首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The past decade has witnessed the identification and characterization of bacterial homologs of the three major eukaryotic cytoskeletal families: actin, tubulin and intermediate filaments. These proteins play essential roles in organizing bacterial subcellular environments. Recently, the ParA/MinD superfamily has emerged as a new bacterial cytoskeletal class, and imaging studies hint at the existence of even more, as yet unidentified, cytoskeletal systems. Much as the cytoskeleton is used for different purposes in different eukaryotic cells, the specific identities, functions and regulatory mechanisms of cytoskeletal proteins can vary between different bacterial species. In addition, extensive cross-talk between bacterial cytoskeletal systems may represent an important mode of cytoskeletal regulation. These themes of diversity, species-specificity and crosstalk are emerging as central properties of cytoskeletal biology.  相似文献   

2.
Actin filaments and microtubules are cytoskeletal polymers that participate in many vital cell functions including division, morphogenesis, phagocytosis, and motility. Despite the persistent dogma that actin filament and microtubule networks are distinct in localization, structure, and function, a growing body of evidence shows that these elements are choreographed through intricate mechanisms sensitive to either polymer. Many proteins and cellular signals that mediate actin–microtubule interactions have already been identified. However, the impact of these regulators is typically assessed with actin filament or microtubule polymers alone, independent of the other system. Further, unconventional modes and regulators coordinating actin–microtubule interactions are still being discovered. Here we examine several methods of actin–microtubule crosstalk with an emphasis on the molecular links between both polymer systems and their higher-order interactions.  相似文献   

3.
It is now well established that prokaryotic cells assemble diverse proteins into dynamic cytoskeletal filaments that perform essential cellular functions. Although most of the filaments assemble on their own to form higher order structures, growing evidence suggests that there are a number of prokaryotic proteins that polymerise only in the presence of a matrix such as DNA, lipid membrane or even another filament. Matrix‐assisted filament systems are frequently nucleotide dependent and cytomotive but rarely considered as part of the bacterial cytoskeleton. Here, we categorise this family of filament‐forming systems as collaborative filaments and introduce a simple nomenclature. Collaborative filaments are frequent in both eukaryotes and prokaryotes and are involved in vital cellular processes including chromosome segregation, DNA repair and maintenance, gene silencing and cytokinesis to mention a few. In this review, we highlight common principles underlying collaborative filaments and correlate these with known functions.  相似文献   

4.
Li  Jian  Zou  Yun  Li  Zhifang  Jiu  Yaming 《中国科学:生命科学英文版》2019,62(10):1368-1374
Many key cellular functions are regulated by the interplay of three distinct cytoskeletal networks, made of actin filaments,microtubules, and intermediate filaments(IFs), which is a hitherto poorly investigated area of research. However, there are growing evidence in the last few years showing that the IFs cooperate with actin filaments to exhibit strongly coupled functions.This review recapitulates our current knowledge on how the crosstalk between IFs and actin filaments modulates the migration properties, mechano-responsiveness and signaling transduction of cells, from both biophysical and biochemical point of view.  相似文献   

5.
The intracellular polymerization of cytoskeletal proteins into their supramolecular assemblies raises many questions regarding the regulatory patterns that control this process. Binding experiments using the ELISA solid phase system, together with protein assembly assays and electron microscopical studies provided clues on the protein-protein associations in the polymerization of tubulin and actin networks. In vitro reconstitution experiments of these cytoskeletal filaments using purified tau, tubulin, and actin proteins were carried out. Tau protein association with tubulin immobilized in a solid phase support system was inhibited by actin monomer, and a higher inhibition was attained in the presence of preassembled actin filaments. Conversely, tubulin and assembled microtubules strongly inhibited tau interaction with actin in the solid phase system. Actin filaments decreased the extent of in vitro tau-induced tubulin assembly. Studies on the morphological aspects of microtubules and actin filaments coexisting in vitro, revealed the association between both cytoskeletal filaments, and in some cases, the presence of fine filamentous structures bridging these polymers. Immunogold studies showed the association of tau along polymerized microtubules and actin filaments, even though a preferential localization of labeled tau with microtubules was revealed. The studies provide further evidence for the involvement of tau protein in modulating the interactions of microtubules and actin polymers in the organization of the cytsokeletal network.  相似文献   

6.
黄海艳  陈耀东 《微生物学通报》2017,44(11):2741-2747
自从1992年确定细菌分裂的关键蛋白Fts Z属于微管蛋白家族以来,越来越多的细菌细胞骨架蛋白被发现。原核生物中的微管同源蛋白主要有Fts Z、Cet Z、Tub Z和Btub A/B等。它们与微管蛋白具有相似的三级结构,可以结合鸟嘌呤-5′-三磷酸(Guanosine triphosphate,GTP)自聚合成不同的线状原丝纤维结构:单线状原丝纤维、双螺旋纤维结构或聚集成束状结构,在细菌细胞分裂、维持细胞形态、质粒分离等诸多重要生理功能中起着重要作用。  相似文献   

7.
Physical forces regulate numerous biological processes during development, physiology, and pathology. Forces between the external environment and intracellular actin cytoskeleton are primarily transmitted through integrin-containing focal adhesions and cadherin-containing adherens junctions. Crosstalk between these complexes is well established and modulates the mechanical landscape of the cell. However, integrins and cadherins constitute large families of adhesion receptors and form multiple complexes by interacting with different ligands, adaptor proteins, and cytoskeletal filaments. Recent findings indicate that integrin-containing hemidesmosomes oppose force transduction and traction force generation by focal adhesions. The cytolinker plectin mediates this crosstalk by coupling intermediate filaments to the actin cytoskeleton. Similarly, cadherins in desmosomes might modulate force generation by adherens junctions. Moreover, mechanotransduction can be influenced by podosomes, clathrin lattices, and tetraspanin-enriched microdomains. This review discusses mechanotransduction by multiple integrin- and cadherin-based cell adhesion complexes, which together with the associated cytoskeleton form an integrated network that allows cells to sense, process, and respond to their physical environment.  相似文献   

8.
Microfilaments, intermediate filaments, and microtubules are three major cytoskeletal systems providing cells with stability to maintain proper shape. Although the word “cytoskeleton” implicates rigidity, it is quite dynamic exhibiting constant changes within cells. In addition to providing cell stability, it participates in a variety of essential and dynamic cellular processes including cell migration, cell division, intracellular transport, vesicular trafficking, and organelle morphogenesis. During the past eight years since the green fluorescent protein (GFP) was first used as a marker for the exogenous gene expression, it has been an especially booming era for live cell observations of intracellular movement of many proteins. Because of the dynamic behavior of the cytoskeleton in the cell, GFP has naturally been a vital part of the studies of the cytoskeleton and its associated proteins. In this article, we will describe the advantage of using GFP and how it has been used to study cytoskeletal proteins.  相似文献   

9.
Septins are conserved guanine nucleotide-binding proteins that polymerize into filaments at the cell cortex or in association with other cytoskeletal proteins, such as actin or microtubules. As integral players in many morphogenic and signaling events, septins form scaffolds important for the recruitment of the cytokinetic machinery, organization of the plasma membrane, and orientation of cell polarity. Mutations in septins or their misregulation are associated with numerous diseases. Despite growing appreciation for the importance of septins in different aspects of cell biology and disease, septins remain relatively poorly understood compared with other cytoskeletal proteins. Here in this review, we highlight some of the recent developments of the last two years in the field of septin cell biology.  相似文献   

10.
Actin filaments and microtubules are two major cytoskeletal systems involved in wide cellular processes, and the organizations of their filamentous networks are regulated by a large number of associated proteins. Recently, evidence has accumulated for the functional cooperation between the two filament systems via associated proteins. However, little is known about the interactions of the kinesin superfamily proteins, a class of microtubule-based motor proteins, with actin filaments. Here, we describe the identification and characterization of a novel kinesin-related protein named DdKin5 from Dictyostelium. DdKin5 consists of an N-terminal conserved motor domain, a central stalk region, and a C-terminal tail domain. The motor domain showed binding to microtubules in an ATP-dependent manner that is characteristic of kinesin-related proteins. We found that the C-terminal tail domain directly interacts with actin filaments and bundles them in vitro. Immunofluorescence studies showed that DdKin5 is specifically enriched at the actin-rich surface protrusions in cells. Overexpression of the DdKin5 protein affected the organization of actin filaments in cells. We propose that a kinesin-related protein, DdKin5, is a novel actin-bundling protein and a potential cross-linker of actin filaments and microtubules associated with specific actin-based structures in Dictyostelium.  相似文献   

11.
Abstract

The small Rho GTPase family of proteins, encompassing the three major G-protein classes Rho, Rac and cell division control protein 42, are key mitogenic signaling molecules that regulate multiple cancer-associated cellular phenotypes including cell proliferation and motility. These proteins are known for their role in the regulation of actin cytoskeletal dynamics, which is achieved through modulating the activity of their downstream effector molecules. The Rho-associated coiled-coil kinase 1 and 2 (ROCK1 and ROCK2) proteins were the first discovered Rho effectors that were primarily established as players in RhoA-mediated stress fiber formation and focal adhesion assembly. It has since been discovered that the ROCK kinases actively phosphorylate a large cohort of actin-binding proteins and intermediate filament proteins to modulate their functions. It is well established that global cellular morphology, as modulated by the three cytoskeletal networks: actin filaments, intermediate filaments and microtubules, is regulated by a variety of accessory proteins whose activities are dependent on their phosphorylation by the Rho-kinases. As a consequence, they regulate many key cellular functions associated with malignancy, including cell proliferation, motility and viability. In this current review, we focus on the role of the ROCK-signaling pathways in disease including cancer.  相似文献   

12.
Actin filaments and microtubules are principal components of the cytoskeleton that regulate the basic cellular phenomena underlying many fundamental cellular processes. Therefore, analyzing their dynamics in living cells is important for understanding cellular events more precisely. In this article, we report two novel transgenic zebrafish lines expressing red fluorescent proteins tagged with Lifeact or EB1 that interact with actin filaments and microtubule plus ends, respectively, under the control of the GAL4‐UAS system. Using these transgenic lines, we could detect F‐actin and microtubule plus end dynamics in specific tissues of living zebrafish embryos by crossing with GAL4 driver lines. In addition, we could achieve multi‐color imaging using these transgenic lines with GFP‐expressing transgenic lines. Therefore, our transgenic lines that carry UAS‐driven red fluorescent cytoskeletal probes are useful tools for analyzing spatiotemporal changes of the cytoskeletal elements using multicolor live imaging.  相似文献   

13.
The ability to control the assembly and disassembly dynamics of actin filaments is an essential property of the cellular cytoskeleton. While many different proteins are known which accelerate the polymerization of monomers into filaments or promote their disintegration, much less is known on mechanisms which guarantee the kinetic stability of the cytoskeletal filaments. Previous studies indicate that cross-linking molecules might fulfill these stabilizing tasks, which in addition facilitates their ability to regulate the organization of cytoskeletal structures in vivo. The effect of depolymerization factors on such structures or the mechanism which leads finally to their disintegration remain unknown. Here, we use multiple depolymerization methods in order to directly demonstrate that cross-linking and bundling proteins effectively suppress the actin depolymerization in a concentration dependent manner. Even the actin depolymerizing factor cofilin is not sufficient to facilitate a fast disintegration of highly cross-linked actin networks unless molecular motors are used simultaneously. The drastic modification of actin kinetics by cross-linking molecules can be expected to have wide-ranging implications for our understanding of the cytoskeleton, where cross-linking molecules are omnipresent and essential.  相似文献   

14.
The sarcolemmal domain of rat duodenal smooth muscle cells includes caveolae and associated cytoskeletal or filamentous elements. We have used the quick-freezing, deep-etching method to examine the three dimensional relationships between these components. Replica membranes for separated strips of rat duodenal muscle layers were routinely prepared after extraction soluble proteins from cytoplasm and extracellular matrix. As results, 1) cytoskeletal elements in smooth muscle cells consisted mainly of striated thin filaments; 2) thin filaments were connected with some plasma membranes through filaments associated with the sarcolemma, which formed fine network structures beneath the sarcolemma; 3) many bridging structures between the filaments associated with the sarcolemma and the extracellular matrix were frequently detected in the plasma membrane; and 4) compact filaments associated with the sarcolemma almost disappeared near the caveolae, and only thin filaments were anchored to their neck parts. The special arrangement of the cytoskeletal components, which is probably necessary for the intestinal motility, characterizes the topographical difference of the smooth muscle sarcolemma.  相似文献   

15.
Breakdown of the cytoskeletal network and redistribution of cytoplasmic organelles are early events of programmed cell death. Previous studies showed that retinoic acid induces programmed cell death in many tumor cell lines and that cytokeratins, particularly cytokeratin 18, are affected in the early events of apoptosis. In this study, patterns of cytoplasmic intermediate filaments (cytokeratin 18), actin filaments, and microtubules, as well as Bax and Bcl-2 proteins in human bladder carcinoma T24 cells were examined before and after retinoic acid treatment by immunocytochemistry and conventional electron microscopy. Our results demonstrate that the redistribution of Bax and Bcl-2 proteins in the subcellular compartment of T24 cells is correlated with reorganization of the cytoplasmic intermediate filament network and that cytokeratins are cleaved by caspases, as revealed by the M30 antibody which recognizes a specific caspase cleavage site within cytokeratin 18. The cytoskeletal architectures of microtubules are not significantly affected in the early apoptotic process, from our observations. We suggest that the breakdown in the intermediate filament network associated with the aggregation of mitochondria and lysosome may be a crucial event in the apoptotic process and that aggregation of cytoplasmic Bax may accelerate apoptotic death.  相似文献   

16.
Data available in literature on neurospecific proteins of cytoskeletal structures--microtubules, microfilaments and intermediate filaments are generalized. Properties of tissue-specific cytoskeletal proteins which are typical of nerve cells are summarized. The structure, physicochemical properties, cell localization, metabolism and function of cytoskeletal proteins are characterized. The coexpression and interaction of different cytoskeletal structures are considered. An analysis of neurospecific cytoskeletal proteins is of great practical importance for neurobiology, neurooncology, neurosurgery. The proteins can be used as markers of different pathologies in the nervous system.  相似文献   

17.
The cytoskeleton is composed of three distinct elements: actin microfilaments, microtubules and intermediate filaments. The actin cytoskeleton is thought to provide protrusive and contractile forces, and microtubules to form a polarized network allowing organelle and protein movement throughout the cell. Intermediate filaments are generally considered the most rigid component, responsible for the maintenance of the overall cell shape. Cytoskeletal elements must be coordinately regulated for the cell to fulfill complex cellular functions, as diverse as cell migration, cell adhesion and cell division. Coordination between cytoskeletal elements is achieved by signaling pathways, involving common regulators such as the Rho guanosine-5'-triphosphatases (GTPases). Furthermore, evidence is now accumulating that cytoskeletal elements participate in regulating each other. As a consequence, although their functions seem well defined, they are in fact overlapping, with actin playing a role in membrane trafficking and microtubules being involved in the control of protrusive and contractile forces. This cytoskeletal crosstalk is both direct and mediated by signaling molecules. Cell motility is a well-studied example where the interplay between actin and microtubules appears bidirectional. This leads us to wonder which, if any, cytoskeletal element leads the way.  相似文献   

18.
This paper proposes a physical model involving the key structures within the neural cytoskeleton as major players in molecular-level processing of information required for learning and memory storage. In particular, actin filaments and microtubules are macromolecules having highly charged surfaces that enable them to conduct electric signals. The biophysical properties of these filaments relevant to the conduction of ionic current include a condensation of counterions on the filament surface and a nonlinear complex physical structure conducive to the generation of modulated waves. Cytoskeletal filaments are often directly connected with both ionotropic and metabotropic types of membrane-embedded receptors, thereby linking synaptic inputs to intracellular functions. Possible roles for cable-like, conductive filaments in neurons include intracellular information processing, regulating developmental plasticity, and mediating transport. The cytoskeletal proteins form a complex network capable of emergent information processing, and they stand to intervene between inputs to and outputs from neurons. In this manner, the cytoskeletal matrix is proposed to work with neuronal membrane and its intrinsic components (e.g., ion channels, scaffolding proteins, and adaptor proteins), especially at sites of synaptic contacts and spines. An information processing model based on cytoskeletal networks is proposed that may underlie certain types of learning and memory.  相似文献   

19.
The shape and stability of intestinal epithelial cell microvilli are maintained by a cytoskeletal core composed of a bundle of actin filaments with several associated proteins. The core filaments are intimately associated with the overlying plasma membrane, in which there occur rapid turnover of proteins and constant incorporation of new membrane. Previous work has shown that starvation or inhibition of protein synthesis results in modulation of microvillar length, which indicates that there may be cytoskeletal protein turnover. We demonstrate herein, by means of in vivo pulse labeling with radioactive amino acids, that turnover of brush border cytoskeletal proteins occurs in mature absorptive cells. Turnover of cytoskeletal proteins appears to be quite slow relative to membrane protein turnover, which suggests that the turnover of these two microvillar compartments is not coupled. We thus conclude that cytoskeletal protein turnover may be a factor used to maintain normal length and stability of microvilli and that the cytoskeleton cannot be considered a static structure.  相似文献   

20.
A crucial function for eukaryotic cytoskeletal filaments is to organize the intracellular space: facilitate communication across the cell and enable the active transport of cellular components. It was assumed for many years that the small size of the bacterial cell eliminates the need for a cytoskeleton, because simple diffusion of proteins is rapid over micron-scale distances. However, in the last decade, cytoskeletal proteins have indeed been found to exist in bacteria where they have an important role in organizing the bacterial cell. Here, we review the progress that has been made towards understanding the mechanisms by which bacterial cytoskeletal proteins influence cellular organization. These discoveries have advanced our understanding of bacterial physiology and provided insight into the evolution of the eukaryotic cytoskeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号