首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the auditory system, inhibitory transmission from the medial nucleus of the trapezoid body (MNTB) to neurons of the lateral superior olivary nucleus (LSO) undergoes activity-dependent long-term depression, and may be associated with developmental elimination of these synapses [Sanes DH, Friauf E (2000). Review: development and influence of inhibition in the laterial superior olivary nucleus. Hear Res 147:46-58]. Although GABA(B) receptor activation and postsynaptic free calcium are implicated in this depression, little is known about intracellular signaling mechanisms in this or other forms of inhibitory plasticity. In this study, we asked whether the calcium dependency of inhibitory depression was associated with the activation of calcium/calmodulin-dependent protein kinase II (CaMKII), protein kinase C (PKC), and/or cAMP-dependent protein kinase A (PKA). Whole-cell voltage-clamp recordings were obtained from LSO neurons in a brain slice preparation, permitting for the selective pharmacologic manipulation of individual postsynaptic LSO neurons. Inclusion of a CaMKII antagonist (KN-62) in the internal pipet solution blocked inhibitory synaptic depression. A second CaMKII inhibitor (autocamtide peptide fragment) significantly decreased inhibitory depression. Inclusion of a specific antagonist of protein kinase C (PKC fragment 19-36) in the internal recording solution also blocked inhibitory depression. To test involvement of a cAMP-dependent intracellular cascade, two different manipulations were performed. Inclusion of PKA antagonists (Rp-cAMPS or a cAMP dependent protein kinase inhibitor peptide) prevented inhibitory depression. In contrast, when a nonhydrolyzable cAMP analog (Sp-cAMPS) was permitted to enter the postsynaptic cell, the MNTB-evoked IPSCs became depressed in the absence of low-frequency stimulation. Thus, three key postsynaptic kinases, CaMKII, PKC, and PKA, participate in the activity-dependent depression of inhibitory MNTB-LSO synapses during postnatal development.  相似文献   

2.
Sutton MA  Carew TJ 《Neuron》2000,26(1):219-231
Three distinct temporal phases of synaptic facilitation (short-, intermediate-, and long-term) are induced by serotonin (5-HT) at sensory (SN) to motor (MN) synapses in Aplysia. Here, we characterize two mechanistically distinct forms of intermediate-term facilitation (ITF) at tail SN-MN synapses. One form, activity-independent ITF, is produced by five spaced pulses of 5-HT in the absence of SN activity. Its induction requires protein synthesis, and its expression requires persistent activation of PKA but not PKC. The other form, activity-dependent ITF, is produced by a single pulse of 5-HT coincident with SN activation. Its induction does not require protein synthesis, and its expression requires persistent activation of PKC but not PKA. These results demonstrate that SN-MN synapses can exhibit two distinct forms of ITF that are mediated by parallel molecular pathways.  相似文献   

3.
In testing the hypothesis that the stimulation of the release of fibronectin (FN) by 12-O-tetradecanoylphorbol 13-acetate (TPA) from human lung fibroblasts in culture is the result of activation of protein kinase C (PKC), we found that the PKC inhibitor sphingosine strongly inhibited FN release in presence and even in absence of TPA. However, a different PKC inhibitor, calphostin C, despite almost complete inhibition of PKC, had no effect on FN release. We concluded that sphingosine is a potent inhibitor of FN release from the cell surface, independent of its inhibition of PKC; and that TPA stimulates release of FN by a pathway other than activation of PKC. We found that the activation of PKC by TPA was accompanied by inhibition of the cAMP-dependent protein kinase (PKA). When PKA was inhibited by an antagonist (H8, a cAMP analogue) at a concentration specific for PKA inhibition, the release of FN was stimulated similar to the stimulation with TPA. Activation of PKA with forskolin resulted in decreased FN release. In conclusion, we have shown that: (1) sphingosine had a robust effect inhibiting the release of FN from fibroblasts, independent of its action on PKC; (2) TPA treatment of these cells resulted in inhibition of PKA; (3) inhibition of PKA stimulated FN release whereas its activation decreased this release. It is possible that PKA, by phosphorylating a protein, may function, directly or indirectly, in keeping FN attached to the cell surface of fibroblasts.  相似文献   

4.
Hu JY  Glickman L  Wu F  Schacher S 《Neuron》2004,43(3):373-385
In Aplysia, long-term facilitation (LTF) of sensory neuron synapses requires activation of both protein kinase A (PKA) and mitogen-activated protein kinase (MAPK). We find that 5-HT through activation of PKA regulates secretion of the sensory neuron-specific neuropeptide sensorin, which binds autoreceptors to activate MAPK. Anti-sensorin antibody blocked LTF and MAPK activation produced by 5-HT and LTF produced by medium containing sensorin that was secreted from sensory neurons after 5-HT treatment. A single application of 5-HT followed by a 2 hr incubation with sensorin produced protein synthesis-dependent LTF, growth of new presynaptic varicosities, and activation of MAPK and its translocation into sensory neuron nuclei. Inhibiting PKA during 5-HT applications and inhibiting receptor tyrosine kinase or MAPK during sensorin application blocked both LTF and MAPK activation and translocation. Thus, long-term synaptic plasticity is produced when stimuli activate kinases in a specific sequence by regulating the secretion and autocrine action of a neuropeptide.  相似文献   

5.
Chen Y  Yu FH  Surmeier DJ  Scheuer T  Catterall WA 《Neuron》2006,49(3):409-420
Neurotransmitters modulate sodium channel availability through activation of G protein-coupled receptors, cAMP-dependent protein kinase (PKA), and protein kinase C (PKC). Voltage-dependent slow inactivation also controls sodium channel availability, synaptic integration, and neuronal firing. Here we show by analysis of sodium channel mutants that neuromodulation via PKA and PKC enhances intrinsic slow inactivation of sodium channels, making them unavailable for activation. Mutations in the S6 segment in domain III (N1466A,D) either enhance or block slow inactivation, implicating S6 segments in the molecular pathway for slow inactivation. Modulation of N1466A channels by PKC or PKA is increased, whereas modulation of N1466D is nearly completely blocked. These results demonstrate that neuromodulation by PKA and PKC is caused by their enhancement of intrinsic slow inactivation gating. Modulation of slow inactivation by neurotransmitters acting through G protein-coupled receptors, PKA, and PKC is a flexible mechanism of cellular plasticity controlling the firing behavior of central neurons.  相似文献   

6.
We have used a three compartment tissue culture system that involved two separate populations of cholinergic neurons in the side compartments that converged on a common target population of myotubes in the center compartment. Activation of the axons from one population of neurons produced selective down-regulation of the synaptic inputs from the other neuronal population (when the two inputs innervated the same myotubes). The decrease in heterosynaptic inputs was mediated by protein kinase C (PKC). An activity-dependent action of protein kinase A (PKA) was associated with the stimulated input and this served to selectively stabilize this input. These changes associated with PKA and PKC activation were mediated by alterations in the number of acetylcholine receptors at the neuromuscular junction. These results suggest that neuromuscular electrical activity produces postsynaptic activation of both PKA and PKC, with the latter producing generalized synapse weakening and the former a selective synapse stabilization. Treatment of the neuronal cell body and axon to increase PKC activity by putting phorbal ester (PMA) in the side chamber did not affect synaptic transmission (with or without stimulation). By contrast, PKA blockade in the side compartment did produce an activity-dependent decrease in synaptic efficacy, which was due to a decrease in quantal release of neurotransmitter. Thus, when the synapse is activated, it appears that presynaptic PKA action is necessary to maintain transmitter output.  相似文献   

7.
The involvement of protein kinase C (PKC) and protein kinase A (PKA) in cholinergic signalling in CHO cells expressing the M3 subtype of the muscarinic acetylcholine receptor was examined. Muscarinic signalling was assessed by measuring carbachol-induced activation of phospholipase C (PLC), arachidonic acid release, and calcium mobilisation. Carbachol activation of PLC was not altered by inhibition of PKC with chelerythrine chloride, bisindolylmaleimide or chronic treatment with phorbol myristate acetate (PMA). Activation of PKC by acute treatment with PMA was similarly without effect. In contrast, inhibition of PKC blocked carbachol stimulation of arachidonic acid release. Likewise, PKC inhibition resulted in a decreased ability of carbachol to mobilise calcium, whereas PKC activation potentiated calcium mobilisation. Inhibition of PKA with H89 or Rp-cAMP did not alter the ability of carbachol to activate PLC. Similarly, PKA activation with Sp-cAMP or forskolin had no effect on PLC stimulation by carbachol. Carbachol-mediated release of arachidonic acid was decreased by H89 but only slightly increased by forskolin. Forskolin also increased calcium mobilisation by carbachol. These results suggest a function for PKC and PKA in M3 stimulation of arachidonic acid release and calcium mobilisation but not in PLC activation.  相似文献   

8.
The actions of parathyroid hormone (PTH) on the renal cortex are thought to be mediated primarily by cAMP-dependent protein kinase (PKA) with some suggestion of a role for protein kinase C (PKC). However, present methods for assaying PKA and PKC in subcellular fractions are insensitive and require large amounts of protein. Recently, a sensitive method for measuring the activity of protein kinases has been reported. This method uses synthetic peptides as substrates and a tandem chromatographic procedure for isolating the phosphorylated peptides. We have adapted this method to study the effect of PTH on PKA and PKC activity using thin slices of rat renal cortex. PTH (250 nM) stimulated cytosolic PKA activity four- to fivefold within 30 s, and PKA activity was sustained for at least 5 min. PTH also rapidly stimulated PKC activity in the membrane fraction and decreased PKC activity in the cytosol. These changes were maximal at 30 s, but unlike changes in PKA, they declined rapidly thereafter. PTH significantly activated PKC only at concentrations of 10 nM or greater. This study demonstrates that PTH does activate PKC in renal tissue, although the duration of activation is much less than for PKA. It also demonstrates that a combination of synthetic peptides with tandem chromatography can be used as a sensitive assay procedure for protein kinase activity in biological samples.  相似文献   

9.
Repeated intermittent treatment with amphetamine (AMPH) induces both neurite outgrowth and enhanced AMPH-stimulated dopamine (DA) release in PC12 cells. We investigated the role of protein kinases in the induction of these AMPH-mediated events by using inhibitors of protein kinase C (PKC), mitogen activated protein kinase (MAP kinase) or protein kinase A (PKA). PKC inhibitors chelerythrine (100 nm and 300 nm), Ro31-8220 (300 nm) and the MAP kinase kinase inhibitor, PD98059 (30 micro m) inhibited the ability of AMPH to elicit both neurite outgrowth and the enhanced AMPH-stimulated DA release. The direct-acting PKC activator, 12-O-tetradecanoyl phorbol 13-acetate (TPA, 250 nm) mimicked the ability of AMPH to elicit neurite outgrowth and enhanced DA release. On the contrary, a selective PKA inhibitor, 100 micro m Rp-8-Br-cAMPS, blocked only the development of AMPH-stimulated DA release but not the neurite outgrowth. Treatment of the cells with acute AMPH elicited an increase in the activity of PKC and MAP kinase but not PKA. These results demonstrated that AMPH-induced increases in MAP kinase and PKC are important for induction of both the enhancement in transporter-mediated DA release and neurite outgrowth but PKA was only required for the enhancement in AMPH-stimulated DA release. Therefore the mechanisms by which AMPH induces neurite outgrowth and the enhancement in AMPH-stimulated DA release can be differentiated.  相似文献   

10.
Protein kinases and phosphatases are targeted through association with anchoring proteins that tether the enzymes to subcellular structures and organelles. Through in situ fluorescent techniques using a Green Fluorescent Protein tag, we have mapped membrane-targeting domains on AKAP79, a multivalent anchoring protein that binds the cAMP-dependent protein kinase (PKA), protein kinase C (PKC) and protein phosphatase 2B, calcineurin (CaN). Three linear sequences termed region A (residues 31-52), region B (residues 76-101) and region C (residues 116-145) mediate targeting of AKAP79 in HEK-293 cells and cortical neurons. Analysis of these targeting sequences suggests that they contain putative phosphorylation sites for PKA and PKC and are rich in basic and hydrophobic amino acids similar to a class of membrane-targeting domains which bind acidic phospholipids and calmodulin. Accordingly, the AKAP79 basic regions mediate binding to membrane vesicles containing acidic phospholipids including phosphatidylinositol-4, 5-bisphosphate [PtdIns(4,5)P2] and this binding is regulated by phosphorylation and calcium-calmodulin. Finally, AKAP79 was shown to be phosphorylated in HEK-293 cells following stimulation of PKA and PKC, and activation of PKC or calmodulin was shown to release AKAP79 from membrane particulate fractions. These findings suggest that AKAP79 might function in cells not only as an anchoring protein but also as a substrate and effector for the anchored kinases and phosphatases.  相似文献   

11.
Protein kinase A and protein kinase C are involved in processes that enhance glutamate release at glutamatergic nerve terminals. However, it is not known whether these two kinases co-exist within the same nerve terminal, nor is it clear what impact their simultaneous activation may have on neurotransmitter release. In cerebrocortical nerve terminals, co-application of forskolin, which increases cAMP levels and activates protein kinase A, and 4beta-phorbol dibutyrate, a direct activator of protein kinase C, synergistically enhanced the spontaneous release of glutamate. This enhancement exhibited both tetrodotoxin-sensitive and tetrodotoxin-resistant components. Interestingly, the tetrodotoxin-resistant component of release was not observed when cyclic AMP-dependent protein kinase (PKA) and calcium- and phospholipid-dependent protein kinase (PKC) were activated separately, but developed slowly after the co-activation of the two kinases, accounting for 50% of the facilitated release. This release component was dependent on voltage-dependent Ca2+ channels that opened spontaneously after PKA and PKC activation and occurred in the absence of Na+ channel firing. These data provide functional evidence for the co-existence of PKA- and PKC-signalling pathways in a subpopulation of glutamatergic nerve terminals.  相似文献   

12.
We have used a three compartment tissue culture system that involved two separate populations of cholinergic neurons in the side compartments that converged on a common target population of myotubes in the center compartment. Activation of the axons from one population of neurons produced selective down‐regulation of the synaptic inputs from the other neuronal population (when the two inputs innervated the same myotubes). The decrease in heterosynaptic inputs was mediated by protein kinase C (PKC). An activity‐dependent action of protein kinase A (PKA) was associated with the stimulated input and this served to selectively stabilize this input. These changes associated with PKA and PKC activation were mediated by alterations in the number of acetylcholine receptors at the neuromuscular junction. These results suggest that neuromuscular electrical activity produces postsynaptic activation of both PKA and PKC, with the latter producing generalized synapse weakening and the former a selective synapse stabilization. Treatment of the neuronal cell body and axon to increase PKC activity by putting phorbal ester (PMA) in the side chamber did not affect synaptic transmission (with or without stimulation). By contrast, PKA blockade in the side compartment did produce an activity‐dependent decrease in synaptic efficacy, which was due to a decrease in quantal release of neurotransmitter. Thus, when the synapse is activated, it appears that presynaptic PKA action is necessary to maintain transmitter output. Published 2002 Wiley Periodicals, Inc. J Neurobiol 52: 241–250, 2002  相似文献   

13.
In this study, we examined the signal transduction of dibutyryl cyclic adenosine monophosphate (dBcAMP) to stimulate the release of nitric oxide (NO) and interleukin-6 (IL-6) from J774 macrophages. These actions of dBcAMP were diminished by the presence of the inhibitors of protein kinase A (PKA), protein kinase C (PKC), p38 MAPK and nuclear factor-kappa B (NF-kappaB). In contrast, Go 6976 and PD98059 had no significant effects. Consistently, dBcAMP caused membrane translocation of PKCbetaII, delta, mu, lambda and zeta isoforms, and increased atypical protein kinase C (aPKC) and p38 MAPK activities. The nuclear translocation and DNA-binding study revealed that dBcAMP stimulated NF-kappaB, activator protein-1 (AP-1), and CAAT/enhancer-binding protein (c/EBPbeta). Via PKA, PKC and p38 MAPK-dependent signals, dBcAMP also induced inhibitory subunit of NF-kappaB (IkappaB) degradation, IkappaB kinase (IKK) activation, nuclear translocation of NF-kappaB subunit p65 and its association with the CREB-binding protein (CBP). These results illustrate that PKA activation in macrophages is able to stimulate PKC and p38 MAPK, which lead to IKK-dependent NF-kappaB activation and contribute to the induction of inducible nitric oxide synthase (iNOS) and IL-6 genes.  相似文献   

14.
Abstract: The diadenosine polyphosphates, diadenosine tetraphosphate and diadenosine pentaphosphate (Ap5A), can activate an ionotropic dinucleotide receptor that induces Ca2+ transients into synaptosomes prepared from rat brain. This receptor, also termed the P4 purinoceptor, is sensitive only to adenine dinucleotides and is insensitive to ATP. Studies on the modulatory role of protein kinase A (PKA), protein kinase C (PKC), and protein phosphatases on the response of diadenosine polyphosphate receptors were performed by measuring the changes in the intracellular Ca2+ levels with fura-2. Activation and inhibition of PKA were carried out by means of forskolin and the PKA inhibitory peptide (PKA-IP), respectively. The Ap5A response was inhibited by forksolin to 35% of control values, but PKA-IP induced an increase of 37%. The effect of PKC activation was similar to that observed for PKA. PKC stimulation with phorbol 12,13-dibutyrate produced an inhibition of 67%, whereas the PKC inhibitors staurosporine and PKC inhibitory peptide enhanced the responses elicited by Ap5A to 40% in both cases. Protein phosphatase inhibitors diminished the responses elicited by Ap5A to 17% in the case of okadaic acid, to 50% for microcystin, and to 45% in the case of cyclosporin A. Thus, the activity of dinucleotide receptors in rat brain synaptosomes appears to be modulated by phosphorylation/dephosphorylation. These processes could be of physiological significance in the control of transmitter release from neurons that are postsynaptic to nerves that release diadenosine polyphosphates.  相似文献   

15.
Phosphodiesterases (PDEs) play important roles in synaptic plasticity by regulating cAMP signaling in various organisms. The supershort, short, and long forms of Aplysia PDE4 (apPDE4) have been cloned, and the long form has been shown to play a crucial role in 5- hydroxytryptamine (5-HT)-induced synaptic plasticity in Aplysia. To address the role of the supershort form in 5-HT-induced synaptic plasticity in Aplysia, we overexpressed the apPDE4 supershort form in Aplysia sensory neurons. Consequently, 5-HT-induced hyperexcitability and short-term facilitation in nondepressed synapses were blocked. However, the supershort form did not inhibit 5-HT-induced short-term facilitation in highly depressed synapses. These results show that the supershort form plays an important role in 5-HT-induced synaptic plasticity and disrupts it mainly by impairing cAMP signaling in Aplysia.  相似文献   

16.
Neuroblastoma SH-SY5Y (SH) cells endogenously express A(2A) adenosine receptors and can be differentiated into a sympathetic neuronal phenotype, capable of depolarisation-dependent noradrenaline release. Using differentiated SH culture, we here explored the link between A(2A)-receptor signalling and neurotransmitter release. In response to the receptor agonist CGS21680, the cells produced cyclic AMP (cAMP), and when depolarised, they released increased amounts of noradrenaline. An A(2A)-receptor antagonist, XAC, as well as an inhibitor of cAMP-dependent protein kinase A (PKA), H89, depressed agonist-dependent release. In the presence of XAC or H89, noradrenaline release was found to be below basal values. This suggested that release facilitation also owes to constitutive receptor activity. We demonstrate that even in the absence of an agonist, the native A(2A)-receptor stimulated cAMP production, leading to the activation of PKA and enhanced noradrenaline release. Ancillary, non-cAMP-dependent effects of the receptor (i.e. phosphorylation of CREB, of Rabphilin3A) were refractory to constitutive activation. PKA-dependent facilitation of noradrenaline release was recapitulated with membrane-permeable 8-Br-cAMP; in addition to facilitation, 8-Br-cAMP caused marked inhibition of release, an effect not observed upon receptor activation. Inhibition by receptor-independent cAMP was likely due to suppression of voltagedependent calcium current (VDCC) and increased activity of Src-family kinases. Receptor-mediated release facilitation was reproduced in the presence of tetrodotoxin (blocking action potentials); hence, the signalling occurred at the active zone comprising release sites. Our findings thus support (1) presynaptic localisation of the A(2A)-receptor and (2) suggest that compartmentalised pathways transmit cAMP signalling in order to facilitate depolarisation-dependent neurotransmitter release.  相似文献   

17.
Neurotransmitter is released from nerve terminals by Ca2+-dependent exocytosis through many steps. SNARE proteins are key components at the priming and fusion steps, and the priming step is modulated by cAMP-dependent protein kinase (PKA), which causes synaptic plasticity. We show that the SNARE regulatory protein tomosyn is directly phosphorylated by PKA, which reduces its interaction with syntaxin-1 (a component of SNAREs) and enhances the formation of the SNARE complex. Electrophysiological studies using cultured superior cervical ganglion (SCG) neurons revealed that this enhanced formation of the SNARE complex by the PKA-catalyzed phosphorylation of tomosyn increased the fusion-competent readily releasable pool of synaptic vesicles and, thereby, enhanced neurotransmitter release. This mechanism was indeed involved in the facilitation of neurotransmitter release that was induced by a potent biological mediator, the pituitary adenylate cyclase-activating polypeptide, in SCG neurons. We describe the roles and modes of action of PKA and tomosyn in Ca2+-dependent neurotransmitter release.  相似文献   

18.
The transmission of cellular signals often proceeds through multiprotein complexes where enzymes are positioned in proximity to their upstream activators and downstream substrates. In this report we demonstrate that the A-kinase anchoring protein AKAP-Lbc assembles an activation complex for the lipid-dependent enzyme protein kinase D (PKD). Using a combination of biochemical, enzymatic, and immunofluorescence techniques, we show that the anchoring protein contributes to PKD activation in two ways: it recruits an upstream kinase PKCeta and coordinates PKA phosphorylation events that release activated protein kinase D. Thus, AKAP-Lbc synchronizes PKA and PKC activities in a manner that leads to the activation of a third kinase. This configuration illustrates the utility of kinase anchoring as a mechanism to constrain the action of broad-spectrum enzymes.  相似文献   

19.
Ubiquitin-mediated proteolysis in learning and memory   总被引:2,自引:0,他引:2  
Sensitization of defensive reflexes inAplysia is a simple behavioral paradigm for studying both short- and long-term memory. In the marine mollusk, as in other animals, memory has at least two phases: a short-term phase lasting minutes and a long-term phase lasting several days or longer. Short-term memory is produced by covalent modification of pre-existing proteins. In contrast, long-term memory needs gene induction, synthesis of new protein, and the growth of new synapses. The switch from short-term (STF) to long-term facilitation (LTF) inAplysia sensory neurons requires not only positive regulation through gene induction, but also the specific removal of several inhibitory proteins. One important inhibitory protein is the regulatory (R) subunit of the cAMP-dependent protein kinase (PKA). Degradation of R subunits, which is essential for initiating long-term stable memory, occurs through the ubiquitin-proteasome pathway.  相似文献   

20.
In the central nervous system, the activation of neuronal nitric oxide synthase (nNOS) is closely associated with activation of NMDA receptor, and trafficking of nNOS may be a prerequisite for efficient NO production at synapses. We recently demonstrated that pituitary adenylate cyclase activating polypeptide (PACAP) and NMDA synergistically caused the translocation of nNOS to the membrane and stimulated NO production in PC12 (pheochromocytoma) cells. However, the mechanisms responsible for trafficking and activation of nNOS are largely unknown. To address these issues, here we constructed a yellow fluorescent protein (YFP)-tagged nNOS N-terminal (1–299 a.a.) mutant, nNOSNT-YFP, and visualized its translocation in PC12 cells stably expressing it. PACAP enhanced the translocation synergistically with NMDA in a time- and concentration-dependent manner. The translocation was blocked by inhibitors of protein kinase A (PKA), protein kinase C (PKC), and Src kinase; and the effect of PACAP could be replaced with PKA and PKC activators. The β-finger region in the PSD-95/disc large/zonula occludens-1 domain of nNOS was required for the translocation of nNOS and its interaction with post-synaptic density-95 (PSD-95), and NO formation was attenuated by dominant negative nNOSNT-YFP. These results demonstrate that PACAP stimulated nNOS translocation mediated by PKA and PKC via PAC1-receptor (a PACAP receptor) and suggest cross-talk between PACAP and NMDA for nNOS activation by Src-dependent phosphorylation of NMDA receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号