首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
重组炭疽保护性抗原的表达、纯化与生物活性分析   总被引:15,自引:1,他引:14  
构建分泌型表达质粒 ,在大肠杆菌中实现了重组炭疽保护性抗原 (rPA)的分泌型表达。重组蛋白位于细菌外周质 ,表达量约占菌体总蛋白的 10 %。以离子交换、疏水层析和凝胶过滤为基础 ,建立了rPA的纯化工艺 ,每升培养物可获得约 15mgrPA ,纯度可达 95 %以上。体外细胞毒性试验显示rPA具有较好的生物学活性。用rPA免疫家兔产生的抗血清在体外可抑制炭疽致死毒素的活性 ,表明rPA可诱导机体产生保护性免疫。以上结果为今后发展新一代炭疽疫苗打下基础  相似文献   

2.
3.
An asporogenic recombinant strain Bacillus anthracis 55ΔTPA-1(Spo) producing anthrax protective antigen (PA) was obtained. The strain contains structural gene pag as a part of a hybrid replicon pUB110PA-1 and lacks determinants encoding the synthesis of main factors of anthrax pathogenicity. The level of PA production by asporogenic genetically engineered strain is approximately 80 μg/ml that is 4–5 times more than the values determined for vaccine strains B. anthracis STI-1 and B. anthracis 55. The strain preserves asporogenicity and ability to replicate the hybrid plasmid after in vitro passages. Biologically active PA was isolated from the constructed strain B. anthracis 55ΔTPA-1(Spo). Double immunization of rabbits with 50 μg of the purified recombinant product provides their 100% protection from infection with 50 LD50 of a highly virulent anthrax strain.  相似文献   

4.
The anthrax toxin consists of three proteins, protective antigen (PA), lethal factor, and edema factor that are produced by the Gram-positive bacterium, Bacillus anthracis. Current vaccines against anthrax use PA as their primary component. In this study, we developed a scalable process to produce and purify multi-gram quantities of highly pure, recombinant PA (rPA) from Escherichia coli. The rPA protein was produced in a 50-L fermentor and purified to >99% purity using anion-exchange, hydrophobic interaction, and hydroxyapatite chromatography. The final yield of purified rPA from medium cell density fermentations resulted in approximately 2.7 g of rPA per kg of cell paste (approximately 270 mg/L) of highly pure, biologically active rPA protein. The results presented here exhibit the ability to generate multi-gram quantities of rPA from E. coli that may be used for the development of new anthrax vaccines and anthrax therapeutics.  相似文献   

5.
Mucosal, but not parenteral, immunization induces immune responses in both systemic and secretory immune compartments. Thus, despite the reports that Abs to the protective Ag of anthrax (PA) have both anti-toxin and anti-spore activities, a vaccine administered parenterally, such as the aluminum-adsorbed anthrax vaccine, will most likely not induce the needed mucosal immunity to efficiently protect the initial site of infection with inhaled anthrax spores. We therefore took a nasal anthrax vaccine approach to attempt to induce protective immunity both at mucosal surfaces and in the peripheral immune compartment. Mice nasally immunized with recombinant PA (rPA) and cholera toxin (CT) as mucosal adjuvant developed high plasma PA-specific IgG Ab responses. Plasma IgA Abs as well as secretory IgA anti-PA Abs in saliva, nasal washes, and fecal extracts were also induced when a higher dose of rPA was used. The anti-PA IgG subclass responses to nasal rPA plus CT consisted of IgG1 and IgG2b Abs. A more balanced profile of IgG subclasses with IgG1, IgG2a, and IgG2b Abs was seen when rPA was given with a CpG oligodeoxynucleotide as adjuvant, suggesting a role for the adjuvants in the nasal rPA-induced immunity. The PA-specific CD4(+) T cells from mice nasally immunized with rPA and CT as adjuvant secreted low levels of CD4(+) Th1-type cytokines in vitro, but exhibited elevated IL-4, IL-5, IL-6, and IL-10 responses. The functional significance of the anti-PA Ab responses was established in an in vitro macrophage toxicity assay in which both plasma and mucosal secretions neutralized the lethal effects of Bacillus anthracis toxin.  相似文献   

6.
Current human anthrax vaccines available in the United States and Europe consist of alum-precipitated supernatant material from cultures of a toxigenic, nonencapsulated strain of Bacillus anthracis. The major component of human anthrax vaccine that confers protection is protective antigen (PA). A second-generation human vaccine using the recombinant PA (rPA) is being developed. In this study, to prevent the toxicity and the degradation of the native rPA by proteases, we constructed two PA variants, delPA (163-168) and delPA (313-314), that lack trypsin (S(163)-R(164)-K(165)-K(166)-R(167)-S(168)) or chymotrypsin cleavage sequence (F(313)-F(314)), respectively. These proteins were expressed in Bacillus brevis 47-5Q. The delPAs were fractionated from the culture supernatant of B. brevis by ammonium sulfate at 70% saturation, followed by anion exchange chromatography on a Hitrap Q, Hiload 16/60 superdex 200 gel filtration column and phenyl sepharose hydrophobic interaction column. In accordance with previous reports, both delPA proteins combined with lethal factor protein did not show any cytotoxicity on J774A.1 cells. The delPA (163-168) and delPA (313-314) formulated either in Rehydragel HPA or MPL-TDM-CWS (Ribi-Trimix), elicited a comparable amount of anti-PA and neutralizing antibodies to those of native rPA in guinea pigs, and confers full protection of guinea pigs from 50xLD50 of fully virulent B. anthracis spore challenges. Ribi-Trimix was significantly more effective in inducing anti-PA and neutralizing antibodies than Rehydragel HPA. These results indicate the possibility of delPA (163-168) and delPA (313-314) proteins being developed into nontoxic, effective and stable recombinant vaccine candidates.  相似文献   

7.
Anthrax is caused by the spore‐forming bacterium Bacillus anthracis, which has been used as a weapon for bioterrorism. Although current vaccines are effective, they involve prolonged dose regimens and often cause adverse reactions. High rates of mortality associated with anthrax have made the development of an improved vaccine a top priority. To identify novel vaccine candidates, we applied an immunoproteomics approach. Using sera from convalescent guinea pigs or from human patients with anthrax, we identified 34 immunogenic proteins from the virulent B. anthracis H9401. To evaluate vaccine candidates, six were expressed as recombinant proteins and tested in vivo. Two proteins, rGBAA_0345 (alkyl hydroperoxide reductase subunit C) and rGBAA_3990 (malonyl CoA‐acyl carrier protein transacylase), have afforded guinea pigs partial protection from a subsequent virulent‐spore challenge. Moreover, combined vaccination with rGBAA_0345 and rPA (protective antigen) exhibited an enhanced ability to protect against anthrax mortality. Finally, we demonstrated that GBAA_0345 localizes to anthrax spores and bacilli. Our results indicate that rGBAA_0345 may be a potential component of a multivalent anthrax vaccine, as it enhances the efficacy of rPA vaccination. This is the first time that sera from patients with anthrax have been used to interrogate the proteome of virulent B. anthracis vegetative cells.  相似文献   

8.
A new generation anthrax vaccine is expected to target not only the anthrax protective antigen (PA) protein, but also other virulent factors of Bacillus anthracis. It is also expected to be amenable for rapid mass immunization of a large number of people. This study aimed to address these needs by designing a prototypic triantigen nasal anthrax vaccine candidate that contained a truncated PA (rPA63), the anthrax lethal factor (LF), and the capsular poly-gamma-D-glutamic acid (gammaDPGA) as the antigens and a synthetic double-stranded RNA (dsRNA), polyriboinosinic-polyribocytodylic acid (poly(I:C)) as the adjuvant. This study identified the optimal dose of nasal poly(I:C) in mice, demonstrated that nasal immunization of mice with the LF was capable of inducing functional anti-LF antibodies (Abs), and showed that nasal immunization of mice with the prototypic triantigen vaccine candidate induced strong immune responses against all three antigens. The immune responses protected macrophages against an anthrax lethal toxin challenge in vitro and enabled the immunized mice to survive a lethal dose of anthrax lethal toxin challenge in vivo. The anti-PGA Abs were shown to have complement-mediated bacteriolytic activity. After further optimization, this triantigen nasal vaccine candidate is expected to become one of the newer generation anthrax vaccines.  相似文献   

9.
The biological attack conducted through the US postal system in 2001 broadened the threat posed by anthrax from one pertinent mainly to soldiers on the battlefield to one understood to exist throughout our society. The expansion of the threatened population placed greater emphasis on the reexamination of how we vaccinate against Bacillus anthracis. The currently-licensed Anthrax Vaccine, Adsorbed (AVA) and Anthrax Vaccine, Precipitated (AVP) are capable of generating a protective immune response but are hampered by shortcomings that make their widespread use undesirable or infeasible. Efforts to gain US Food and Drug Administration (FDA) approval for licensure of a second generation recombinant protective antigen (rPA)-based anthrax vaccine are ongoing. However, this vaccine’s reliance on the generation of a humoral immune response against a single virulence factor has led a number of scientists to conclude that the vaccine is likely not the final solution to optimal anthrax vaccine design. Other vaccine approaches, which seek a more comprehensive immune response targeted at multiple components of the B. anthracis organism, are under active investigation. This review seeks to summarize work that has been done to build on the current PA-based vaccine methodology and to evaluate the search for future anthrax prophylaxis strategies.  相似文献   

10.
Protective antigen (PA) is a component of the Bacillus anthracis lethal and edema toxins and the basis of the current anthrax vaccine. In its heptameric form, PA targets host cells and internalizes the enzymatically active components of the toxins, namely lethal and edema factors. PA and other toxin components are secreted from B. anthracis using the Sec-dependent secretion pathway. This requires them to be translocated across the cytoplasmic membrane in an unfolded state and then to be folded into their native configurations on the trans side of the membrane, prior to their release from the environment of the cell wall. In this study we show that recombinant PA (rPA) requires the extracellular chaperone PrsA for efficient folding when produced in the heterologous host, B. subtilis; increasing the concentration of PrsA leads to an increase in rPA production. To determine the likelihood of PrsA being required for PA production in its native host, we have analyzed the B. anthracis genome sequence for the presence of genes encoding homologues of B. subtilis PrsA. We identified three putative B. anthracis PrsA proteins (PrsAA, PrsAB, and PrsAC) that are able to complement the activity of B. subtilis PrsA with respect to cell viability and rPA secretion, as well as that of AmyQ, a protein previously shown to be PrsA-dependent.  相似文献   

11.
The major immunogenic component of the current anthrax vaccine, anthrax vaccine adsorbed (AVA) is protective antigen (PA). We have shown recently that the thermodynamic stability of PA can be significantly improved by binding to the Von‐Willebrand factor A (VWA) domain of capillary morphogenesis protein 2 (CMG2), and improvements in thermodynamic stability may improve storage and long‐term stability of PA for use as a vaccine. In order to understand the origin of this increase in stability, we have isolated the receptor binding domain of PA, domain 4 (D4), and have studied the effect of the addition of CMG2 on thermodynamic stability. We are able to determine a binding affinity between D4 and CMG2 (~300 nM), which is significantly weaker than that between full‐length PA and CMG2 (170–300 pM). Unlike full‐length PA, we observe very little change in stability of D4 on binding to CMG2, using either fluorescence or 19F‐NMR experiments. Because in previous experiments we could observe a stabilization of both domain 4 and domain 2, the mechanism of stabilization of PA by CMG2 is likely to involve a mutual stabilization of these two domains.  相似文献   

12.

Background

The fatal disease caused by Bacillus anthracis is preventable with a prophylactic vaccine. The currently available anthrax vaccine requires a lengthy immunization schedule, and simpler and more immunogenic options for protection against anthrax are a priority for development. In this report we describe a phase I clinical trial testing the safety and immunogenicity of an anthrax vaccine using recombinant Escherichia coli-derived, B. anthracis protective antigen (rPA).

Methodology/Principal Findings

A total of 73 healthy adults ages 18–40 were enrolled and 67 received 2 injections separated by 4 weeks of either buffered saline placebo, or rPA formulated with or without 704 µg/ml Alhydrogel® adjuvant in increasing doses (5, 25, 50, 100 µg) of rPA. Participants were followed for one year and safety and immunologic data were assessed. Tenderness and warmth were the most common post-injection site reactions. No serious adverse events related to the vaccine were observed. The most robust humoral immune responses were observed in subjects receiving 50 µg of rPA formulated with Alhydrogel® with a geometric mean concentration of anti-rPA IgG antibodies of 283 µg/ml and a toxin neutralizing geometric 50% reciprocal geometric mean titer of 1061. The highest lymphoproliferative peak cellular response (median Lymphocyte Stimulation Index of 29) was observed in the group receiving 25 µg Alhydrogel®-formulated rPA.

Conclusions/Significance

The vaccine was safe, well tolerated and stimulated a robust humoral and cellular response after two doses.

Trial Registration

ClinicalTrials.gov NCT00057525  相似文献   

13.
We examined the capability of a mouse immunogenicity assay to detect improper storage of a recombinant protective antigen (rPA)-based anthrax vaccine formulated with an aluminum adjuvant, using ELISA and a toxin neutralization assay (TNA) to measure the antibody response to rPA. The vaccine was stored at 4 °C, room temperature (RT) or 37 °C for one, four and eight weeks and used for immunization, along with freshly prepared vaccine. Results showed that, contrary to ELISA, TNA is suitable to detect a loss of immunogenicity of the rPA vaccine following its exposure to RT for a period of eight weeks and to 37 °C for a period as short as 1 week.  相似文献   

14.
Extracellular antigen 1 (EA1), a major component of the Bacillus anthracis surface layer (S-layer), was used as a fusion partner for the expression of heterologous antigen. A recombinant B. anthracis strain was constructed by integrating a translational fusion harboring the DNA fragments encoding the cell wall–targeting domain of the S-layer protein EA1 and the 20-kDa N-terminal fragment of anthrax protective antigen (PA20) into the chromosome. A thermosensitive plasmid expressing Cre recombinase was introduced at a permissive temperature to remove the antibiotic marker. Cre recombinase action at the loxP sites excised the spectinomycin resistance cassette. The final derivative strains were analyzed by sodium dodecyl sulfate–polyacrylamide gel electrophoresis, Western blot analysis, and immunofluorescence analysis. PA20 was successfully expressed on the S-layer of the recombinant antibiotic marker-free strain. Guinea pigs were immunized with the attenuated recombinant B. anthracis strain, and the bacilli elicited a humoral response to PA20. This antibiotic marker-free strain and the correlative experiment method may have potential applications for the generation of a live attenuated anthrax vaccine.  相似文献   

15.
Human anti-recombinant protective antigen (rPA) Fab genes were previously cloned from single B cells of a donor immunized with anthrax vaccine using fluorescence activated cell sorting with fluorescein labeled rPA and single-cell PCR. The light and heavy chains were sub-cloned individually into mammalian expression vectors pSecTag2B or pEXPR44, respectively, and expressed in the same CHOK1 cells. Alternatively, the same heavy and light chains were linked together, using PCR, with an in-frame sequence coding for a furin cleavage site. This construct was cloned into pSecTag2B and expressed in CHOK1 cells. Once expressed, the individual chains combined in vivo to form a Fab fragment which was purified as a single protein when either method was utilized. The human Fab antibodies produced by this technique were functional when tested in Western blots using the recombinant PA antigen as the target.  相似文献   

16.
Bacillus anthracis has long been considered a potential biological warfare agent, and therefore, there is a need for a safe, low-cost and highly efficient anthrax vaccine with demonstrated long-term stability for mass vaccination in case of an emergency. Many efforts have been made towards developing an anthrax vaccine based on recombinant protective antigen (rPA) of B. anthracis, a key component of the anthrax toxin, produced using different expression systems. Plants represent a promising recombinant protein production platform due to their relatively low cost, rapid scalability and favorable safety profile. Previous studies have shown that full-length rPA produced in Nicotiana benthamiana (pp-PA83) is immunogenic and can provide full protection against lethal spore challenge; however, further improvement in the potency and stability of the vaccine candidate is necessary. PA of B. anthracis is not a glycoprotein in its native host; however, this protein contains potential N-linked glycosylation sites, which can be aberrantly glycosylated during expression in eukaryotic systems including plants. This glycosylation could affect the availability of certain key epitopes either due to masking or misfolding of the protein. Therefore, a non-glycosylated form of pp-PA83 was engineered and produced in N. benthamiana using an in vivo deglycosylation approach based on co-expression of peptide-N-glycosidase F (PNGase F) from Flavobacterium meningosepticum. For comparison, versions of pp-PA83 containing point mutations in six potential N-glycosylation sites were also engineered and expressed in N. benthamiana. The in vivo deglycosylated pp-PA83 (pp-dPA83) was shown to have in vitro activity, in contrast to glycosylated pp-PA83, and to induce significantly higher levels of toxin-neutralizing antibody responses in mice compared with glycosylated pp-PA83, in vitro deglycosylated pp-PA83 or the mutated versions of pp-PA83. These results suggest that pp-dPA83 may offer advantages in terms of dose sparing and enhanced immunogenicity as a promising candidate for a safe, effective and low-cost subunit vaccine against anthrax.  相似文献   

17.
A recombinant protective antigen (rPA)-based enzyme-linked immunosorbent assay (ELISA) was developed to measure the serological response of female A/J mice after inoculation with the new rPA-based anthrax vaccine. Several fundamental parameters of the ELISA were evaluated: specificity, precision, accuracy, linearity, and stability. Experimental results suggested that the quantitative anti-rPA IgG ELISA could be used to measure antibody levels in female A/J mice and may be useful as a potency assay to monitor consistency of manufacture of a rPA-based vaccine for planned clinical trials.  相似文献   

18.
Immune correlates of protection against anthrax   总被引:1,自引:0,他引:1  
Bacillus anthracis protective antigen (PA) has been produced from a recombinant B. subtilis and its efficacy, when combined with the Ribi adjuvant (MPL-TDW-CWS) or alhydrogel, has been compared with that of the licensed UK human vaccine, in guinea pigs challenged with aerosolized Ames strain spores. Recombinant PA combined with the Ribi adjuvant performed as well as PA from B. anthracis cultures in previous reports ( Ivins & Welkos 1986 ; Ivins et al . 1990 ; Turnbull et al . 1991 ; Jones et al . 1996 ; McBride et al . 1998 ) giving protection in 100% of animals exposed to the highest challenge dose of the Ames strain of B. anthracis that can be administered practically (retained lung doses of approximately 106 spores).
In attempts at identifying markers of protection in immunized individuals, rPA in combination with the Ribi adjuvant induced a marker IgG2 response in guinea pigs with no significant differences in IgG1 levels when compared with other vaccine formulations ( McBride et al . 1998 ). In BALBc mice, rPA with the Ribi adjuvant induced a higher IgG2a response compared with rPA with anhydrogel and the human vaccine.
To examine the role of anti-PA-specific antibodies in protection, guinea pig sera is being passively transferred into guinea pigs and SCID mice, followed by protection.
Similarly, B- and T-lymphocytes from immunized BALB/c mice are being separately and passively transferred into SCID mice with subsequent challenge. The neutralizing ability of the PA-specific antibodies is being studied using an in vitro macrophage lysis assay.  相似文献   

19.
To obtain a bifunctional protein simultaneously showing bioactivity of anticoagulant and fibrinolytic for use in the treatment of thrombotic diseases, we constructed a fusion protein (HV12p–rPA) containing C-terminal 12-residue of hirudin-PA (HV12p) and reteplase (rPA). The fusion protein, in which HV12p was linked to rPA via Gly–Gly–Gly, was successfully expressed in an inactive form of inclusion bodies in Escherichia coli. HV12p–rPA was identified by sodium dodecylsulfate-polyacrylamide gel electrophoresis. The expression level of HV12p–rPA was optimized by an orthogonal method and finally enhanced from 12 % to approximate 30 %. We also deeply investigated the condition of renaturation of HV12p–rPA, and the inactive protein was partly renatured through various conditions. The refolding efficacy of HV12p–rPA estimated by the recovery of fibrinolytic activity varied from 0.03 % to 16.6 % and the anticoagulant activity fluctuated in the range from 41 to 2,297 ATU/mg. Bioassays indicated that the resulted fusion protein, as expected, exhibited both fibrinolytic and anticoagulant activities. These works laid a foundation for further characterization of HV12p–rPA.  相似文献   

20.
Protective antigen is essential for the pathology of Bacillus anthracis and is the proposed immunogen for an improved human anthrax vaccine. Known since discovery to comprise differentially charged isoforms, the cause of heterogeneity has eluded specific structural definition until now. Recombinant protective antigen (rPA) contains similar isoforms that appear early in fermentation and are mostly removed through purification. By liquid chromatography-tandem mass spectrometry sequencing of the entire protein and inspection of spectral data for amino acid modifications, pharmaceutical rPA contained measurable deamidation at seven of its 68 asparagine residues. A direct association between isoform complexity and percent deamidation was observed such that each decreased with purity and increased with protein aging. Position N537 consistently showed the highest level of modification, although its predicted rate of deamidation ranked 10th by theoretical calculation, and other asparagines of higher predicted rates were observed to be unmodified. rPA with more isoforms and greater deamidation displayed lower activities for furin cleavage, heptamerization, and holotoxin formation. Lethal factor-mediated macrophage toxicity correlated inversely with deamidation at residues N466 and N408. The described method measures deamidation without employing theoretical isotopic distributions, comparison between differentially treated samples or computational predictions of reactivity rates, and is broadly applicable to the characterization of other deamidated proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号