首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
AIMS: The aim of this study was to investigate extracellular matrix (ECM) and mucin binding of selected bacterial isolates with probiotic features in comparison with commercially used probiotic bacteria. METHODS AND RESULTS: ECM molecules were immobilized in microtitre plates (mucin and fetuin) or on the surface of latex beads. Porcine mucin was bound by all 13 probiotic strains tested with important inter-strain differences; however, fetuin binding was similar (weak) for all 14 strains tested. Strongly positive (three) binding of bovine fibrinogen was expressed by strains from fermented food (Lactobacillus rhamnosus GG, L. casei Shirota and L. johnsonii La1) as well as by L. casei L.c., Lactobacillus sp. 2I3 and by L. plantarum LP. The other strains expressed moderate (2) or weakly positive (1) binding of bovine fibrinogen. Strongly positive (3) binding of porcine fibronectin was observed only with two strains; however, all other strains also bound this molecule. Bovine lactoferrin was bound to a higher extent than transferrins. SIGNIFICANCE AND IMPACT OF THE STUDY: Some animal strains (at least L. casei L.c. and Lactobacillus sp. 2I3) are comparable with the commercially used strains with respect to their ECM binding ability. As this feature is important for probiotic bacteria to be able to colonize intestine, these strains should be considered for their wider use in fermented feed (or probiotic preparations) for animals.  相似文献   

2.
125I-labeled type I collagen (Cn-I) binding of 92 fresh isolates and 18 type culture collection strains of lactobacilli was tested. More than 75% of the strains bound Cn-I. The binding was inhibited by excess of unlabeled Cn-I, gelatin, and was sensitive to proteinase K. Other proteins such as fibronectin and albumin and various carbohydrates such asD-galactose,D-fucose, andD-mannose did not inhibit the binding. Therefore, we propose binding of Cn-I to lactobacilli involving specific surface protein(s).  相似文献   

3.
The bacterial surfaces of enterococci are not uniform. This fact is confirmed by several studies and by our results when great differences between individual strains with regard to their cell surface hydrophobicity, binding of eight ECM (extracellular matrix) molecules immobilized on latex beads and four selected ECM molecules in microtiter plates were observed. The strains expressing high binding of ECM molecules (e.g., HJ 18, HJ 23, HJ 24, HJ 26, HJ 28, HJ 36, etc.) were found among Enterococcus faecalis and E. faecium by PAA (particle agglutination assay). On the other hand, weak ECM binders (e.g., HJ 21, HJ 32, HJ 34, HJ 38, HJ 39, HJ 42, HJ 43) were also found. A direct correlation was found between porcine mucin and fetuin binding ability of eight selected strains tested in microtiter plates and by PAA. Moreover, the influence of tunicamycin treatment was different because significant (P < 0.001) blocking effect of tunicamycin was observed with two selected strains (HJ 26 and HJ 36), whereas two strains (HJ 18 and HJ 22) were not significantly affected in their fetuin binding. The treatment of six enterococcal strains with proteolytic enzymes, pronase P, and trypsin, and with sodium metaperiodate also significantly (P < 0.001) decreased their fetuin binding. This suggests that both protein and carbohydrate moieties are involved in the binding of immobilized fetuin. However, the influence of these chemicals on the fetuin binding by individual strains was different. Received: 24 May 2002 / Accepted: 2 August 2002  相似文献   

4.
Background: Helicobacter pylori colonize the mucus layer that covers the gastric epithelium and can cause gastritis, ulcers, and gastric cancer. Recently, Lactobacillus sp. have also been found to reside in this niche permanently. This study compares adhesive properties and proliferation of co‐isolated lactobacilli and H. pylori in the presence of mucins and investigates possibilities for lactobacilli‐mediated inhibition of H. pylori. Materials and methods: Binding and proliferation of four H. pylori and four Lactobacillus strains, simultaneously isolated after residing in the stomachs of four patients for >4 years, to human gastric mucins were investigated using microtiter‐based methods. Results: The H. pylori strains co‐isolated with lactobacilli exhibited the same mucin binding properties as demonstrated for H. pylori strains previously. In contrast, no binding to mucins was detected with the Lactobacillus strains. Proliferation of mucin‐binding H. pylori strains was stimulated by the presence of mucins, whereas proliferation of non‐binding H. pylori and Lactobacillus strains was unaffected. Associative cultures of co‐isolated H. pylori and Lactobacillus strains showed no inhibition of H. pylori proliferation because of the presence of whole bacteria or supernatant of lactobacilli. Conclusions: The presence of lactobacilli in the stomach did not select for different mucin binding properties of H. pylori, and Lactobacillus sp. did neither compete for binding sites nor inhibit the growth of co‐isolated H. pylori. The effects of human gastric mucins on H. pylori proliferation vary between strains, and the host–bacteria interaction in the mucus niche thus depends on both the H. pylori strain and the microenvironment provided by the host mucins.  相似文献   

5.
Lactobacillus reuteri is one of the dominant lactobacilli found in the gastrointestinal tract of various animals. A surface protein of L. reuteri 104R, mucus adhesion promoting protein (MapA), is considered to be an adhesion factor of this strain. We investigated the relation between MapA and adhesion of L. reuteri to human intestinal (Caco-2) cells. Quantitative analysis of the adhesion of L. reuteri strains to Caco-2 cells showed that various L. reuteri strains bind not only to mucus but also to intestinal epithelial cells. In addition, purified MapA bound to Caco-2 cells, and this binding inhibited the adhesion of L. reuteri in a concentration-dependent manner. Based on these observations, the adhesion of L. reuteri appears due to the binding of MapA to receptor-like molecules on Caco-2 cells. Further, far-western analysis indicated the existence of multiple receptor-like molecules in Caco-2 cells.  相似文献   

6.
Thirty-three enterococcal strains and 10 Streptococcus bovis strains were investigated for their protein-binding cell surface components. Seven extracellular matrix (ECM) proteins were immobilized on Difco latex beads to detect these components on the surface of all enterococcal strains and eight non-autoaggregating S. bovis strains by a particle agglutination assay (PAA). Twenty-three selected strains were also examined in microtiter plate assays. According to the absorbance readings (A570nm), 11 strains were classified as nonadherent (A570nm < 0.1), 10 strains as weakly adherent (0.1 < A570nm > 0.3), and 2 strains as strongly adherent (A570nm > 0.3) in these assays. A direct correlation was found between the values obtained in PAA and A570nm readings of microtiter plate assays. Binding of 125I-labeled bovine lactoferrin to enterococci and streptococci was in the range of 6%–30% and of 125I-labeled human vitronectin in the range of 9%–33% to streptococci. The binding of 125I-labeled ECM proteins to selected strains was much more effectively inhibited by sulfated carbohydrates than by non-sulfated hyaluronic acid, indicating the importance of the sulfate groups of these inhibitors. An inhibition effect of heparin on bLf binding to four selected strains was higher in comparison with fucoidan in the microtiter plates. Thirty-five out of 44 strains had agglutinated rabbit erythrocytes. However, these strains showed no ability to agglutinate bovine or sheep erythrocytes. Received: 28 April 1999 / Accepted: 26 July 1999  相似文献   

7.
To avoid detrimental interactions with intestinal microbes, the human epithelium is covered with a protective mucus layer that traps host defence molecules. Microbial properties such as adhesion to mucus further result in a unique mucosal microbiota with a great potential to interact with the host. As mucosal microbes are difficult to study in vivo, we incorporated mucin‐covered microcosms in a dynamic in vitro gut model, the simulator of the human intestinal microbial ecosystem (SHIME). We assessed the importance of the mucosal environment in this M‐SHIME (mucosal‐SHIME) for the colonization of lactobacilli, a group for which the mucus binding domain was recently discovered. Whereas the two dominant resident Lactobacilli, Lactobacillus mucosae and Pediococcus acidilactici, were both present in the lumen, L. mucosae was strongly enriched in mucus. As a possible explanation, the gene encoding a mucus binding (mub) protein was detected by PCR in L. mucosae. Also the strongly adherent Lactobacillus rhamnosus GG (LGG) specifically colonized mucus upon inoculation. Short‐term assays confirmed the strong mucin‐binding of both L. mucosae and LGG compared with P. acidilactici. The mucosal environment also increased long‐term colonization of L. mucosae and enhanced its stability upon antibiotic treatment (tetracycline, amoxicillin and ciprofloxacin). Incorporating a mucosal environment thus allowed colonization of specific microbes such as L. mucosae and LGG, in correspondence with the in vivo situation. This may lead to more in vivo‐like microbial communities in such dynamic, long‐term in vitro simulations and allow the study of the unique mucosal microbiota in health and disease.  相似文献   

8.
Toxic shock syndrome toxin-1 (TSST-1) producing strains of Staphylococcus aureus isolated from 18 patients with toxic shock syndrome (TSS) and from 56 patients with other diagnoses were compared for capacity to interact with various serum and connective tissue proteins. TSS associated isolates showed significantly stronger binding of Type-I collagen (Cn-I) and Cn-II than non-TSS strains, in a particle agglutination assay (PAA) as well as in 125I labelled Cn uptake experiments. 125I Cn-IV binding, was similar between the two groups, whereas in PAA, a stronger interaction was observed for non-TSS than TSS associated strains. The median binding of 125I Cn to TSS-associated strains were 52.2 (Cn-I), 30.6 (Cn-II) and 20.0 (Cn-IV) compared to 20.0 (Cn-I), 14.4 (Cn-II) and 24.4 (Cn-IV) values of non-TSS strains. A saturation with 125I Cn-I and Cn-II binding was established for TSS (30 min) and non-TSS (15 min) strains. 125I Cn-IV binding reached a saturation in 10 min and 90 min with TSS and non-TSS strains respectively. Finally, the binding profiles of TSS associated and non-TSS strains to fibronectin, fibrinogen, laminin and IgG did not differ in both PAA and radioisotope assays. In scanning electron microscopy, cells of TSS associated strains bound to the reprecipitated native Cn-I fibrils. In contrast, most cells of non-TSS strains were localized to the distal end or were trapped between the Cn fibrils.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The inhibition of direct acting DNA reactive agents by 63 non-starter lactobacilli isolated from raw ewes milk cheeses was examined by short-term assay (SOS-Chromotest) and compared with already characterized starter lactobacilli. The screening revealed strains active against the nitroarene 4-nitroquinoline-1-oxide (NQO) and the alkylating agent N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) in different species of the genus Lactobacillus (L. rhamnosus, L. casei, L. plantarum, L. brevis, Lactobacillus spp.). It was proved that the anti-genotoxicity was strain-dependent, and always associated with spectroscopic modification of genotoxins. The frequency of strains inhibiting nitroarene genotoxicity was comparable for non-starter and starter lactobacilli, whereas inhibition of the alkylating agent was largely predominant in non-starter isolates. Seventeen strains presented inhibitory activity against both genotoxins. DNA RAPD-PCR performed with M13, Pro-Up and RPO2 primers on the lactobacilli under examination showed genetic diversity in these strains. The non-starter isolates clustered in seven groups and the strains presenting a high degree of activity against 4-nitroquinoline-1-oxide clustered in a single group with a similarity around 75%. Interestingly, the strains with anti-genotoxic properties also showed acid-bile tolerance, indicating that the autochthonous lactobacilli which survive cheese ripening may also reach the gut as viable cells and could prevent genotoxin DNA damage to enterocytes, as is desirable for probiotic bacteria.  相似文献   

10.
Human gut symbiont bifidobacteria possess carbohydrate-degrading enzymes that act on the O-linked glycans of intestinal mucins to utilize those carbohydrates as carbon sources. However, our knowledge about mucin type O-glycan degradation by bifidobacteria remains fragmentary, especially regarding how they decompose sulfated glycans, which are abundantly found in mucin sugar-chains. Here, we examined the abilities of several Bifidobacterium strains to degrade a sulfated glycan substrate and identified a 6-sulfo-β-d-N-acetylglucosaminidase, also termed sulfoglycosidase, encoded by bbhII from Bifidobacterium bifidum JCM 7004. A recombinant BbhII protein showed a substrate preference toward 6-sulfated and 3,4-disulfated N-acetylglucosamines over non-sulfated and 3-sulfated N-acetylglucosamines. The purified BbhII directly released 6-sulfated N-acetylglucosamine from porcine gastric mucin and the expression of bbhII was moderately induced in the presence of mucin. This de-capping activity may promote utilization of sulfated glycans of mucin by other bacteria including bifidobacteria, thereby establishing the symbiotic relationship between human and gut microbes.  相似文献   

11.
Abstract Toxic shock syndrome toxin-1 (TSST-1) producing strains of Staphylococcus aureus isolated from 18 patients with toxic shock syndrome (TSS) and from 56 patients with other diagnoses were compared for capacity to interact with various serum and connective tissue proteins. TSS associated isolates showed significantly stronger binding of Type-I collagen (Cn-I) and Cn-II than non-TSS strains, in a particle agglutination assay (PAA) as well as in 125I labelled Cn uptake experiments. 125I Cn-IV binding, was similar between the two groups, whereas in PAA, a stronger interaction was observed for non-TSS than TSS associated strains. The median binding of 125I Cn to TSS-associated strains were 52.2 (Cn-I), 30.6 (Cn-II) and 20.0 (Cn-IV) compared to 20.0 (Cn-I), 14.4 (Cn-II) and 24.4 (Cn-IV) values of non-TSS strains. A saturation with 125I Cn-I and Cn-II binding was established for TSS (30 min) and non-TSS (15 min) strains. 125I Cn-IV binding reached a saturation in 10 min and 90 min with TSS and non-TSS strains respectively. Finally, the binding profiles of TSS associated and non-TSS strains to fibronectin, fibrinogen, laminin and IgG did not differ in both PAA and radioisotope assays. In scanning electron microscopy, cells of TSS associated strains bound to the reprecipitated native Cn-I fibrils. In contrast, most cells of non-TSS strains were localized to the distal end or were trapped between the Cn fibrils. The stronger interaction with Cn-I and II in particular, shown by TSS associated strains, might enhance submucosal localization, thereby facilitating entry of toxins into the blood and establishment of TSS.  相似文献   

12.
It has been reported that Clostridium botulinum type C 16S progenitor toxin (C16S toxin) first binds to the sialic acid on the cell surface of mucin before invading cells [A. Nishikawa, N. Uotsu, H. Arimitsu, J.C. Lee, Y. Miura, Y. Fujinaga, H. Nakada, T. Watanabe, T. Ohyama, Y. Sakano, K. Oguma, The receptor and transporter for internalization of Clostridium botulinum type C progenitor toxin into HT-29 cells, Biochem. Biophys. Res. Commun. 319 (2004) 327–333]. In this study we investigated the binding properties of the C16S toxin to glycoproteins. Although the toxin bound to membrane blotted mucin derived from the bovine submaxillary gland (BSM), which contains a lot of sialyl oligosaccharides, it did not bind to neuraminidase-treated BSM. The binding of the toxin to BSM was inhibited by N-acetylneuraminic acid, N-glycolylneuraminic acid, and sialyl oligosaccharides strongly, but was not inhibited by neutral oligosaccharides. Both sialyl α2–3 lactose and sialyl α2–6 lactose prevented binding similarly. On the other hand, the toxin also bound well to porcine gastric mucin. In this case, neutral oligosaccharides might play an important role as ligand, since galactose and lactose inhibited binding. These results suggest that the toxin is capable of recognizing a wide variety of oligosaccharide structures.  相似文献   

13.
A group of lactobacilli isolated from the cervix of 31 healthy women was characterized by (GTG)5-polymerase chain reaction (PCR) fingerprinting in order to evaluate this method for identification of vaginal lactobacilli. Obtained fingerprints were compared with profiles available in an in-house database of the CCM bacteria collection covering type and reference strains of multiple lactic acid bacteria including lactobacilli. Selected strains representing individual clusters were further identified by pheS gene sequencing. In total, six lactobacillus species were found among lactobacilli isolated from the cervix of healthy women. The (GTG)5-PCR method identified Lactobacillus gasseri (11 strains), Lactobacillus fermentum (one), and some of the Lactobacillus jensenii strains (eight out of 11), but failed to identify the remaining strains, including the Lactobacillus crispatus (18), Lactobacillus mucosae (one), and Lactobacillus vaginalis (one) species. L. jensenii strains were distributed over two fingerprint clusters. The majority of samples was dominated by one (GTG)5-PCR type. The rep-PCR fingerprinting using the (GTG)5 primer allowed straightforward identification of many, but not all, isolates. This method has been shown to be a useful tool for fast screening and grouping of vaginal lactobacilli, but its combination with another identification method is needed to obtain reliable identification results. In addition, Lactobacillus acidophilus was not shown to be the most common inhabitant of the female genital tract as generally assumed.  相似文献   

14.
Chemotaxis is crucial for bacterial adherence and colonization of the host gastrointestinal tract. Previous studies have demonstrated that chemotaxis affects the virulence of causative pathogens and the infection in the host. However, the chemotactic abilities of non-pathogenic and commensal gut bacteria have rarely been explored. We observed that Roseburia rectibacter NSJ-69 exhibited flagella-dependent motility and chemotaxis to a variety of molecules, including mucin and propionate. A genome-wide analysis revealed that NSJ-69 has 28 putative chemoreceptors, 15 of which have periplasmic ligand-binding domains (LBDs). These LBD-coding genes were chemically synthesized and expressed heterologously in Escherichia coli. Intensive screening of ligands revealed four chemoreceptors bound to mucin and two bound to propionate. When expressed in Comamonas testosteroni or E. coli, these chemoreceptors elicited chemotaxis toward mucin and propionate. Hybrid chemoreceptors were constructed, and results showed that the chemotactic responses to mucin and propionate were dependent on the LBDs of R. rectibacter chemoreceptors. Our study identified and characterized R. rectibacter chemoreceptors. These results will facilitate further investigations on the involvement of microbial chemotaxis in host colonization.  相似文献   

15.
The proteolytic system of thermophilic lactobacilli is considered important for bacterial nutrition as well as for the formation of flavor and texture in fermented products. We investigated the influence of peptide content on the cell surface proteinase and intracellular aminopeptidase activities from seven thermophilic lactobacilli strains. The proteinase activities were remarkably reduced in cells grown in the peptide-rich medium MRS or in a chemically defined medium supplemented with Casitone compared with those found in a synthetic medium. The degree of inhibition observed was strain dependent. When proteinase activities were analyzed by their hydrolytic patterns of α- and β-casein degradation, four types of PIII-caseinolytic cleavage specificity were distinguished. Lactobacillus helveticus strains possessed aminopeptidase activities with broader specificity than those found in L. delbrueckii subsp. lactis strains. However, the aminopeptidase activities were not influenced by the peptide content of the medium. Received: 1 February 2002 / Accepted: 27 February 2002  相似文献   

16.
Purified bovine milk lipoprotein lipase was shown to bind to intact porcine aortic endothelium in a specific, saturable fashion. The binding was reversed by exogenous heparin. A single class of binding sites was involved and at saturation 1.24?1011 molecules of lipoprotein lipase / cm2 were bound. This represents 0.51?106 enzyme molecules per endothelial cell at a density of 1.2?103 molecules / μm2. The enzyme binding was reduced by prior trypsinisation of the endothelial surface under conditions that removed cell surface glycosaminoglycan chains. The porcine endothelium was shown to have available at its surface 5.4?1011 chains of heparan sulphate plus heparin-like glycosaminoglycans / cm2. Such as excess suggests that lipoprotein lipase may interact with approximately one in four of the available heparan sulphate chains.  相似文献   

17.
Aims: To investigate the adhesion of lactobacilli and their subsequent competitive exclusion ability against pathogens. Methods and Results: Four species of putative probiotic lactobacilli were studied for their adhesion abilities. First, the adhesion to Caco‐2 cells was examined by light and electron microscopy. The four species were then labelled by [methyl‐3H] thymidine and their adhesion to porcine intestinal mucus was determined by radioactivity. The tested lactobacilli showed best adhesion on ileal mucus compared with duodenal and jujenal mucus. Oxidative compound pre‐treatment (NaIO3 and NaIO4) dramatically decreased the adhesion of the lactobacilli to mucus. Pre‐treating mucus with proteolytic enzymes (proteinase K and trypsin) resulted in the increase of adhesion in Lactobacillus serotype Reuteri I2021, but the results in the other species were variable. Lactobacillus serotype Fermentum I5007 showed greatest adhesion potential and exerted the best competitive exclusion against Salmonella and Escherichia. Conclusions: Adhesion ability in lactobacilli is species‐specific. Lactobacilli with higher adhesion index have better competitive exclusion ability. Significance and Impact of the Study: This study suggests that there is a positive correlation between adhesion and competitive exclusion ability of lactobacilli. Additionally, the in vitro adhesion assay is a feasible way to screen unknown lactobacilli, potentially for future industrial applications.  相似文献   

18.
Probiotic compounds, which are often constituted of lactobacilli, exert a number of health benefits through maintenance of the intestinal ecosystem balance. Among the important interactions that occur in the gut microbiota, plasmid transfer by mating is an increasing cause of concern, particularly when antibiotic-resistant genes are involved. Because lactobacilli seem to be able to influence this mechanism, the aim of the present work was to investigate the in vitro capability of two Lactobacillus plantarum strains (one bacteriocin producer and one nonproducer) to interfere with the conjugation processes. For this purpose different matings were performed adding to the donor and recipient cells L. plantarum 35d bac+ and L. plantarum 396/1 bac– as agents of interference. Conjugations added with a Staphylococcus aureus strain or without any agent of interference were used as controls. The results of our experiments demonstrated that both lactobacillus strains were able to decrease mating frequency. Statistically significant differences in the viable transconjugants were obtained in the presence and in the absence of the lactobacilli. The effect was almost the same with the two L. plantarum independent of bacteriocin production. In the trial performed with S. aureus, no decrease in mating frequency was observed, confirming that the capability to interfere with R-plasmid transfer ability could be a property of the tested L. plantarum strains.  相似文献   

19.
Abstract

The effect of pH and temperature on the apparent association equilibrium constant (Ka) for the binding of the bovine and porcine pancreatic secretory trypsin inhibitor (Kazal-type inhibitor, PSTI) to human leukocyte elastase has been investigated. At pH8.0, values of the apparent thermodynamic parameters for human leukocyte elastase: Kazal-type inhibitor complex formation are: bovine PSTT – Ka = 6.3 × 104M?1, δ5G° = -26.9kJ/mol, δH° = +11.7kJ/mol, and δS° = +1.3 × 102 entropy units; porcine PSTI –Ka = 7.0 × 103M?1,δG° = -21.5kJ/mol, δH° = +13.0kJ/mol, and δS° = +1.2 × 102 entropy units (values of Ka δG° and δS° were obtained at 21.0°C; values of δH° were temperature independent over the range (between 5.0°C and 45.0°C) explored). On increasing the pH from 4.5 to 9.5, values of Ka for bovine and porcine PSTI binding to human leukocyte elastase increase thus reflecting the acidic pK-shift of the His57 catalytic residue from ?7.0, in the free enzyme, to ?5.1, in the serine proteinase: inhibitor complexes. Thermodynamics of bovine and porcine PSTI binding to human leukocyte elastase has been analyzed in parallel with that of related serine (pro)enzyme/Kazal-type inhibitor systems. Considering the known molecular models, the observed binding behaviour of bovine and porcine PSTI to human leukocyte elastase was related to the inferred stereochemistry of the serine proteinase/inhibitor contact region(s).  相似文献   

20.
This study aimed to investigate in vitro effects of the selected prebiotics alone, and in combination with two potential probiotic Lactobacillus strains on the microbial composition of Apis cerana gut microbiota and acid production. Four prebiotics, inulin, fructo-oligosaccharides, xylo-oligosaccharides, and isomalto-oligosaccharides were chosen, and glucose served as the carbon source. Supplementation of this four prebiotics increased numbers of Bifidobacterium and lactic acid bacteria while decreasing the pH value of in vitro fermentation broth inoculated with A. cerana gut microbiota compared to glucose. Then, two potential probiotics derived from A. cerana gut at different dosages, Lactobacillus helveticus KM7 and Limosilactobacillus reuteri LP4 were added with isomalto-oligosaccharides in fermentation broth inoculated with A. cerana gut microbiota, respectively. The most pronounced impact was observed with isomalto-oligosaccharides. Compared to isomalto-oligosaccharides alone, the combination of isomalto-oligosaccharides with both lactobacilli strains induced the growth of Bifidobacterium, LAB, and total bacteria and reduced the proliferation of Enterococcus and fungi. Consistent with these results, the altered metabolic activity was observed as lowered pH in in vitro culture of gut microbiota supplemented with isomalto-oligosaccharides and lactobacilli strains. The symbiotic impact varied with the types and concentration of Lactobacillus strains and fermentation time. The more effective ability was observed with IMO combined with L. helveticus KM7. These results suggested that isomalto-oligosaccharides could be a potential prebiotic and symbiotic with certain lactobacilli strains on A. cerana gut microbiota.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号