmic tail of M2 and M1 that promotes the recruitment of the internal viral proteins and vRNA to the plasma membrane for efficient virus assembly to occur.  相似文献   

18.
19.
Influenza A virus uses cellular protein transport systems (e.g., CRM1-mediated nuclear export and Rab11-dependent recycling endosomes) for genome trafficking from the nucleus to the plasma membrane, where new virions are assembled. However, the detailed mechanisms of these events have not been completely resolved, and additional cellular factors are probably required. Here, we investigated the role of the cellular human immunodeficiency virus (HIV) Rev-binding protein (HRB), which interacts with influenza virus nuclear export protein (NEP), during the influenza virus life cycle. By using small interfering RNAs (siRNAs) and overexpression of a dominant negative HRB protein fragment, we show that cells lacking functional HRB have significantly reduced production of influenza virus progeny and that this defect results from impaired viral ribonucleoprotein (vRNP) delivery to the plasma membrane in late-stage infection. Since HRB colocalizes with influenza vRNPs early after their delivery to the cytoplasm, it may mediate a connection between the nucleocytoplasmic transport machinery and the endosomal system, thus facilitating the transfer of vRNPs from nuclear export to cytoplasmic trafficking complexes. We also found an association between NEP and HRB in the perinuclear region, suggesting that NEP may contribute to this process. Our results identify HRB as a second endosomal factor with a crucial role in influenza virus genome trafficking, suggest cooperation between unique endosomal compartments in the late steps of the influenza virus life cycle, and provide a common link between the cytoplasmic trafficking mechanisms of influenza virus and HIV.  相似文献   

20.
Ion channel proteins are common constituents of cells and have even been identified in some viruses. For example, the M2 protein of influenza A virus has proton ion channel activity that is thought to play an important role in viral replication. Because direct support for this function is lacking, we attempted to generate viruses with defective M2 ion channel activity. Unexpectedly, mutants with apparent loss of M2 ion channel activity by an in vitro assay replicated as efficiently as the wild-type virus in cell culture. We also generated a chimeric mutant containing an M2 protein whose transmembrane domain was replaced with that from the hemagglutinin glycoprotein. This virus replicated reasonably well in cell culture but showed no growth in mice. Finally, a mutant lacking both the transmembrane and cytoplasmic domains of M2 protein grew poorly in cell culture and showed no growth in mice. Thus, influenza A virus can undergo multiple cycles of replication without the M2 transmembrane domain responsible for ion channel activity, although this activity promotes efficient viral replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号