首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To assess the effect of severe chronic obstructive pulmonary disease (COPD) on the ability of human diaphragmatic myofibers to aerobically generate ATP relative to ATP utilization, we obtained biopsy specimens of the costal diaphragm from seven patients with severe COPD (mean +/- SE; age 56 +/- 1 yr; forced expiratory volume in 1 s 23 +/- 2% predicted; residual volume 267 +/- 30% predicted) and seven age-matched control subjects. We categorized all fibers in these biopsies by using standard techniques, and we carried out the following quantitative histochemical measurements by microdensitometry: 1) succinate dehydrogenase (SDH) activity as an indicator of mitochondrial oxidative capacity and 2) calcium-activated myosin ATPase (mATPase) activity, the ATPase that represents a major portion of ATP consumption by contracting muscle. We noted the following: 1) COPD diaphragms had a larger proportion of type I fibers, a lesser proportion of type IIax fibers, and the same proportion of type IIa fibers as controls. 2) SDH activities of each of the fiber types were higher in COPD than control diaphragms (P < 0.0001); the mean increases (expressed as percent of control values) in types I, IIa, and IIax were 84, 114, and 130%, respectively. 3) COPD elicited no change in mATPase activity of type I and IIa fibers, but mATPase decreased in type IIax fibers (P = 0.02). 4) Mitochondrial oxidative capacity relative to ATP demand (i.e., SDH/mATPase) was higher (P = 0.03) in each of the fiber types in COPD diaphragms than in controls. These results demonstrate that severe COPD elicits an increase in aerobic ATP generating capacity relative to ATP utilization in all diaphragmatic fiber types as well as the previously described fast-to-slow fiber type transformation (Levine S, Kaiser L, Leferovich J, and Tikunov B, N Engl J Med 337: 1799-1806, 1997).  相似文献   

2.
Extreme endurance training and fiber type adaptation in rat diaphragm   总被引:1,自引:0,他引:1  
Extreme endurance training was used to investigate the adaptability of the rat diaphragm muscle fibers. During the final phase of the 14-wk training program, the animals were running for 240 min/day at an estimated requirement of 80% of pretraining maximal O2 consumption. Analysis of a sample of the costal diaphragm indicated that training resulted in a 34% reduction (P less than 0.05) in the percent distribution of type IIa fibers [27.7 +/- 1.1 vs. 18.3 +/- 2.6 (SE)] and a 15% increase (P less than 0.05) in the percent of type IIb fibers (40.0 +/- 1.2 vs. 46.1 +/- 2.4). No change (P greater than 0.05) was found in the distribution of the type I fibers (32.3 +/- 1.2 vs. 35.7 +/- 1.3). Oxidative potential as assessed with NADH-tetrazolium reductase and measured microphotometrically increased (P less than 0.05) by 19% in type I fibers but did not change in either the type IIa or type IIb fibers. No effect of training was found when a different oxidative marker, succinic dehydrogenase, was employed. Similarly glycolytic potential based on the activity of alpha-glycerophosphate dehydrogenase was not affected by training. Glycogen concentration was elevated by 60% (P less than 0.01) in type I fibers and 77% (P less than 0.01) in type IIb fibers with training but was not altered (P greater than 0.05) in type IIa fibers. Reductions (P less than 0.05) in fiber area ranging from 11 to 20% were observed in all fiber types as a result of training, whereas the number of capillaries per fiber remained static.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The current study sought to examine the effects of chronic endurance treadmill running on oxidative capacity and capillary density in specific diaphragm muscle fiber types in young (5 mo) and senescent (greater than or equal to 23 mo) female Fischer 344 rats. Both young and senescent animals trained at approximately 75% of maximal O2 consumption for 1 h/day 5 days/wk for 10 wk. Plantaris citrate synthase activity was significantly increased (P less than 0.01) in both young and old trained groups. Densitometric analysis of succinate dehydrogenase (SDH) activity in diaphragm type I, IIa, and IIb muscle fibers was done using a computerized image-processing system. There were no age-related differences in SDH activity between the young and old groups for any of the fiber types. In addition, SDH activity was found to be significantly increased (P less than 0.05) in all three fiber types in both the young and senescent trained animals compared with their sedentary counterparts. Fiber size and capillary density did not differ between young and senescent rats, nor did exercise affect this measure. Each fiber, irrespective of type, had an average of approximately four capillaries in contact with it. However, type IIb fibers had a significantly lower capillary density per unit area than type I or IIa muscle fibers. The results indicate that the senescent costal diaphragm maintains its ability to adapt to an increased metabolic demand brought about by locomotor exercise. Of further interest is the finding that training adaptations occurred in all three fiber types, suggesting that increased work of breathing from moderate exercise leads to recruitment of all three fiber types.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Adaptations of the diaphragm in emphysema.   总被引:3,自引:0,他引:3  
In adult male hamsters the influence of emphysema (EMP) on the in vitro contractile and fatigue properties and the histochemical, morphometric, and metabolic properties of muscle fibers in the costal diaphragm was determined 6 mo after the administration of either elastase or saline (controls, CTL). Isometric contractile properties were determined in vitro using supramaximal direct muscle stimulation. Optimal fiber length for force generation was significantly shorter in the EMP than in the CTL diaphragm. Maximum specific force (i.e., force per unit area) was 25% lower than CTL. Fatigue resistance was significantly improved in the EMP diaphragm compared with CTL. Diaphragm muscle fibers were classified as type I or II on the basis of histochemical staining for myofibrillar adenosinetriphosphatase after alkaline preincubation. The proportions of type I and II fibers were similar between the two groups. Cross-sectional areas of type II fibers were 30% larger in EMP than in CTL diaphragms. Succinate dehydrogenase activities of both type I and II fibers were higher in EMP than in CTL diaphragms. The number of capillaries surrounding both type I and II fibers increased with EMP, but in proportion to the hypertrophy of these fibers. Thus, capillary density (number of capillaries per fiber cross-sectional area) remained unchanged. We postulate that these contractile, morphometric, and metabolic adaptations reflect an increased activation of the diaphragm in response to the loads imposed by EMP.  相似文献   

5.
In the present study, we measured fiber types and fiber diameters in canine respiratory muscles and examined regional variation within the diaphragm. Samples of eight diaphragm regions, internal intercostals, external intercostals, transversus abdominis, and triceps brachii were removed from eight adult mongrel dogs, frozen, and histochemically processed for standard fiber type and fiber diameter determinations. The respiratory muscles were composed of types I and IIa fibers; no IIb fibers were identified. Fiber composition differed between muscles (P less than 0.0001). Normal type I percent (+/- SE) were: diaphragm 46 +/- 2, external intercostal 85 +/- 6, internal intercostals 48 +/- 3, transversus abdominis 53 +/- 1, and triceps 33 +/- 7. The diaphragm also contained a type I subtype [6 +/- 1% (SE)] previously thought only to occur in developing muscle. Fiber composition varied between diaphragm regions (P less than 0.01). Most notably, left medial crus contained 64% type I fibers. Fiber size also varied systematically among muscles (P less than 0.025) and diaphragm regions (P less than 0.0005). External intercostal fiber diameter was largest (47-50 microns) and diaphragm was smallest (34 microns). Within diaphragm, crural fibers were larger than costal (P less than 0.05). We conclude that there are systematic differences in fiber composition and fiber diameter of the canine respiratory muscles.  相似文献   

6.
Comparison of diaphragmatic fatigue in newborn and older rabbits   总被引:1,自引:0,他引:1  
The ability to maintain occlusion pressure (i.e., fatigability) during activation of the diaphragm via phrenic nerve stimulation was compared in newborn (less than 14 days old) and older (greater than 30 days old) rabbits. The younger animals had lower maximum inspiratory pressures (MIP) and markedly greater falls in pressure during sustained diaphragmatic contractions at greater than 40% MIP than did the older animals. Histological analysis showed a paucity of high-oxidative type I fibers in the diaphragms of the young animals. We therefore conclude that the newborn rabbit diaphragm is extremely susceptible to fatigue and that this susceptibility correlates with the distribution of muscle fiber types.  相似文献   

7.
The oxidative capacity and cross-sectional area of muscle fibers were compared between the costal and crural regions of the cat diaphragm and across the abdominal-thoracic extent of the muscle. Succinate dehydrogenase (SDH) activity of individual fibers was quantified using a microphotometric procedure implemented on an image-processing system. In both costal and crural regions, population distributions of SDH activities were unimodal for both type I and II fibers. The continuous distribution of SDH activities for type II fibers indicated that no clear threshold exists for the subclassification of fibers based on differences in oxidative capacity (e.g., the classification of fast-twitch glycolytic and fast-twitch oxidative glycolytic fiber types). No differences in either SDH activity or cross-sectional area were noted between fiber populations of the costal and crural regions. Differences in SDH activity and cross-sectional area were noted, however, between fiber populations located on the abdominal and thoracic sides of the costal region. Both type I and II fibers on the abdominal side of the costal diaphragm were larger and more oxidative than comparable fibers on the thoracic side.  相似文献   

8.
Changes in the contractile and fatigue properties of the cat diaphragm muscle were examined during the first 6 wk of postnatal development. Both twitch contraction time and half-relaxation time decreased progressively with age. Correspondingly, the force-frequency curve was shifted to the left early in development compared with adults. The ratio of peak twitch force to maximum tetanic force decreased with age. Fatigue resistance of the diaphragm was highest at birth and then progressively decreased with age. At birth, most diaphragm muscle fibers stained darkly for myofibrillar adenosinetriphosphatase after alkaline preincubation and thus would be classified histochemically as type II. During subsequent postnatal development, the proportion of type I fibers (lightly stained for adenosinetriphosphatase) increased while the number of type II fibers declined. At birth, type I fibers were larger than type II fibers. The size of both fiber types increased with age, but the increase in cross-sectional area was greater for type II fibers. On the basis of fiber type proportions and mean cross-sectional areas, type I fibers contributed 15% of total muscle mass at birth and 25% in adults. Thus postnatal changes in diaphragm contractile and fatigue properties cannot be attributed to changes in the relative contribution of histochemically classified type I and II fibers. However, the possibility that these developmental changes in diaphragm contractile and fatigue properties correlated with the varying contractile protein composition of muscle fibers was discussed.  相似文献   

9.
The influence of prolonged nutritional deprivation on the succinate dehydrogenase (SDH) activity and cross-sectional areas of individual fibers in the rat diaphragm and deep portion of the medial gastrocnemius (MGr) muscles was determined. Fatigue resistance of the diaphragm was measured by means of an in vitro nerve-muscle strip preparation. Fiber SDH activity and cross-sectional area were quantified by means of an image processing system. Diaphragm fatigue resistance was significantly improved in the nutritionally deprived (ND) group. In both muscles, nutritional deprivation resulted in a significant decrease in fiber cross-sectional area (both type I and II), type II fibers showing greater atrophy. The SDH activities of type I and II fibers in the diaphragm were not affected by nutritional deprivation. This contrasted with a significant decrease in the SDH activity of both type I and II fibers in the MGr of ND animals. An assessment of the interrelationships between fiber atrophy and fiber SDH activity revealed a greater effect of malnutrition on those diaphragm type II fibers that had the lowest relative SDH activities and the largest cross-sectional areas. By comparison, the effect of malnutrition on type I and II fibers in the MGr was nonselective with regard to fiber SDH activity. We conclude that the enhanced diaphragm fatigue resistance in the ND animals does not result from an increase in the oxidative capacity of muscle fibers and is best explained by the pattern of diaphragm muscle fiber atrophy.  相似文献   

10.
Effect of swim exercise training on human muscle fiber function   总被引:1,自引:0,他引:1  
This study examined the effect of a typical collegiate swim-training program and an intensified 10-day training period on the peak tension (Po), negative log molar Ca2+ concentration (pCa)-force, and maximal shortening speed (Vmax) of the slow-twitch type I and fast-twitch type II fibers of the deltoid muscle. Over a 10-wk period, the swimmers averaged 4,266 +/- 264 m/day swimming intermittent bouts of front crawl, kicking, or pulling. The training program induced an almost twofold increase in the mitochondrial marker enzyme citrate synthase. Po of the single fibers was not altered by either the training or 10-day intensive training programs, and no significant differences were observed in the Po (kg/cm2) of type I compared with the type II fibers. The type II fiber diameters were significantly larger than the type I fibers (94 +/- 4 vs. 80 +/- 2 microns), and although fiber diameters were unaffected by the training, the 10-day intensive training significantly reduced the type II fiber diameter. The type I fibers from the trained swimmers showed pCa-force curves shifted to the right such that higher free Ca2+ levels were required to elicit a given percent of Po (for values less than 0.5 Po). The activation threshold (pCa) for the onset of tension and the pCa required to elicit one-half maximal tension were not altered by the training in either fiber type. Fiber Vmax (measured by the slack test) was fivefold higher in type II compared with type I fibers (4.85 +/- 0.50 vs. 0.86 +/- 0.04 fiber lengths/s). The exercise-training program significantly increased and decreased the Vmax of the slow and fast fibers, respectively. The 10 days of intensified training produced a further significant decrease in the Vmax of the type II fibers. After a period of detraining, the Vmax of both fiber types returned to the control level. The force-velocity relation was not significantly altered in either fiber type by the swim training; however, the intensified training significantly depressed the velocity of the type II fiber at all loads studied. The Vmax changes with exercise training are likely explained by an exercise-induced expression of fast myosin in slow fibers and slow myosin in fast fibers.  相似文献   

11.
Endurance-training-induced cellular adaptations in respiratory muscles   总被引:3,自引:0,他引:3  
Controversy exists concerning the adaptability of mammalian respiratory muscles in response to endurance training. We examined the effects of 8 wk of progressive treadmill exercise (45 min/day 5 days/wk) on the biochemical adaptations of rat diaphragm and intercostal muscles. Female Sprague-Dawley rats were randomly assigned to a sedentary control (n = 10) or an exercise-training group (n = 10). Endurance training resulted in an enhanced oxidative capacity in the anterior costal diaphragm as evidenced by a 29% increase (P less than 0.05) in the activity of succinate dehydrogenase (SDH) in trained animals compared with controls (4.15 +/- 0.13 vs. 3.21 +/- 0.17 mumol.g-1.min-1). Similarly, SDH activity in the intercostal muscles was 32% greater (P less than 0.05) in the trained animals than in the untrained animals (1.72 +/- 0.11 vs. 1.30 +/- 0.06 mumol.g-1.min-1). In contrast, the crural region of the diaphragm showed no significant increase (P greater than 0.05) in oxidative capacity as a result of the training program (3.28 +/- 0.12 vs. 3.13 +/- 0.18). Furthermore, training did not alter (P less than 0.05) lactate dehydrogenase activity in the intercostals or in the crural or the costal diaphragm. These data demonstrate that the oxidative capacity of the costal diaphragm and the intercostal muscles can be enhanced by increasing respiratory loads via regular endurance exercise. We speculate that the lack of metabolic adaptation in the crural region of the diaphragm was not due to limited plasticity of the fibers in this area but to failure to the exercise-training program to provide the appropriate stimulus for cellular adaptation.  相似文献   

12.
Recent evidence suggests that intramyocellular lipid (IMCL) accretion is associated with obesity and the development of insulin resistance and/or type 2 diabetes. However, trained endurance athletes are markedly insulin sensitive, despite an elevated mixed muscle lipid content. In an effort to explain this metabolic paradox, we compared muscle fiber type-specific IMCL storage between populations known to have elevated IMCL deposits. Immunofluorescence microscopy was performed on muscle biopsies obtained from eight highly trained endurance athletes, eight type 2 diabetes patients, and eight overweight, sedentary men after an overnight fast. Mixed muscle lipid content was substantially greater in the endurance athletes (4.0 +/- 0.4% area lipid stained) compared with the diabetes patients and the overweight men (2.3 +/- 0.4 and 2.2 +/- 0.5%, respectively). More than 40% of the greater mixed muscle lipid content was attributed to a higher proportion type I muscle fibers (62 +/- 8 vs. 38 +/- 3 and 33 +/- 7%, respectively), which contained 2.8 +/- 0.3-fold more lipid than the type II fibers. The remaining difference was explained by a significantly greater IMCL content in the type I muscle fibers of the trained athletes. Differences in IMCL content between groups or fiber types were accounted for by differences in lipid droplet density, not lipid droplet size. IMCL distribution showed an exponential increase in lipid content from the central region toward the sarcolemma, which was similar between groups and fiber types. In conclusion, IMCL contents can be substantially greater in trained endurance athletes compared with overweight and/or type 2 diabetes patients. Because structural characteristics and intramyocellular distribution of lipid aggregates seem to be similar between groups, we conclude that elevated IMCL deposits are unlikely to be directly responsible for inducing insulin resistance.  相似文献   

13.
Previous studies of endurance exercise training in older men and women generally have found only minimal skeletal muscle adaptations to training. To evaluate the possibility that this may have been due to an inadequate training stimulus, we studied 23 healthy older (64 +/- 3 yr) men and women before and after they had trained by walking/jogging at 80% of maximal heart rate for 45 min/day 4 days/wk for 9-12 mo. This training program resulted in a 23% increase in maximal O2 consumption. Needle biopsy samples of the lateral gastrocnemius muscle were obtained before and after training and analyzed for selected histochemical and enzymatic characteristics. The percentage of type I muscle fibers did not change with training. The percentage of type IIb fibers, however, decreased from 19.1 +/- 9.1 to 15.1 +/- 8.1% (P less than 0.001), whereas the percentage of type IIa fibers increased from 22.1 +/- 7.7 to 29.6 +/- 9.1% (P less than 0.05). Training also induced increases in the cross-sectional area of both type I (12%; P less than 0.001) and type IIa fibers (10%; P less than 0.05). Capillary density increased from 257 +/- 43 capillaries/mm2 before training to 310 +/- 48 capillaries/mm2 after training (P less than 0.001) because of increases in the capillary-to-fiber ratio and in the number of capillaries in contact with each fiber. Lactate dehydrogenase activity decreased by 21% (P less than 0.001), whereas the activities of the mitochondrial enzymes succinate dehydrogenase, citrate synthase, and beta-hydroxyacyl-CoA dehydrogenase increased by 24-55% in response to training (P less than 0.001-0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Gender differences in substrate selection have been reported during endurance exercise. To date, no studies have looked at muscle enzyme adaptations following endurance exercise training in both genders. We investigated the effect of a 7-week endurance exercise training program on the activity of beta-oxidation, tricarboxylic acid cycle and electron transport chain enzymes, and fiber type distribution in males and females. Training resulted in an increase in VO2peak, for both males and females of 17% and 22%, respectively (P < 0.001). The following muscle enzyme activities increased similarly in both genders: 3-beta-hydroxyacyl CoA dehydrogenase (38%), citrate synthase (41%), succinate-cytochrome c oxidoreductase (41%), and cytochrome c oxidase (COX; 26%). The increase in COX activity was correlated (R2 = 0.52, P < 0.05) with the increase in VO2peak/fat free mass. Fiber area, size, and % area were not affected by training for either gender, however, males had larger Type II fibers (P < 0.05) and females had a greater Type I fiber % area (P < 0.05). Endurance training resulted in similar increases in skeletal muscle oxidative potential for both males and females. Training did not affect fiber type distribution or size in either gender.  相似文献   

15.
Fiber composition and oxidative capacity of hamster skeletal muscle.   总被引:6,自引:0,他引:6  
The hamster is a valuable biological model for physiological investigation. Despite the obvious importance of the integration of cardiorespiratory and muscular system function, little information is available regarding hamster muscle fiber type and oxidative capacity, both of which are key determinants of muscle function. The purpose of this investigation was to measure immunohistochemically the relative composition and size of muscle fibers composed of types I, IIA, IIX, and IIB fibers in hamster skeletal muscle. The oxidative capacity of each muscle was also assessed by measuring citrate synthase activity. Twenty-eight hindlimb, respiratory, and facial muscles or muscle parts from adult (144-147 g bw) male Syrian golden hamsters (n=3) were dissected bilaterally, weighed, and frozen for immunohistochemical and biochemical analysis. Combining data from all 28 muscles analyzed, type I fibers made up 5% of the muscle mass, type IIA fibers 16%, type IIX fibers 39%, and type IIB fibers 40%. Mean fiber cross-sectional area across muscles was 1665 +/- 328 microm(2) for type I fibers, 1900 +/- 417 microm(2) for type IIA fibers, 3230 +/- 784 microm(2) for type IIX fibers, and 4171 +/- 864 microm(2) for type IIB fibers. Citrate synthase activity was most closely related to the population of type IIA fibers (r=0.68, p<0.0001) and was in the rank order of type IIA > I > IIX > IIB. These data demonstrate that hamster skeletal muscle is predominantly composed of type IIB and IIX fibers.  相似文献   

16.
We studied the effect of resistance running on left cardiac ventricle size and rectus femoris muscle fiber composition. Ten male Wistar rats were trained on a treadmill 6 days per week for 12 weeks. Ten rats remained sedentary and served as controls. A higher endurance time (40%) and cardiac hypertrophy in the trained animals were indicators of training efficiency. Morphometric analysis of the left ventricle cross-sectional area, left ventricular wall, and left ventricular cavity were evaluated. The endurance-running group demonstrated a hypertrophy of the ventricular wall (22%) and an increase in the ventricular cavity (25%); (p<0.0001). Semi-quantitative analysis of rectus femoris fiber-type composition and of the oxidative and glycolytic capacity was histochemically performed. Endurance running demonstrated a significant (p<0.01) increase in the relative frequency of Type I (24%), Type IIA (8%) and Type IIX (16%) oxidative fibers, and a decrease in Type IIB (20%) glycolytic fibers. There was a hypertrophy of both oxidative and glycolytic fiber types. The relative cross-sectional area analysis demonstrated an increase in oxidative fibers and a decrease in glycolytic fibers (p<0.0001). Changes were especially evident for Type IIX oxidative-glycolytic fibers. The results of this study indicate that the left ventricle adapts to endurance running by increasing wall thickness and enlargement of the ventricular cavity. Skeletal muscle adapts to training by increasing oxidative fiber Type. This increase may be related to fiber transformation from Type IIB glycolytic to Type IIX oxidative fibers. These results open the possibility for the use of this type of exercise to prevent muscular atrophy associated with age or post-immobilization.  相似文献   

17.
Fibre types in the costal region of the diaphragm muscle of several mammalian species with widely different respiratory rates were examined microphotometrically for succinate dehydrogenase (SDH) activity. Mean activities indicated no significant (p greater than 0.05) difference between the type I and IIA fibres for any of the species examined. SDH activities in type IIB fibres were significantly lower (p less than 0.05) than either the type I or type IIA fibres in the cat, guinea pig, rat and rabbit whereas in the mouse no difference was found. The dog had no classical type 1B fibres. Analysis of the distribution of SDH activities by fibre type indicated a wide scattering of scores with no distinct separation between fibre types. Large differences in SDH activity were noted between species. Mean SDH activities were highest in the mouse and rat, intermediate in the rabbit and guinea pig and lowest in the cat and dog. These data suggest an association between respiratory rate and aerobic oxidative potential of the various fibre types in diaphragms of the species examined.  相似文献   

18.
Several human genetic diseases that affect striated muscle have been modeled by creating knockout mouse strains. However, many of these are perinatal lethal mutations that result in death from respiratory distress within hours after birth. As the diaphragm muscle does not contract until birth, the sudden increase in diaphragm activity creates permanent injury to the muscle causing it to fail to meet respiratory demands. Therefore, the impact of these mutations remains hidden throughout embryonic development and early death prevents investigators from performing detailed studies of other striated muscle groups past the neonatal stage. Glycogen storage disease type II (GSDII), caused by a deficiency in acid alpha-glucosidase (GAA), leads to lysosomal accumulation of glycogen in all cell types and abnormal myofibrillogenesis in striated muscle. Contractile function of the diaphragm muscle is severely affected in both infantile-onset and late-onset individuals, with death often resulting from respiratory failure. The knockout mouse model of GSDII survives well into adulthood despite the gradual weakening of all striated muscle groups. Using this model, we investigated the delivery of recombinant adeno-associated virus (rAAV) vectors encoding the human GAA cDNA to the developing embryo. Results indicate specific high-level transduction of diaphragm tissue, leading to activity levels up to 10-fold higher than normal and restoration of normal contractile function. Up to an estimated 50 vector copies per diploid genome were quantified in treated diaphragms. Histological glycogen staining of treated diaphragms revealed prevention of lysosomal glycogen accumulation in almost all fibers when compared with untreated controls. This method could be employed with disease models where specific rescue of the diaphragm would allow for increased survival and thus further investigation into the impact of the gene deletion on other striated muscle groups.  相似文献   

19.
The purpose of this investigation was to determine whether heavy-resistance exercise training alters the skeletal muscle fiber composition of young rats. Ten male Long Evans rats (3 wk old) were trained to lift progressively heavier weights, which were secured to the rats' tails, while they ascended a 40-cm 90 degree mesh incline 20 times/day 5 days/wk for a food reward. After 8 wk of training, they lifted 406 +/- 19 (SD) g in addition to their body weight (261 +/- 9 g). Compared with 10 sedentary pair-fed rats, no hypertrophy of forelimb muscles (biceps brachii and brachialis) was observed, but rectus femoris wet and dry weights were greater (P less than 0.01) in the trained group. In the deep region of the rectus femoris, type I fiber area was similar between groups, but the trained rats had both a lower (P less than 0.05) percentage of type I fibers and a smaller (P less than 0.05) portion of the total area occupied by type I fibers. The percentage of type IIb fibers in the deep region of the rectus femoris was also similar between groups, but the portion of the deep area composed of type IIb fibers was greater (P less than 0.05) in the trained rats. In the superficial region of the rectus femoris, the trained rats' type IIb fibers were larger (P less than 0.01) and occupied a greater (P less than 0.05) portion of the superficial muscle area.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Structural adaptations that occur in the diaphragm muscle of patients with chronic obstructive pulmonary disease (COPD), namely an increase in type I fibers and a decrease in type II fibers, have been explored in terms of the active contractile properties of the diaphragm. The aim of this study was to test the passive properties of the diaphragm by measuring the force response of relaxed diaphragm muscle fibers to stretching to determine the effect of COPD on these properties. Costal diaphragm biopsies were taken from patients with COPD and from controls with normal pulmonary function. From these biopsies, titin expression was assessed in diaphragm homogenates by gel electrophoresis, and the restoring force was measured by incremental stretching of single fibers in the relaxed state and measuring the force response to stretching. A quadratic model was used to illustrate the relationship between restoring force and muscle fiber length, and it revealed that COPD fibers generate significantly lower restoring forces than control fibers as judged by the area under the force-length curve. Furthermore, this finding applies to both type I and type II fibers. Gel electrophoresis revealed different titin isoforms in COPD and controls, consistent with the conclusion that COPD results not only in a change in muscle fiber-type distribution but in a structural change in the titin molecule in all muscle fiber types within the diaphragm. This may assist the muscle with the energetic changes in the length of the diaphragm required during breathing in COPD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号