首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Nuclear division and migration of cleavage nuclei in the embryos of Bradysia tritici (Diptera : Sciaridae) have been studied by light microscopy and nuclear staining. There are 8 cleavage cycles up to the syncytial blastoderm stage (4.5 hr), and during the 11th cycle cellularization begins (6.5 hr). The first 3 divisions take about 30 min each. During the 5th and 6th cycles, the maximum rate of division is reached (12 min/cycle at 22°C). After pole cell formation, the duration of the following mitotic cycles increases progressively. During nuclear migration, the presumptive germ line nuclei reach the egg cortex first, followed by anterior somatic nuclei and finally, posterior somatic nuclei reach the egg cortex. Possibly as a result of this region-specific nuclear migration, nuclear divisions become parasynchronous after 3 hr of embryogenesis (4th cycle). Several mitotic cycles later, between the 8th and 10th cycle in different embryos, X-chromosome elimination in somatic nuclei begins at the anterior egg pole and progresses in anteroposterior direction. Our observations suggest that the observed region-specific differences may be due to the activity of localized factors in the egg that control migration and nuclear cycle of the somatic nuclei.  相似文献   

2.
In the early embryo of many species, comparatively small spindles are positioned near the cell center for subsequent cytokinesis. In most insects, however, rapid nuclear divisions occur in the absence of cytokinesis, and nuclei distribute rapidly throughout the large syncytial embryo. Even distribution and anchoring of nuclei at the embryo cortex are crucial for cellularization of the blastoderm embryo. The principles underlying nuclear dispersal in a syncytium are unclear. We established a cell-free system from individual Drosophila melanogaster embryos that supports successive nuclear division cycles with native characteristics. This allowed us to investigate nuclear separation in predefined volumes. Encapsulating nuclei in microchambers revealed that the early cytoplasm is programmed to separate nuclei a distinct distance. Laser microsurgery revealed an important role of microtubule aster migration through cytoplasmic space, which depended on F-actin and cooperated with anaphase spindle elongation. These activities define a characteristic separation length scale that appears to be a conserved property of developing insect embryos.  相似文献   

3.
The nuclei of early syncytial Drosophila embryos migrate dramatically toward the poles. The cellular mechanisms driving this process, called axial expansion, are unclear, but myosin II activity is required. By following regulatory myosin light chain (RLC)-green fluorescent protein dynamics in living embryos, we observed cycles of myosin recruitment to the cortex synchronized with mitotic cycles. Cortical myosin is first seen in a patch at the anterocentral part of the embryo at cycle 4. With each succeeding cycle, the patch expands poleward, dispersing at the beginning of each mitosis and reassembling at the end of telophase. Each cycle of actin and myosin recruitment is accompanied by a cortical contraction. The cortical myosin cycle does not require microtubules but correlates inversely with Cdc2/cyclinB (mitosis-promoting factor) activity. A mutant RLC lacking inhibitory phosphorylation sites was fully functional with no effect on the cortical myosin cycle, indicating that Cdc2 must be modulating myosin activity by some other mechanism. An inhibitor of Rho kinase blocks the cortical myosin recruitment cycles and provokes a concomitant failure of axial expansion. These studies suggest a model in which cycles of myosin-mediated contraction and relaxation, tightly linked to Cdc2 and Rho kinase activity, are directly responsible for the axial expansion of the syncytial nuclei.  相似文献   

4.
In a number of embryonic systems, centrosomes that have lost their association with the nuclear envelope and spindle maintain their ability to duplicate and induce astral microtubules. To identify additional activities of free centrosomes, we monitored astral microtubule dynamics by injecting living syncytial Drosophila embryos with fluorescently labeled tubulin. Our recordings follow multiple rounds of free centrosome duplication and separation during the cortical division. The rate and distance of free sister centrosome separation corresponds well with the initial phase of associated centrosome separation. However, the later phase of separation observed for centrosomes associated with a spindle (anaphase B) does not occur. Free centrosome separation regularly occurs on a plane parallel to the plasma membrane. While previous work demonstrated that centrosomes influence cytoskeletal dynamics, this observation suggests that the cortical cytoskeleton regulates the orientation of centrosome separation. Although free centrosomes do not form spindles, they display relatively normal cell cycle-dependent modulations of their astral microtubules. In addition, free centrosome duplication, separation, and modulation of microtubule dynamics often occur in synchrony with neighboring associated centrosomes. These observations suggest that free centrosomes respond normally to local nuclear division signals. Disruption of the cortical nuclear divisions with aphidicolin supports this conclusion; large numbers of abnormal nuclei recede into the interior while their centrosomes remain on the cortex. Following individual free centrosomes through multiple focal planes for 45 min after the injection of aphidicolin reveals that they do not undergo normal modulation of their astral dynamics nor do they undergo multiple rounds of duplication and separation. We conclude that in the absence of normally dividing cortical nuclei many centrosome activities are disrupted and centrosome duplication is extensively delayed. This indicates the presence of a feedback mechanism that creates a dependency relationship between the cortical nuclear cycles and the centrosome cycles.  相似文献   

5.
《The Journal of cell biology》1994,127(6):1637-1653
We show here using time-lapse video tapes that cytoplasmic streaming causes nuclear migration along the anterior-posterior axis (axial expansion) in the early syncytial embryo of Drosophila melanogaster. Using confocal microscopy and labeled phalloidin we explore the distribution of F-actin during axial expansion. We find that a network of F-actin fibers fills the cytoplasm in the embryo. This actin network partially disassembles around the nuclei during axial expansion. Our observations of normal development, fixed embryos, and drug injection experiments indicate that disassembly of the actin network generates cytoplasmic movements. We suggest that the cell cycle regulates disassembly of the actin network, and that this process may be mediated directly or indirectly by the microtubules. The cytoplasmic movements we observe during axial expansion are very similar to fountain streaming in the pseudopod of amoebae, and by analogy with the pseudopod we propose a working hypothesis for axial expansion based on solation-contraction coupling within the actin network.  相似文献   

6.
Indirect immunofluorescence microscopy was used to survey the three-dimensional distribution of microtubules throughout the cell cycle in the green alga Mougeotia. The network of microtubules present in the cortex of the cells at interphase gradually disappeared before mitosis. A band of cortical microtubules reminiscent of the preprophase band of higher plants surrounded the nuclei of some preprophase cells undergoing cortical microtubule disassembly. Longitudinally oriented bundles of microtubules appeared at the future spindle poles on either side of the nuclei in prophase. These bundles disappeared gradually as the spindle microtubule arrays formed. New spindles had broad poles but these became quite pointed before anaphase. Interzonal microtubules appearing at anaphase persisted until the end of nuclear migration, by which time they were concentrated into narrow bundles on either side of the centripetally forming crosswalls. During decondensation of the chromosomes and early nuclear migration, the spindle poles persisted as sites of microtubule concentration. New arrays of microtubules radiated from these microtubule centers into the cytoplasm ahead of the migrating nuclei. After cytokinesis, reinstatement of cortical microtubules was best observed in regions of the cells remote from the nuclei and associated microtubules. In contrast to higher plants, the first detectable cortical microtubules were short and already oriented transverse to the long axes of the cells.  相似文献   

7.
During filamentous fungus development, multinucleated hyphae employ a system for long-range nuclear migration to maintain an equal nuclear density. A decade ago the microtubule motor dynein was shown to play a central role in this process. Previous studies with Ashbya gossypii revealed extensive bidirectional movements and bypassings of nuclei, an autonomous cytoplasmic microtubule (cMT) cytoskeleton emanating from each nucleus, and pulling of nuclei by sliding of cMTs along the cortex. Here, we show that dynein is the sole motor for bidirectional movements and bypassing because these movements are concomitantly decreased in mutants carrying truncations of the dynein heavy-chain DYN1 promoter. The dynactin component Jnm1, the accessory proteins Dyn2 and Ndl1, and the potential dynein cortical anchor Num1 are also involved in the dynamic distribution of nuclei. In their absence, nuclei aggregate to different degrees, whereby the mutants with dense nuclear clusters grow extremely long cMTs. As in budding yeast, we found that dynein is delivered to cMT plus ends, and its activity or processivity is probably controlled by dynactin and Num1. Together with its role in powering nuclear movements, we propose that dynein also plays (directly or indirectly) a role in the control of cMT length. Those combined dynein actions prevent nuclear clustering in A. gossypii and thus reveal a novel cellular role for dynein.  相似文献   

8.
In Sciara, unfertilized embryos initiate parthenogenetic development without centrosomes. By comparing these embryos with normal fertilized embryos, spindle assembly and other microtubule-based events can be examined in the presence and absence of centrosomes. In both cases, functional mitotic spindles are formed that successfully proceed through anaphase and telophase, forming two daughter nuclei separated by a midbody. The spindles assembled without centrosomes are anastral, and it is likely that their microtubules are nucleated at or near the chromosomes. These spindles undergo anaphase B and successfully segregate sister chromosomes. However, without centrosomes the distance between the daughter nuclei in the next interphase is greatly reduced. This suggests that centrosomes are required to maintain nuclear spacing during the telophase to interphase transition. As in Drosophila, the initial embryonic divisions of Sciara are synchronous and syncytial. The nuclei in fertilized centrosome-bearing embryos maintain an even distribution as they divide and migrate to the cortex. In contrast, as division proceeds in embryos lacking centrosomes, nuclei collide and form large irregularly shaped nuclear clusters. These nuclei are not evenly distributed and never successfully migrate to the cortex. This phenotype is probably a direct result of a failure to form astral microtubules in parthenogenetic embryos lacking centrosomes. These results indicate that the primary function of centrosomes is to provide astral microtubules for proper nuclear spacing and migration during the syncytial divisions. Fertilized Sciara embryos produce a large population of centrosomes not associated with nuclei. These free centrosomes do not form spindles or migrate to the cortex and replicate at a significantly reduced rate. This suggests that the centrosome must maintain a proper association with the nucleus for migration and normal replication to occur.  相似文献   

9.
γ-Tubulin is an essential component of the microtubule organizing center (MTOC) responsible for nucleating microtubules in both plants and animals. Whereas γ-tubulin is tightly associated with centrosomes that are inheritable organelles in cells of animals and most algae, it appears at different times and places to organize the myriad specialized microtubule systems that characterize plant cells. We have traced the distribution of γ-tubulin through the cell cycle in representative land plants (embryophytes) and herein present data that have led to a concept of the pleiomorphic and migratory MTOC. The many forms of the plant MTOC at spindle organization constitute pleiomorphism, and stage-specific “migration” is suggested by the consistent pattern of redistribution of γ-tubulin during mitosis. Mitotic spindles may be organized at centriolar centrosomes (only in final divisions of spermatogenesis), polar organizers (POs), plastid MTOCs, or nuclear envelope MTOCs (NE-MTOCs). In all cases, with the possible exception of centrosomes in spermatogenesis, the γ-tubulin migrates to broad polar regions and along the spindle fibers, even when it is initially a discrete polar entity. At anaphase it moves poleward, and subsequently migrates from polar regions (distal nuclear surfaces) into the interzone (proximal nuclear surfaces) where interzonal microtubule arrays and phragmoplasts are organized. Following cytokinesis, γ-tubulin becomes associated with nuclear envelopes and organizes radial microtubule systems (RMSs). These may exist only briefly, before establishment of hoop-like cortical arrays in vegetative tissues, or they may be characteristic of interphase in syncytial systems where they serve to organize the common cytoplasm into nuclear cytoplasmic domains (NCDs).  相似文献   

10.
The nucleus, like other smaller organelles in the cell, is dynamic and can move about in the cytoplasm. In some cells, nuclear movements are concerned with mitosis or meiosis; in others, they are concerned with orienting nuclear divisions; and in still others, they deal with distributing nuclei through the cytoplasm. Recent interest in nuclear positioning has shown that nuclear movements are often mediated by the interactions of dynein and other proteins at the plus ends of astral microtubules with the cell cortex. How the microtubule minus ends interact with the nucleus also affects nuclear movements.  相似文献   

11.
A hallmark of neurogenesis in the vertebrate brain is the apical-basal nuclear oscillation in polarized neural progenitor cells. Known as interkinetic nuclear migration (INM), these movements are synchronized with the cell cycle such that nuclei move basally during G1-phase and apically during G2-phase. However, it is unknown how the direction of movement and the cell cycle are tightly coupled. Here, we show that INM proceeds through the cell cycle-dependent linkage of cell-autonomous and non-autonomous mechanisms. During S to G2 progression, the microtubule-associated protein Tpx2 redistributes from the nucleus to the apical process, and promotes nuclear migration during G2-phase by altering microtubule organization. Thus, Tpx2 links cell-cycle progression and autonomous apical nuclear migration. In contrast, in vivo observations of implanted microbeads, acute S-phase arrest of surrounding cells and computational modelling suggest that the basal migration of G1-phase nuclei depends on a displacement effect by G2-phase nuclei migrating apically. Our model for INM explains how the dynamics of neural progenitors harmonize their extensive proliferation with the epithelial architecture in the developing brain.  相似文献   

12.
Summary In uninucleate cells, cytokinesis follows karyokinesis, thereby reestablishing a specific nucleus-to-cytoplasm ratio. In multinucleate cells, cytokinesis is absent or infrequent; no plasmalemma boundary defines the cytoplasmic territory of an individual nucleus. Several genera of large multinucleate green algae were examined with epifluorescence light microscopy to determine whether the patterns of cytoplasmic organization establish nuclear cytoplasmic domains. Randomly spaced nuclei, singular mitotic events and cytoplasmic streaming characterize the organization of two genera,Derbesia andBryopsis (Caulerpales). The cells ofValonia, Valoniopsis, Boergesenia, Ventricaria (Siphonocladales), andHydrodictyon (Chlorococcales) display regularly spaced nuclei which undergo synchronous divisions in a stationary cytoplasm. In the cytoplasm of genera with regularly spaced nuclei, microtubules radiate from all nuclei in late telophase-early interphase. These internuclear microtubule arrays are not found in algal genera with randomly spaced nuclei. It is hypothesized that these microtubule arrays play a role in establishing the cytoplasmic domain of each nucleus in genera with regularly spaced nuclei. Loss of microtubule arrays during the events of mitosis correlated positively with the increasing randomization of nuclear patterns in algae grown in microtubule inhibitors. Cytoplasmic domains were maintained when cells were grown in the same media in the dark. This suggests that, after a round of division, regular nuclear spacing in certain multinucleate algae is reestablished by internuclear microtubule arrays, which are not, however, required to maintain spacing during interphase.Dedicated to the memory of Professor Oswald Kiermayer  相似文献   

13.
Summary The control of nuclear division and migration was studied in time-lapse films of the multinucleate egg cell of a gall midge by experimental alterations of the mitotic pattern. During each cleavage cycle, a wave of randomly oriented saltations of yolk particles (WROS) is seen to travel through the ooplasm. This wave proved to be an indispensable prerequisite for the accompanying anaphase wave and for the activation of the nuclear migration cytasters: WROS cycles can occur autonomously without cleavage nuclei being present, but there is no anaphase without a WROS passing the dividing nucleus. WROSs and mitotic waves can be inverted, and the WROS cycles and the cleavage cycles can be desynchronized by temperature grandients or by locally impaired gas exchange. If a nucleus is not ready for anaphase when met by a WROS, it will only divide in the course of the next WROS. WROSs thus indicate autonomous anaphase-triggering waves governing the cleavage divisions. Rhythmic ooplasmic movements continue even if the WROSs as well as the nuclear divisions are inhibited by colchinine. The characteristics of the WROSs support the hypothesis that each of them is the visible effect of a wave of calcium release (similar to that established in vertebrate eggs) which acts locally on the microtubular system and may continue even if the WROSs are suppressed. The correlations between a possible calcium release, WROS activity, microtubule disassembly and nuclear cycle are discussed.  相似文献   

14.
Taxol blocks the migrations of the sperm and egg nuclei in fertilized eggs and induces asters in unfertilized eggs of the sea urchins Lytechinus variegatus and Arbacia punctulata. Video recordings of eggs inseminated in 10 microM taxol demonstrate that sperm incorporation and sperm tail motility are unaffected, that the sperm aster formed is unusually pronounced, and that the migration of the egg nucleus and pronuclear centration are inhibited. The huge monopolar aster persists for at least 6 h; cleavage attempts and nuclear cycles are observed. Colcemid (10 microM) disassembles both the large taxol-stabilized sperm aster in fertilized eggs and the numerous asters induced in unfertilized eggs. Antitubulin immunofluorescence microscopy demonstrates that in fertilized eggs all microtubules are within the prominent sperm aster. Within 15 min of treatment with 10 microM taxol, unfertilized eggs develop numerous (greater than 25) asters de novo. Transmission electron microscopy of unfertilized eggs reveals the presence of microtubule bundles that do not emanate from centrioles but rather from osmiophilic foci or, at times, the nuclear envelope. Taxol-treated eggs are not activated as judged by the lack of DNA synthesis, nuclear or chromosome cycles, and the cortical reaction. These results indicate that: (a) taxol prevents the normal cycles of microtubule assembly and disassembly observed during development; (b) microtubule disassembly is required for the nuclear movements during fertilization; (c) taxol induces microtubules in unfertilized eggs; and (d) nucleation centers other than centrioles and kinetochores exist within unfertilized eggs; these presumptive microtubule organizing centers appear idle in the presence of the sperm centrioles.  相似文献   

15.
Immunofluorescence staining of Drosophila embryos with a monoclonal antibody specific for acetylated alpha-tubulin has revealed that acetylated and nonacetylated alpha-tubulin isoforms have different patterns of distribution during early development. Acetylated alpha-tubulin was not detected in either interphase or mitotic spindle microtubules during the rapid early cleavage or syncytial blastoderm divisions. Acetylated alpha-tubulin was first observed as interphase lengthened at the end of syncytial blastoderm, and at cycle 14 was localized to a ring of structures clustered around the interphase nuclei. These structures probably represent a set of stable microtubules involved in nuclear elongation. Absence of detectable acetylated alpha-tubulin prior to cellular blastoderm seems to be due to rapid turnover of microtubule arrays rather than to lack of the enzyme required for modification, since acetylated alpha-tubulin appeared in early embryos when micro-tubules were stabilized by taxol treatment or anoxia. Because acetylated alpha-tubulin seems to be characteristic of stable microtubule arrays, the appearance of the antigen at cycle 14 represents a fundamental change in microtubule behaviour in the somatic cells of the embryo. Acetylated alpha-tubulin was not detected in pole cells during the blastoderm or early gastrula stages, indicating that acetylation of alpha-tubulin is not merely a consequence of cellularization. After the onset of gastrulation, interphase microtubule arrays in most cell types contain acetylated alpha-tubulin. However, cells in mitosis lack antibody staining. The resulting unstained patches reveal the stereotyped spatial pattern of cell division during gastrulation. Although the cells that give rise to the amnioserosa have acetylated alpha-tubulin in their interphase arrays at early gastrulation, by germ band elongation these large, plastic cells completely lack staining with anti-acetylated alpha-tubulin. In contrast, differentiated cell types such as neurones, which have arrays of stable axonal microtubules, stain brightly with the specific antibody. Although acetylated and nonacetylated alpha-tubulin are present in roughly equal amounts by the late stages of embryogenesis, acetylated alpha-tubulin is partitioned into the pellet during centrifugation of extracts of embryos homogenized at 4 degrees C.  相似文献   

16.
An extensive array of cortical microtubules in oocytes of the starfish Pisaster ochraceus undergoes multiple cycles of disappearance and reappearance during maturation and early development. These events were studied in isolated fragments of the oocyte cortex stained with antitubulin antibodies for indirect immunofluorescence. The meshwork of long microtubules is present in the cortex (a) of immature oocytes, i.e., before treatment with the maturation-inducing hormone 1-methyladenine, (b) for 10-20 min after treatment with 1-methyladenine, (c) after formation of the second polar body (in reduced numbers in unfertilized oocytes), and (d) in the intermitotic period between first and second cleavage divisions. The array of cortical microtubules is absent in oocytes (a) undergoing germinal vesicle breakdown, (b) during the two meiotic divisions (polar body divisions), and (c) during mitosis of the first and, perhaps, subsequent cleavage divisions. The cycle of assembly-disassembly of cortical microtubules is synchronized to the cycle of nuclear envelope breakdown and reformation and to the mitotic cycle; specifically, cortical microtubules are present when a nucleus is intact (germinal vesicle, female pronucleus, zygote nucleus, blastomere nucleus) and are absent whenever a meiotic or mitotic spindle is present. These findings are discussed in terms of microtubule organizing centers in eggs, possible triggers for microtubule assembly and disassembly, the eccentric location of the germinal vesicle, and the regulation of oocyte maturation and cell division.  相似文献   

17.
Plant morphogenesis is driven by a surprising number of microtubule arrays. The four arrays of vegetative tissues are hoop-like cortical, preprophase band (PPB), spindle, and phragmoplast. When syncytia occur during the reproductive phase of the plant life cycle, neither hoop-like corticals nor PPBs are present, and functional phragmoplasts fail to form following the proliferative mitoses that give rise to the multinucleate cytoplasm. Instead, the interphase microtubules are radial microtubule systems (RMSs) that emanate from the nuclei. These RMSs organize the cytoplasm into nascent cells and ultimately trigger phragmoplast formation at their boundaries. During investigations of the syncytial stage that initiates development of the female gametophyte in gymnosperms, we studied the large (3–4 mm) female gametophyte of Ginkgo biloba. Here we describe the microtubule cycle correlated with successive mitotic waves and discuss the importance of this system in studying the acentrosomal nucleation and organization of cycling microtubule arrays. Electronic Publication  相似文献   

18.
In many bryophytes and vascular cryptogams mitosis and/or meiosis takes place in cells containing a single plastid. In monoplastidic cell division plastid polarity assures that nuclear and plastid division are infallibly coordinated. The two major components of plastid polarity are morphogenetic plastid migration and microtubule organization at the plastids. Before nuclear division the plastid migrates to a position intersecting the future division plane. This morphogenetic migration is a reliable marker of division polarity in cells with and without a preprophase band of microtubules (PPB). The PPB, which predicts the future division plane before mitosis, is a characteristic feature of land plants and its insertion into the cytokinetic apparatus marks the evolution of a cortical microtubule system and a commitment to meristematic growth. Microtubule systems associated with plastid division, the axial microtubule system (AMS) in mitosis and the quadripolar microtubule system (QMS) in meiosis, contribute to predictive positioning of plastids and participate directly in spindle ontogeny. Division polarity in monoplastidic sporocytes is remarkable in that division sites are selected prior to the two successive nuclear divisions of meiosis. Plastid arrangement prior to meiosis determines the future spore domains in monoplastidic sporocytes, whereas in polyplastidic sporocytes the spore nuclei play a major role in claiming cytoplasmic domains. It is hypothesized that predivision microtubule systems associated with monoplastidic cell division are early forming components of the mitotic apparatus that serve to orient the spindle and insure equal apportionment of nucleus and plastids. “Can it be supposed that cytoplasm would be intrusted with so important a task as the preparation of a chloroplast for each of the four nuclei that are later to preside over the spores before there is any indication that such nuclear division is to take place?” Bradley Moore Davis, 1899  相似文献   

19.
The actin and microtubule networks form the dynamic cytoskeleton. Network dynamics is driven by molecular motors applying force onto the networks and the interactions between the networks. Here we assay the dynamics of centrosomes in the scale of seconds as a proxy for the movement of microtubule asters. With this assay we want to detect the role of specific motors and of network interaction. During interphase of syncytial embryos of Drosophila, cortical actin and the microtubule network depend on each other. Centrosomes induce cortical actin to form caps, whereas F-actin anchors microtubules to the cortex. In addition, lateral interactions between microtubule asters are assumed to be important for regular spatial organization of the syncytial embryo. The functional interaction between the microtubule asters and cortical actin has been largely analyzed in a static manner, so far. We recorded the movement of centrosomes at 1 Hz and analyzed their fluctuations for two processes—pair separation and individual movement. We found that F-actin is required for directional movements during initial centrosome pair separation, because separation proceeds in a diffusive manner in latrunculin-injected embryos. For assaying individual movement, we established a fluctuation parameter as the deviation from temporally and spatially slowly varying drift movements. By analysis of mutant and drug-injected embryos, we found that the fluctuations were suppressed by both cortical actin and microtubules. Surprisingly, the microtubule motor Kinesin-1 also suppressed fluctuations to a similar degree as F-actin. Kinesin-1 may mediate linkage of the microtubule (+)-ends to the actin cortex. Consistent with this model is our finding that Kinesin-1-GFP accumulates at the cortical actin caps.  相似文献   

20.
Ji JY  Haghnia M  Trusty C  Goldstein LS  Schubiger G 《Genetics》2002,162(3):1179-1195
Coordination between cell-cycle progression and cytoskeletal dynamics is important for faithful transmission of genetic information. In early Drosophila embryos, increasing maternal cyclin B leads to higher Cdk1-CycB activity, shorter microtubules, and slower nuclear movement during cycles 5-7 and delays in nuclear migration to the cortex at cycle 10. Later during cycle 14 interphase of six cycB embryos, we observed patches of mitotic nuclei, chromosome bridges, abnormal nuclear distribution, and small and large nuclei. These phenotypes indicate disrupted coordination between the cell-cycle machinery and cytoskeletal function. Using these sensitized phenotypes, we performed a dosage-sensitive genetic screen to identify maternal proteins involved in this process. We identified 10 suppressors classified into three groups: (1) gene products regulating Cdk1 activities, cdk1 and cyclin A; (2) gene products interacting with both microtubules and microfilaments, Actin-related protein 87C; and (3) gene products interacting with microfilaments, chickadee, diaphanous, Cdc42, quail, spaghetti-squash, zipper, and scrambled. Interestingly, most of the suppressors that rescue the astral microtubule phenotype also reduce Cdk1-CycB activities and are microfilament-related genes. This suggests that the major mechanism of suppression relies on the interactions among Cdk1-CycB, microtubule, and microfilament networks. Our results indicate that the balance among these different components is vital for normal early cell cycles and for embryonic development. Our observations also indicate that microtubules and cortical microfilaments antagonize each other during the preblastoderm stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号