首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bactericidal properties of peracetic acid, hydrogen peroxide, chlorine, and formaldehyde were compared in vitro using a rapid micromethod. A combination of peracetic acid and hydrogen peroxide was also tested to assess interactions. The activities of these agents, which are widely used as disinfectants, were evaluated against water isolates and culture collection strains. Peracetic acid and chlorine exhibited an excellent antimicrobial activity, with a relatively rapid destruction of 10(5) bacteria/mL. The time-dependent bactericidal activities of hydrogen peroxide and formaldehyde were the lowest. The combination of peracetic acid and hydrogen peroxide, tested by a checkerboard micromethod, was found to be synergistic. The minimal bactericidal concentration was established in terms of time for a given mixture of peracetic acid and hydrogen peroxide. Determination of bactericidal concentrations showed that synergy was maintained with increasing contact time. Concentrations for minimal times of treatment by chemicals that provided interesting activities in vitro were tested for disinfection of ultrafiltration membranes. The bactericidal activities of peroxygen compounds were confirmed and synergism was maintained in working conditions. Chlorine showed a loss of efficacy when used on membranes.  相似文献   

2.
3.
AIMS: To evaluate both the antimicrobial activity and the effectiveness of a combination of sodium hypochlorite and hydrogen peroxide (Ox-B) for killing Pseudomonas aeruginosa ATCC 19142 cells and removing P. aeruginosa biofilms on aluminum or stainless steel surfaces. METHODS AND RESULTS: Pseudomonas aeruginosa biofilms were developed in tryptic soy broth containing vertically suspended aluminium or stainless steel plates. Biofilms were exposed to a mixed sodium hypochlorite and hydrogen peroxide solution as a sanitizer for 1, 5 and 20 min. The sanitizer was then neutralized, the cells dislodged from the test surfaces, and viable cells enumerated. Cell morphologies were determined using scanning (SEM) and transmission electron microscopy (TEM). Cell viability was determined by confocal scanning laser microscopy (CSLM). Biofilm removal was monitored by Fourier transform infrared (FTIR) spectrophotometry. Cell numbers were reduced by 5-log to 6-log after 1 min exposure and by 7-log after 5 min exposure to Ox-B. No viable cells were detected after a 20 min exposure. Treatment with equivalent concentrations of sodium hypochlorite reduced viable numbers by 3-log to 4-log after 1 min exposure and by 4-log to 6-log after 5 min, respectively. A 20 min exposure achieved a 7-log reduction. Hydrogen peroxide at test concentration treatments showed no effect. FTIR analysis of treated pseudomonad biofilms on aluminium or stainless steel plates showed either a significant reduction or complete removal of biofilm material after a 5 min exposure to the mixed sodium hypochlorite and hydrogen peroxide solution. SEM and TEM images revealed damage to cell wall and cell membranes. CONCLUSIONS: A combination of sodium hypochlorite and hydrogen peroxide effectively killed P. aeruginosa cells and removed biofilms from both stainless steel and aluminium surfaces. SIGNIFICANCE AND IMPACT OF THE STUDY: The combination of sodium hypochlorite and hydrogen peroxide can be used as an alternative disinfectant and/or biofilm remover of contaminated food processing equipment.  相似文献   

4.
Nine liquid disinfectants were tested for their ability to reduce infectivity of Cryptosporidium parvum oocysts in cell culture. A 4-min exposure to 6% hydrogen peroxide and a 13-min exposure to ammonium hydroxide-amended windshield washer fluid reduced infectivity 1,000-fold. Other disinfectants tested (70% ethanol, 37% methanol, 6% sodium hypochlorite, 70% isopropanol, and three commercial disinfectants) did not reduce the infectivity after a 33-min exposure. The results indicate that hydrogen peroxide and windshield washer fluid or ammonium hydroxide disinfectant may be suitable laboratory disinfectants against C. parvum oocysts.  相似文献   

5.
Procedures of sterilization and disinfection are essential to ensure that medical and surgical instruments will not transmit infectious pathogens to patients. In the present paper, we tested the residual effect of these compounds on biofilm formation and its efficiency in disrupting preformed biofilms using methicillin-resistant Staphylococcus aureus (MRSA) isolates of the lineage ST239-SCCmecIII. All compounds examined, except 70% alcohol, caused a significant impairment in biofilm formation with concomitant inhibition of cell growth. Among the compounds examined, 10% povidone-iodine (PVP-I) was the only antiseptic that exhibited more than 90% reduction of both biofilm formation and dispersion. In the group of sterilants and disinfectants, a formulation containing 7% hydrogen peroxide and 0.2% peracetic acid (HP-PA), and sodium hypochlorite with 1% active chlorine (NaOCl) were equally effective.  相似文献   

6.
Nine liquid disinfectants were tested for their ability to reduce infectivity of Cryptosporidium parvum oocysts in cell culture. A 4-min exposure to 6% hydrogen peroxide and a 13-min exposure to ammonium hydroxide-amended windshield washer fluid reduced infectivity 1,000-fold. Other disinfectants tested (70% ethanol, 37% methanol, 6% sodium hypochlorite, 70% isopropanol, and three commercial disinfectants) did not reduce the infectivity after a 33-min exposure. The results indicate that hydrogen peroxide and windshield washer fluid or ammonium hydroxide disinfectant may be suitable laboratory disinfectants against C. parvum oocysts.  相似文献   

7.
AIMS: To determine the sensitivity of a strain used for disinfectants testing (Pseudomonas aeruginosa ATCC 15442) and food-associated isolates to benzalkonium chloride and didecyl dimethylammonium chloride (DDAC). To determine whether the increase in bacterial resistance after adaptation to DDAC can be associated with phenotypic changes. To test the activity of alternative disinfectants to eliminate resistant Pseudomonas spp. METHODS AND RESULTS: Pseudomonas aeruginosa ATCC 15442 was among the most resistant strains tested using a bactericidal suspension test. Growth of a sensitive Ps. fluorescens in gradually higher concentrations of DDAC resulted in stable higher resistance and to some cross-resistance to several antibacterial agents, with the exception of disinfectants containing chloramine T, glutaraldehyde or peracetic acid. It was shown by microscopy that adaptation was followed by loss of flagella, and slime formation. Removal of the slime by sodium dodecyl sulphate resulted in partial loss of the acquired resistance. CONCLUSIONS: Pseudomonas spp. may adapt to survive against higher concentrations of quaternary ammonium compounds (QACs), but resistant strains can be eliminated with chemically unrelated disinfectants. SIGNIFICANCE AND IMPACT OF THE STUDY: The work supports the rotation of disinfectants in food processing environments for avoiding the development of bacterial resistance to QACs. The alternating disinfectants should be chosen carefully, because of possible cross-resistance.  相似文献   

8.
Summary Three seed coat sterilants were evaluated for effectiveness as surface sterilants and for effects on seed germination. Several exposure times in sodium hypochlorite, hydrogen peroxide and peracetic acid were evaluated. Seeds of the following crop plants were used: wheat (Triticum aestivum L.); sorghum [Sorghum bicolor (L.) Moench]; soybean [Glycine max (L.) Merrill]. All treatments reduced germination of wheat and soybean seed, but only the most severe peracetic acid treatments substantially reduced germination of sorghum seed. Considering both sterilization effectiveness and seed germination, a treatment with 5% sodium hypochlorite for 45 min appeared to be the most satisfactory of the treatments used.  相似文献   

9.
Objective: This study evaluated the surface roughness (Ra) and color stability of acrylic resin colors (Lucitone 550, QC‐20 and Vipi‐Wave) used for fabricating bases for complete, removable dentures, overdentures and prosthetic protocol after immersion in chemical disinfectants (1% sodium hypochlorite and 2% peracetic acid) for 30 and 60 minutes. Material and Methods: Sixty specimens were made of each commercial brand of resin composite, and divided into 2 groups according to the chemical disinfectants. Specimens had undergone the finishing and polishing procedures, the initial color and roughness measurements were taken (t=0), and after this, ten test specimens of each commercial brand of resin composite were immersed in sodium hypochlorite and ten in peracetic acid, for 30 and 60 minutes, with measurements being taken after each immersion period. These data were submitted to statistical analysis. Results: There was evidence of an increase in Ra after 30 minutes immersion in the disinfectants in all the resins, with QC‐20 presenting the highest Ra values, and Vipi‐Wave the lowest. After 60 minutes immersion in the disinfectants all the resins presented statistically significant color alteration. Conclusions: Disinfection with 1% sodium hypochlorite and peracetic acid altered the properties of roughness and color of the resins.  相似文献   

10.
Pseudomonas aeruginosa is an obligate aerobe that is virtually ubiquitous in the environment. During aerobic respiration, the metabolism of dioxygen can lead to the production of reactive oxygen intermediates, one of which includes hydrogen peroxide. To counteract the potentially toxic effects of this compound, P. aeruginosa possesses two heme-containing catalases which detoxify hydrogen peroxide. In this study, we have cloned katB, encoding one catalase gene of P. aeruginosa. The gene was cloned on a 5.4-kb EcoRI fragment and is composed of 1,539 bp, encoding 513 amino acids. The amino acid sequence of the P. aeruginosa katB was approximately 65% identical to that of a catalase from a related species, Pseudomonas syringae. The katB gene was mapped to the 71- to 75-min region of the P. aeruginosa chromosome, the identical region which harbors both sodA and sodB genes encoding both manganese and iron superoxide dismutases. When cloned into a catalase-deficient mutant of Escherichia coli (UM255), the recombinant P. aeruginosa KatB was expressed (229 U/mg) and afforded this strain resistance to hydrogen peroxide nearly equivalent to that of the wild-type E. coli strain (HB101). The KatB protein was purified to homogeneity and determined to be a tetramer of approximately 228 kDa, which was in good agreement with the predicted protein size derived from the translated katB gene. Interestingly, KatB was not produced during the normal P. aeruginosa growth cycle, and catalase activity was greater in nonmucoid than in mucoid, alginate-producing organisms. When exposed to hydrogen peroxide and, to a greater extent, paraquat, total catalase activity was elevated 7- to 16-fold, respectively. In addition, an increase in KatB activity caused a marked increase in resistance to hydrogen peroxide. KatB was localized to the cytoplasm, while KatA, the "housekeeping" enzyme, was detected in both cytoplasmic and periplasmic extracts. A P. aeruginosa katB mutant demonstrated 50% greater sensitivity to hydrogen peroxide than wild-type bacteria, suggesting that KatB is essential for optimal resistance of P. aeroginosa to exogenous hydrogen peroxide.  相似文献   

11.
Peracetic acid is used as a sterilant in several industrial settings. Cells of a plant-colonizing bacterium, Pseudomonas putida in liquid suspension, were more sensitive to killing by peracetic acid when they lacked a major catalase activity, catalase A. Low doses of peracetic acid induced promoter activity of the gene encoding catalase A and increased total catalase specific activity in cell extracts. Microbes present in native agricultural soils rapidly degraded the active oxygen species present in peracetic acid. The simultaneous release of oxygen was consistent with a role for catalase in degrading the hydrogen peroxide that is part of the peracetic acid-equilibrium mixture. Amendment of sterilized soils with wild-type P. putida restored the rate of degradation of peracetic acid to a higher level than was observed in the soils amended with the catalase A-deficient mutant. The association of the bacteria with the plant roots resulted in protection of the wild-type as well as the catalase-deficient mutant from killing by peracetic acid. No differential recovery of the wild-type and catalase A mutant of P. putida was observed from roots after the growth matrix containing the plants was flushed with peracetic acid.  相似文献   

12.
Peracetic acid is gaining usage in numerous industries who have found a myriad of uses for its antimicrobial activity. However, rapid high throughput quantitation methods for peracetic acid and hydrogen peroxide are lacking. Herein, we describe the development of a high-throughput microtiter plate based assay based upon the well known and trusted titration chemical reactions. The adaptation of these titration chemistries to rapid plate based absorbance methods for the sequential determination of hydrogen peroxide specifically and the total amount of peroxides present in solution are described. The results of these methods were compared to those of a standard titration and found to be in good agreement. Additionally, the utility of the developed method is demonstrated through the generation of degradation curves of both peracetic acid and hydrogen peroxide in a mixed solution.  相似文献   

13.
The antimicrobial properties of aqueous solutions of peracetic acid and hydrogen peroxide have been compared. Peracetic acid exhibited excellent antimicrobial properties, especially under acidic conditions. Reductions by a factor of 106 in the numbers of vegetative bacteria are obtained within 1 min at 25°C using a solution containing 1.3 mmol/l of peracetic acid. Rapid activity against bacterial spores and yeasts also occurs. Hydrogen peroxide is more effective as a sporicide than as a bactericide, with sporicidal action being obtained using a solution containing 0.88 mol/l. Bactericidal action is poor but hydrogen peroxide was bacteriostatic at concentrations above 0.15 mmol/l.  相似文献   

14.
Comparative sporicidal effects of liquid chemical agents.   总被引:8,自引:4,他引:4       下载免费PDF全文
We compared the effectiveness of glutaraldehyde, formaldehyde, hydrogen peroxide, peracetic acid, cupric ascorbate (plus a sublethal amount of hydrogen peroxide), sodium hypochlorite, and phenol to inactivate Bacillus subtilis spores under various conditions. Each chemical agent was distinctly affected by pH, storage time after activation, dilution, and temperature. Only three of the preparations (hypochlorite, peracetic acid, and cupric ascorbate) studied here inactivated more than 99.9% of the spore load after a 30-min incubation at 20 degrees C at concentrations generally used to decontaminate medical devices. Under similar conditions, glutaraldehyde inactivated approximately 90%, and hydrogen peroxide, formaldehyde, and phenol produced little killing of spores in suspension. By kinetic analysis at different temperatures, we calculated the rate of spore inactivation (k) and the activation energy of spore killing (delta E) for each chemical agent. Rates of spore inactivation had a similar delta E value of approximately 20 kcal/mol (ca.83.68 kJ/mol) for every substance tested. The variation among k values allowed a quantitative comparison of liquid germicidal agents.  相似文献   

15.
Effect of biocides on Pseudomonas aeruginosa phage F116   总被引:7,自引:4,他引:3  
Pseudomonas aeruginosa phage F116 is of interest in understanding the virucidal mechanisms of disinfectant action. Phage F116 has been used to test several disinfectants. The bacteriophage was relatively resistant to several biocides commonly used in disinfection processes. Only 0.05% cetylpyridinium chloride, 0.1% peracetic acid and 2% phenol were highly active against the phage.  相似文献   

16.
Driven by economic and time constraints, some medical centers and third parties are resterilizing single-use devices (SUDs) for reuse. The steam autoclave is quick, but most plastics used in SUDs cannot survive the temperature. Thus, a number of new methods of cleaning, disinfecting, and sterilizing these complex devices are being introduced on the market. The present study investigated the effects of a range of methods on the tensile strength of latex rubber, silicone elastomer, 2 different formulations of polyurethane, nylon, and high-density polyethylene (HDPE) specimens. The methods used were sodium hypochlorite bleach (Clorox), peracetic acid + hydrogen peroxide (Steris), formaldehyde gas (Chemiclave), low-temperature peracetic acid and gas plasma (Plazlyte), and low-temperature hydrogen peroxide gas plasma (Sterrad). The results showed that silicone elastomer was minimally affected, whereas the strengths of nylon, polyethylene, and latex were reduced by some of the methods. Depending on the formulation, the strength of polyurethane either increased or decreased. The data demonstrated that disinfection and sterilization can affect the tensile strength of certain materials used in medical devices.  相似文献   

17.
A strain of Pseudomonas aeruginosa was isolated in pure culture from the reservoir of a hospital mist therapy unit by an extinction-dilution technique; its natural distilled water environment was used as a growth and maintenance medium. After a single subculture on Trypticase soy agar, the strain showed a marked decrease in resistance to inactivation by acetic acid, glutaraldehyde, chlorine dioxide, and a quaternary ammonium compound when compared with naturally occurring cells grown in mist therapy unit water. The following factors were observed to affect the relative resistances of naturally occurring and subcultured cells of the P. aeruginosa strain: (i) temperature at which the cultures were incubated prior to exposure to disinfectants, (ii) growth phase of the cultures at the time of exposure to disinfectants, (iii) nature of the suspending menstruum for disinfectants, and (iv) exposure to fluorescent light during incubation of inocula prior to testing. The applied significance of these findings may alter the present concepts of disinfectant testing as well as routine control procedures in the hospital environment.  相似文献   

18.
The physiological role of a bifunctional enzyme, 3,4-dihydrocoumarin hydrolase (DCH), which is capable of both hydrolysis of ester bonds and organic acid-assisted bromination of organic compounds, was investigated. Purified DCH from Acinetobacter calcoaceticus F46 catalysed dose- and time-dependent degradation of peracetic acid. The gene (dch) was cloned from the chromosomal DNA of the bacterium. The dch ORF was 831 bp long, corresponding to a protein of 272 amino acid residues, and the deduced amino acid sequence showed high similarity to those of bacterial serine esterases and perhydrolases. The dch gene was disrupted by homologous recombination on the A. calcoaceticus genome. The dch disruptant strain was more sensitive to growth inhibition by peracetic acid than the parent strain. On the other hand, the recombinant Escherichia coli cells expressing dch were more resistant to peracetic acid. A putative catalase gene was found immediately downstream of dch, and Northern blot hybridization analysis revealed that they are transcribed as part of a polycistronic mRNA. These results suggested that in vivo DCH detoxifies peroxoacids in conjunction with the catalase, i.e. peroxoacids are first hydrolysed to the corresponding acids and hydrogen peroxide by DCH, and then the resulting hydrogen peroxide is degraded by the catalase.  相似文献   

19.
Damage to Pseudomonas aeruginosa PAO1 bacteriophage F116 DNA by biocides   总被引:1,自引:0,他引:1  
The mechanism of action of biocides against viruses has not been widely studied, although two main targets are viral proteins (capsids, enzymes) and the viral genome. This study was undertaken in order to investigate the efficacy of several disinfectants against the nucleic acid of the Pseudomonas aeruginosa PAO bacteriophage F116. Of all the biocides tested, only peracetic acid affected significantly the phage genome. However, it is not clear whether the nucleic acid was damaged inside the phage capsid or when released into the surrounding medium.  相似文献   

20.
The comparative study of the action of microwave radiation and hydrogen peroxide, as well as their combined action, on the viability and ultrastructure of P. aeruginosa cells has been made. The combined use of microwave radiation and hydrogen peroxide has been shown to decrease the viability of P. aeruginosa 1.5-2 times in comparison with the isolated action of each factor. The electron microscopic study of the ultrastructure of cells have shown the deterioration of the surface structures, nuclear and ribosomal apparatus of the cells under the isolated action of each of the above-mentioned factors or under their combined action. The morphological picture of these changes has proved to be different. The maximum changes in the ultrastructure of P. aeruginosa cells have been registered after the combined action of these bactericidal factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号