首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Trends in microbiology》2023,31(8):858-871
Insects are one of the most important animal life forms on earth. Symbiotic microbes are closely related to the growth and development of the host insects and can affect pathogen transmission. For decades, various axenic insect-rearing systems have been developed, allowing further manipulation of symbiotic microbiota composition. Here we review the historical development of axenic rearing systems and the latest progress in using axenic and gnotobiotic approaches to study insect–microbe interactions. We also discuss the challenges of these emerging technologies, possible solutions to address these challenges, and future research directions that can contribute to a more comprehensive understanding of insect–microbe interactions.  相似文献   

2.
Culture-independent microbiological technologies that interrogate complex microbial populations without prior axenic culture, coupled with high-throughput DNA sequencing, have revolutionized the scale, speed and economics of microbial ecological studies. Their application to the medical realm has led to a highly productive merger of clinical, experimental and environmental microbiology. The functional roles played by members of the human microbiota are being actively explored through experimental manipulation of animal model systems and studies of human populations. In concert, these studies have appreciably expanded our understanding of the composition and dynamics of human-associated microbial communities (microbiota). Of note, several human diseases have been linked to alterations in the composition of resident microbial communities, so-called dysbiosis. However, how changes in microbial communities contribute to disease etiology remains poorly defined. Correlation of microbial composition represents integration of only two datasets (phenotype and microbial composition). This article explores strategies for merging the human microbiome data with multiple additional datasets (e.g. host single nucleotide polymorphisms and host gene expression) and for integrating patient-based data with results from experimental animal models to gain deeper understanding of how host-microbe interactions impact disease.  相似文献   

3.
Cell biology in model systems as the key to understanding corals   总被引:1,自引:0,他引:1  
Corals provide the foundation of important tropical reef ecosystems but are in global decline for multiple reasons, including climate change. Coral health depends on a fragile partnership with intracellular dinoflagellate symbionts. We argue here that progress in understanding coral biology requires intensive study of the cellular processes underlying this symbiosis. Such study will inform us on how the coral symbiosis will be affected by climate change, mechanisms driving coral bleaching and disease, and the coevolution of this symbiosis in the context of other host-microbe interactions. Drawing lessons from the broader history of molecular and cell biology and the study of other host-microbe interactions, we argue that a model-systems approach is essential for making effective progress in understanding coral cell biology.  相似文献   

4.
ABSTRACT: BACKGROUND: Bacteria grown on semi-solid media can build two types of multicellular structures, depending on the circumstances. Bodies (colonies) arise when a single clone is grown axenically (germ-free), whereas multispecies chimeric consortia contain monoclonal microcolonies of participants. Growth of an axenic colony, mutual interactions of colonies, and negotiation of the morphospace in consortial ecosystems are results of intricate regulatory and metabolic networks. Multicellular structures developed by Serratia sp. are characteristically shaped and colored, forming patterns that reflect their growth conditions (in particular medium composition and the presence of other bacteria). RESULTS: Building on our previous work, we developed a model system for studying ontogeny of multicellular bacterial structures formed by five Serratia sp. morphotypes of two species grown in either "germ-free" or "gnotobiotic" settings (i.e. in the presence of bacteria of other conspecific morphotype, other Serratia species, or E. coli). Monoclonal bodies show regular and reproducible macroscopic appearance of the colony, as well as microscopic pattern of its growing margin. Standard development can be modified in a characteristic and reproducible manner in close vicinity of other bacterial structures (or in the presence of their products). Encounters of colonies with neighbors of a different morphotype or species reveal relationships of dominance, cooperation, or submission; multiple interactions can be summarized in "rock -- paper -- scissors" network of interrelationships. Chimerical (mixed) plantings consisting of two morphotypes usually produced a "consortium" whose structure is consistent with the model derived from interaction patterns observed in colonies. CONCLUSIONS: Our results suggest that development of a bacterial colony can be considered analogous to embryogenesis in animals, plants, or fungi: to proceed, early stages require thorough insulation from the rest of the biosphere. Only later, the newly developing body gets connected to the ecological interactions in the biosphere. Mixed "anlagen" cannot accomplish the first, germ-free phase of development; hence, they will result in the consortium of small colonies. To map early development and subsequent interactions with the rest of the biospheric web, simplified gnotobiotic systems described here may turn to be of general use, complementing similar studies on developing multicellular eukaryots under germ-free or gnotobiotic conditions.  相似文献   

5.
Recent successes in culturing intramolluscan larval stages of Schistosoma mansoni have relied on synxenic culture with a cell line (Bge) developed from embryos of a molluscan host Biomphalaria glabrata. To further facilitate progress toward control of schistosomiasis, a system for axenic in vitro culture of the parasite has now been developed. When culture media were preconditioned by Bge cells, sporocysts lived longer in vitro and produced more offspring. Because Bge-derived components could be protecting sporocysts from oxidative stress, axenic sporocysts were cultured at lowered O2 levels. In an hypoxic environment, S. mansoni sporocysts grew well and produced daughter sporocysts continuously under axenic conditions and in a medium completely lacking host molecules. Sporocyst production occurs independently of host influence.  相似文献   

6.
The use of probiotic microorganisms in aquaculture is gaining a lot of interest. Gnotobiotic model systems are required in order to fully understand the effects and modes-of-action of these microorganisms, as the native microbial communities present in non-sterile animals can lead to false conclusions. In this study, a gnotobiotic sea bass larvae ( Dicentrarchus labrax ) test system was developed. In order to obtain bacteria-free animals, the eggs were disinfected with glutaraldehyde and subsequently incubated in a solution of rifampicin and ampicillin. Axenity was confirmed using culture-dependent and -independent techniques. The gnotobiotic larvae were fed axenic Artemia sp. from 7 days after hatching onwards. In the challenge test, one of the three opportunistic pathogens, Aeromonas hydrophila , Listonella anguillarum serovar O1 and O2a, was added to the model system via the water and encapsulated in Artemia sp. Only serovar O2a led to increased mortality in the sea bass larvae. The presented gnotobiotic model can be used for research on, among others, reciprocal metabolic effects between microorganisms and the host (e.g. as measured by gene expression), immunostimulants, pharmacological research and the histological development of the gastrointestinal tract and growth of larvae.  相似文献   

7.
Abstract The role of helper elements in the mobilisation of pBR recombinant plasmids ( tra , mob , ori T+ and tra , mob , ori T) from genetically engineered Escherichia coli K12 strains to other K12-strains and to wild-type E. coli strains of human faecal origin was examined. Transfer experiments were done in the digestive tract of axenic (germ free) and gnotobiotic mice, associated with human faecal flora, HFF. The kinetics of implantation of donors, recipients and transconjugants were determined. Mobilisation of ori T+ pBR-type plasmids, by trans-complementation with the products of tra and mob genes was obtained with E. coli K12, in the digestive tract of axenic mice and the resulting transconjugants became established together with the recipient and donor strains. Such mobilisation was only observed sporadically with one E. coli of human origin in axenic mice, but did not occur in gnotobiotic HFF mice. The E. coli strains of human origin were able to promote transfer of an ori T pBR-type plasmid in vitro but not in axenic or gnotobiotic mice. Transconjugants of wild-type strains obtained in in vitro mating experiments and inoculated into gnotobiotic HFF mice were eliminated as rapidly as the recombinant K12 strains. This work indicates that ≥ 50% of wild-type E. coli strains were able to promote transfer of pBR ori T plasmids in vitro.  相似文献   

8.
To better understand developmental phenomena in macroalgal tissue culture, we examined the morphogenesis of Porphyra yezoensis Ueda (strain TU-1) cultured aseptically in defined synthetic media . Generally, the filamentous thalli (sporophyte; conchocelis phase) of P. yezoensis were densely tufted with uniseriate filaments. The foliose thalli (gametophyte) were monolayered. In this study, axenic filamentous thalli retained their characteristic morphogenesis; there were no obvious differences between morphogenetic traits in unialgal and axenic conditions. However, conchospores, which might have developed into the foliose form under unialgal conditions, germinated into calluslike masses under axenic conditions. Most of the gametophytes gradually lost their typical morphogenesis after the first longitudinal cell division. Some of the calluslike masses developed rhizoidlike structures in several places or along the entire mass. Therefore, we concluded that P. yezoensis, in axenic cultures, loses its typical morphogenesis only during the gametophytic phase. The axenic tissue culture of Porphyra established in this study is a promising assay system for the identification of growth and morphogenetic factors.  相似文献   

9.
AIMS: In order to depict the fine interactions that lead to nodulation, absolute microbiological control of the symbiotic partners is required, i.e. the ability to obtain in vitro axenic nodulation, a condition that has never been fulfilled with the Casuarina-Frankia symbiosis. The effects of culture conditions on plant growth and nodule formation by Casuarina cunninghamiana were investigated. METHODS AND RESULTS: Axenic (capped tubes with different substrates), and nonaxenic cultures (Gibson tubes, pot cultures) were tested. In axenic conditions, C. cunninghamiana, inoculated with Frankia, had poor growth and did not form nodules at 6 weeks. Plants cultivated in Gibson tubes reached the four axillary shoots stage within 6 weeks and formed nodules 4 weeks after inoculation. Sand-pot cultures allowed us to relate the plant development stage at inoculation with nodulation. CONCLUSIONS: The sterile replacement of the cap by a plastic bag increased plant growth and enabled nodule formation 6 weeks after inoculation. The new system of plant culture allows the axenic nodule formation 6 weeks after inoculation. Nodulation behaviour is related to plant development and confinement. SIGNIFICANCE AND IMPACT OF THE STUDY: This axenic plant nodulation system is of major interest in analysing the roles of Frankia genes in nodulation pathways.  相似文献   

10.
In aquatic ecosystems, phytoplanktonic organisms are the major primary producers and bacteria the major decomposers. The interactions between phytoplankton and bacteria may be dependent on nutrient resources. Anthropogenic inputs, by modifying nutrient status and stoichiometry of lakes, might induce changes in these interactions, and thus, could have many consequences on some ecological processes such as primary production or importance of microbial recycling activity.
To test this hypothesis, we grew an axenic strain of a green alga, Scenedesmus obliquus , in a range of stoichiometric situations, in absence and in presence of a natural bacterial community. Here, we show that different phytoplankton limiting factors can generate between algae and bacteria either competition for nutrients in phosphorus-limited conditions, commensalism in nitrogen-limited conditions, or mutualism in eutrophic nutrient-unlimited conditions. Causes of these different interaction types are discussed, in particular the hypothesis that in very eutrophic systems with high primary production, mutualism between algae and bacteria could be due to CO2 supply by heterotrophic respiration to inorganic carbon limited algae. Some probable consequences for aquatic ecosystems functioning are proposed.  相似文献   

11.
Photoautotrophic biofilms play an important role in various aquatic habitats and are composed of prokaryotic and/or eukaryotic organisms embedded in extracellular polymeric substances (EPS). We have isolated diatoms as well as bacteria from freshwater biofilms to study organismal interactions between representative isolates. We found that bacteria have a strong impact on the biofilm formation of the pennate diatom Achnanthidium minutissimum. This alga produces extracellular capsules of insoluble EPS, mostly carbohydrates (CHO), only in the presence of bacteria (xenic culture). The EPS themselves also have a strong impact on the aggregation and attachment of the algae. In the absence of bacteria (axenic culture), A. minutissimum did not form capsules and the cells grew completely suspended. Fractionation and quantification of CHO revealed that the diatom in axenic culture produces large amounts of soluble CHO, whereas in the xenic culture mainly insoluble CHO were detected. For investigation of biofilm formation by A. minutissimum, a bioassay was established using a diatom satellite Bacteroidetes bacterium that had been shown to induce capsule formation of A. minutissimum. Interestingly, capsule and biofilm induction can be achieved by addition of bacterial spent medium, indicating that soluble hydrophobic molecules produced by the bacterium may mediate the diatom/bacteria interaction. With the designed bioassay, a reliable tool is now available to study the chemical interactions between diatoms and bacteria with consequences for biofilm formation.  相似文献   

12.
13.
Changes in the nutrition of Paramecium aurelia affect its ability to serve as host for the bacteroid parasite, kappa, and the presence or absence of kappa affects its ability to grow in axenic culture. Loss of kappa, tested by the presence or absence of killer reaction, occurred in cultures of P. aurelia growing at a reduced division rate on autoclaved Enterobacter aerogenes in suspensions of lettuce and yeast autolysate 14–17 days after they had been rendered bacteria-free by washing. Killer Paramecium sterilized of bacteria by treatment with an antibiotic mixture of penicillin-G and streptomycin in combination with a nonbacterial nonliving culture medium, lost the ability to kill after from 6 to 48 hours in the sterilizing medium. The ciliates from which kappa had been lost during exposure to antibiotics could be transferred immediately and maintained in axenic culture, but those washed free of bacteria could not be maintained axenically until kappa had been lost during cultivation in a medium containing killed bacteria. It is suggested that a knowledge of the nutritional requirements of symbiotic microorganisms is essential for understanding the ecological aspects of eutrophication of aquatic environments.  相似文献   

14.
The complexity of the immune system mirrors its manifold mechanisms of host-microbe interactions. A relatively simplified view was posited after the identification of host innate immune receptors that their distinct mechanisms of sensing "microbial signatures" create unique molecular switches to trigger the immune system. Recently, more sophisticated and cooperative strategies for these receptors have been revealed during receptor-ligand interactions, trafficking, and intra- and intercellular signaling, in order to deal with a diverse range of microbes. Continued mapping of the complex networks of host-microbe interactions may improve our understanding of self/non-self discrimination in immunity and its intervention.  相似文献   

15.
Recent information on the relative roles of sediment and water as nutrient sources for rooted submersed freshwater macrophytes has facilitated the development of methods for culturing these plants. The use of natural sediments rather than culture solutions as the source of nitrogen, phosphorus and micronutrients largely prevents the occurrence of algal blooms and, for many purposes, obviates the need for axenic cultures.Growth requirements of submersed macrophytes are reviewed with regard to the provision of suitable culture conditions. Sediment substrate requirements are considered in relation to the role of sediment as a nutrient source. Two types of culture solution formulations are provided with procedures for establishing and maintaining submersed macrophyte cultures for experimental research.  相似文献   

16.
Detrimental host–pathogen interactions are a normal phenomenon in aquaculture animal production, and have been counteracted by prophylactic use of antibiotics. Especially, the youngest life stages of cultivated aquatic animals are susceptible to pathogen invasion, resulting in disease and mortality. To establish a more sustainable aquatic food production, there is a need for new microbial management strategies that focus on ‘join them'' and not the traditional ‘beat them'' approaches. We argue that ecological theory could serve as a foundation for developing sustainable microbial management methods that prevent pathogenic disease in larviculture. Management of the water microbiota in aquaculture systems according to ecological selection principles has been shown to decrease opportunistic pathogen pressure and to result in an improved performance of the cultured animals. We hypothesize that manipulation of the biodiversity of the gut microbiota can increase the host''s resistance against pathogenic invasion and infection. However, substantial barriers need to be overcome before active management of the intestinal microbiota can effectively be applied in larviculture.  相似文献   

17.
Carbohydrates are the most prominent features of the cell’s exterior—they are the cell’s “face” and serve as the cell’s identification card. The features of cell surface glycans (e.g. glycoproteins, glycolipids, polysaccharides) can be read by proteins, other cells, or organisms. In all of these contexts, glycan-binding proteins typically recognize (“read”) glycan identity. This recognition mediates important host-microbe interactions, as well as critical physiological functions, including fertilization, development, and immune system function. This article focuses on how proteins recognize glycans with an emphasis on three objectives: 1) to understand the molecular basis for carbohydrate recognition, 2) to implement that understanding to develop functional probes of protein-carbohydrate interactions, and 3) to apply those probes to elucidate and exploit the physiological consequences of protein–carbohydrate interactions. In this context, our group has focused on two key aspects of carbohydrate recognition: CH-π and multivalent interactions. We are applying the foundational knowledge gained from our studies for purposes ranging from illuminating host-microbe interactions to probing immune system function.  相似文献   

18.
It is recognized that microorganisms inhabiting natural sediments significantly mediate the erosive response of the bed ("ecosystem engineers") through the secretion of naturally adhesive organic material (EPS: extracellular polymeric substances). However, little is known about the individual engineering capability of the main biofilm components (heterotrophic bacteria and autotrophic microalgae) in terms of their individual contribution to the EPS pool and their relative functional contribution to substratum stabilisation. This paper investigates the engineering effects on a non-cohesive test bed as the surface was colonised by natural benthic assemblages (prokaryotic, eukaryotic and mixed cultures) of bacteria and microalgae. MagPI (Magnetic Particle Induction) and CSM (Cohesive Strength Meter) respectively determined the adhesive capacity and the cohesive strength of the culture surface. Stabilisation was significantly higher for the bacterial assemblages (up to a factor of 2) than for axenic microalgal assemblages. The EPS concentration and the EPS composition (carbohydrates and proteins) were both important in determining stabilisation. The peak of engineering effect was significantly greater in the mixed assemblage as compared to the bacterial (x 1.2) and axenic diatom (x 1.7) cultures. The possibility of synergistic effects between the bacterial and algal cultures in terms of stability was examined and rejected although the concentration of EPS did show a synergistic elevation in mixed culture. The rapid development and overall stabilisation potential of the various assemblages was impressive (x 7.5 and ×9.5, for MagPI and CSM, respectively, as compared to controls). We confirmed the important role of heterotrophic bacteria in "biostabilisation" and highlighted the interactions between autotrophic and heterotrophic biofilm consortia. This information contributes to the conceptual understanding of the microbial sediment engineering that represents an important ecosystem function and service in aquatic habitats.  相似文献   

19.
The determination of the intrinsic sensitivity of Leishmania strains to pentavalent antimonials in clinical trials, before treatment is begun, is essential in order to avoid failures and to allow alternative drugs to be chosen. A comparative study of SbV activity on promastigotes, axenic amastigote-like cells, and intracellular amastigotes of Leishmania infantum, when administered in the form of meglumine antimoniate and free, in hydrochloric solution, was performed. Results indicate that the conditions under which the promastigotes were cultured affect the IC(50) obtained, although results were homogeneous when the products were assayed on axenic-like and intracellular amastigotes. The IC(50) obtained for SbV in the form of meglumine antimoniate or in hydrochloric solution on promastigotes cultured in Schneider's medium depends on the growth rate of the culture and therefore could be regulated by modifying the fetal calf serum concentration in the medium. The pH of the culture medium strongly affected the activity of meglumine antimoniate but not that of the SbV hydrochloric solution on promastigotes cultured in Schneider's medium. This influence of pH was observed to a much lesser extent when promastigotes were cultured on M199 or RPMI media. In homogeneous culture conditions, which included the regulation of the promastigote growth rate through the heat-inactivated fetal calf serum concentration in the medium and the dilution of the meglumine antimoniate with Schneider's medium at pH 6.5, the activity of SbV, free or in the form of meglumine antimoniate, was the same in promastigotes, intracellular amastigotes, and axenic amastigote-like cells.  相似文献   

20.
Tool-use research has focused primarily on land-based animals, with less consideration given to aquatic animals and the environmental challenges and conditions they face. Here, we review aquatic tool use and examine the contributing ecological, physiological, cognitive and social factors. Tool use among aquatic animals is rare but taxonomically diverse, occurring in fish, cephalopods, mammals, crabs, urchins and possibly gastropods. While additional research is required, the scarcity of tool use can likely be attributable to the characteristics of aquatic habitats, which are generally not conducive to tool use. Nonetheless, studying tool use by aquatic animals provides insights into the conditions that promote and inhibit tool-use behaviour across biomes. Like land-based tool users, aquatic animals tend to find tools on the substrate and use tools during foraging. However, unlike on land, tool users in water often use other animals (and their products) and water itself as a tool. Among sea otters and dolphins, the two aquatic tool users studied in greatest detail, some individuals specialize in tool use, which is vertically socially transmitted possibly because of their long dependency periods. In all, the contrasts between aquatic- and land-based tool users enlighten our understanding of the adaptive value of tool-use behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号