首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Bioethanol has been recognized as a potential alternative energy source. Among various ethanol-producing microbes, Zymomonas mobilis has acquired special attention due to its higher ethanol yield and tolerance. However, cellular metabolism in Z. mobilis remains unclear, hindering its practical application for bioethanol production. To elucidate such physiological characteristics, we reconstructed and validated a genome-scale metabolic network (iZM363) of Z. mobilis ATCC31821 (ZM4) based on its annotated genome and biochemical information. The phenotypic behaviors and metabolic states predicted by our genome-scale model were highly consistent with the experimental observations of Z. mobilis ZM4 strain growing on glucose as well as NMR-measured intracellular fluxes of an engineered strain utilizing glucose, fructose, and xylose. Subsequent comparative analysis with Escherichia coli and Saccharomyces cerevisiae as well as gene essentiality and flux coupling analyses have also confirmed the functional role of pdc and adh genes in the ethanologenic activity of Z. mobilis, thus leading to better understanding of this natural ethanol producer. In future, the current model could be employed to identify potential cell engineering targets, thereby enhancing the productivity of ethanol in Z. mobilis.  相似文献   

3.
Zymomonas mobilis is an alcohol-tolerant microorganism which is potentially useful for the commercial production of ethanol. This organism was found to contain cardiolipin, phosphatidylethanolamine, phosphatidylglycerol, and phosphatidylcholine as major phospholipids. Vaccenic acid was the most abundant fatty acid, with lesser amounts of myristic, palmitic, and palmitoleic acids. No branched-chain or cyclopropane fatty acids were found. Previous studies in our laboratory have shown that ethanol induces the synthesis of phospholipids enriched in vaccenic acid in Escherichia coli (L. O. Ingram, J. Bacteriol. 125:670-678, 1976). The fatty acid composition of Z. mobilis, an obligately ethanol-producing microorganism, represents an extreme of the trend observed in E. coli. In Z. mobilis, vaccenic acid represents over 75% of the acyl chains in the polar membrane lipids. Glucose and ethanol had no major effect on the fatty acid composition of Z. mobilis. However, both glucose and ethanol caused a decrease in phosphatidylethanolamine and phosphatidylglycerol and an increase in cardiolipin and phosphatidylcholine. Ethanol also caused a dose-dependent reduction in the lipid-to-protein ratios of crude membranes. The lipid composition of Z. mobilis may represent an evolutionary adaptation for survival in the presence of ethanol.  相似文献   

4.
产乙醇运动发酵单胞菌的研究进展   总被引:10,自引:0,他引:10  
运动发酵单胞菌作为天然生产乙醇的主要微生物之一,具有特殊的Entner Doudoroff途径和其他一些特殊的糖代谢和能量代谢方式,因此具有乙醇产率高和乙醇耐受力强的显著特点。通过简述运动发酵单胞菌的糖代谢和能量代谢、乙醇和高渗透压等耐性及其遗传改造三方面的研究进展,阐明其应用于燃料乙醇生产的巨大潜力  相似文献   

5.
运动发酵单胞菌是一种很有潜力的酒精生产菌。PHB是生物合成的一种聚酯,有研究表明,该类物质在微生物体内的积累能够提高宿主菌的抗逆能力。本文对运动发酵单胞菌进行了如下改造:将PHB合成操纵子phbCAB与来源于运动发酵单胞菌的丙酮酸脱羧酶的启动子准确融合,插入广泛宿主载体pBBR1MCS-1中,并利用电转化的方法转入运动发酵单胞菌中。在重组菌中检测到了PhaA和PhaB的酶活;并首次在运动发酵单胞菌中实现了PHB的积累。摇瓶实验表明,前48小时重组菌的乙醇积累量提高了约10%,后续发酵中可能由于葡萄糖耗尽,重组菌与野生菌乙醇积累量差别不大。  相似文献   

6.
A structured kinetic model for Zymomonas mobilis ATCC10988   总被引:1,自引:0,他引:1  
The inhibitory effects of glucose and ethanol on Zymomonas mobilis ATCC10988 were isolated through kinetic analysis of transient batch fermentation data. Growth of Z. mobilis was inhibited above a glucose concentration of 80 g/L. Growth was mildly inhibited by ethanol to 50 g/L, and severely inhibited above this concentration. Specific rates of ethanol production and glucose uptake were essentially invariant during batch fermentation. A structured kinetic model was developed, by way of augmentation of the Extended Bottleneck model, to quantify the kinetics of the growth and product formation processes. The model successfully describes the transient batch fermentation of Z. mobilis over a wide range of initial glucose concentration in a semidefined medium.  相似文献   

7.
A combination of extended Monod kinetics and the diffusional equation was used for evaluating the effectiveness factor of entrapped immobilized cells. Based on the kinetics of Zymomonas mobilis reported in the literature, the numerical results have revealed that the problem of mass transfer diffusional restrictions can be neglected by using small beads (1 mm in diameter) with a corresponding cell loading up to 276 g/L gel. On the basis of the numerical results obtained, the application of immobilized cells for continuous ethanol production was investigated. The kappa-carrageenan method was utilized to entrap Z. mobilis CP4, a potential ethanol producer. A two stage fermentation process has also been developed for ethanol production by the Z. mobilis carrageenan-bound cells. About 90 g/L ethanol was produced by immobilized cells at a total residence time of 1.56 h. The ethanol yield was estimated to be 93% of theoretical. The results obtained in this study also indicated that the control of optimum pH in an immobilized cell column is necessary to enhance the rate of ethanol production.  相似文献   

8.
The bacterium Zymomonas mobilis is a potentially useful organism for the commercial production of ethanol as it is capable of more than double the rate of alcohol production by yeast. However, industrial application of this bacterium has been restricted in part due to the disadvantages of its limited substrate range (glucose, fructose and sucrose) and by-product formation. Progress in strain improvement and genetic manipulation of this ethanologen is reviewed. Methodologies for gaining reproducible gene transfer in Z. mobilis have recently been developed. Genetic modification has led to its growth on the additional substrates lactose and mannitol. Additionally, a range of by-product negative mutants have also been isolated. Further interest has focused on transfer of Z. mobilis genes to other fermentive organisms in order to gain enhanced product formation. Overall, these genetic approaches should lead to development of novel strains of Z. mobilis and other genera, capable of the use of starch, cellulose and xylan in a manner attractive for industrial ethanol production, besides facilitating over production of products from E. coli strains with enhanced capability to grow at high density.  相似文献   

9.
Zymomonas mobilis immobilized on microporous ion exchange resins has previously been shown to allow the attainment of high ethanol productivities in packed-bed bioreactors. The formation of bacterial filaments after several days of continuous operation, however, had resulted in excessive pressure increases across the reactor bed. The present work examines techniques for controlling filament formation by Z. mobilis in two reactor sizes (161 mL and 7.85 L) and a feed glucose concentration of 100 g/L. By controlling the fermentation temperature at 20-25 degrees C it has been possible to eliminate filament formation by Z. mobilis and to operate the larger bioreactor for 232 h with an ethanol productivity of 50 g/L h (based on total reactor volume). The rate of ethanol production has been shown to be very sensitive to temperature in the range 20-30 degrees C, and it is likely that slightly higher temperatures than those used in this study will improve ethanol productivity while still permitting long-term operation.  相似文献   

10.
A flocculent strain of Zymomonas mobilis was used for ethanol production from Jerusalem Artichoke juice containing 113-245 g/L sugar in batch fermentation. The kinetic and yields parameters are calculated using a new method based on polynomial equations for the variation of biomass, ethanol, and sugar concentrations with time. The results show that. Z. mobilis can convert rapidly and efficiently Jerusalem Artichoke juice to ethanol. When a sugar concentration of 248 gL was used, 100 g/L ethanol was formed with an ethanol yield based on sugar utilized of 0.47 g/g (92% of theoretical LP).  相似文献   

11.
AIMS: Disruption of the extracellular Zymomonas mobilis sucrase gene (sacC) to improve levan production. METHODS AND RESULTS: A PCR-amplified tetracycline resistance cassette was inserted within the cloned sacC gene in pZS2811. The recombinant construct was transferred to Z. mobilis by electroporation. The Z. mobilis sacC gene, encoding an efficient extracellular sucrase, was inactivated. A sacC defective mutant of Z. mobilis, which resulted from homologous recombination, was selected and the sacC gene disruption was confirmed by PCR. Fermentation trials with this mutant were conducted, and levansucrase activity and levan production were measured. In sucrose medium, the sacC mutant strain produced threefold higher levansucrase (SacB) than the parent strain. This resulted in higher levels of levan production, whilst ethanol production was considerably decreased. CONCLUSIONS: Zymomonas mobilis sacC gene encoding an extracellular sucrase was inactivated by gene disruption. This sacC mutant strain produced higher level of levan in sucrose medium because of the improved levansucrase (SacB) than the parent strain. SIGNIFICANCE AND IMPACT OF THE STUDY: The Z. mobilis CT2, sacC mutant produces high level of levansucrase (SacB) and can be used for the production of levan.  相似文献   

12.
Zymomonas mobilis ferments sugars to produce ethanol with two biochemically distinct isoenzymes of alcohol dehydrogenase. The adhA gene encoding alcohol dehydrogenase I has now been sequenced and compared with the adhB gene, which encodes the second isoenzyme. The deduced amino acid sequences for these gene products exhibited no apparent homology. Alcohol dehydrogenase I contained 337 amino acids, with a subunit molecular weight of 36,096. Based on comparisons of primary amino acid sequences, this enzyme belongs to the family of zinc alcohol dehydrogenases which have been described primarily in eucaryotes. Nearly all of the 22 strictly conserved amino acids in this group were also conserved in Z. mobilis alcohol dehydrogenase I. Alcohol dehydrogenase I is an abundant protein, although adhA lacked many of the features previously reported in four other highly expressed genes from Z. mobilis. Codon usage in adhA is not highly biased and includes many codons which were unused by pdc, adhB, gap, and pgk. The ribosomal binding region of adhA lacked the canonical Shine-Dalgarno sequence found in the other highly expressed genes from Z. mobilis. Although these features may facilitate the expression of high enzyme levels, they do not appear to be essential for the expression of Z. mobilis adhA.  相似文献   

13.
Zymomonas mobilis genes for pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adhB) were integrated into the Escherichia coli chromosome within or near the pyruvate formate-lyase gene (pfl). Integration improved the stability of the Z. mobilis genes in E. coli, but further selection was required to increase expression. Spontaneous mutants were selected for resistance to high level of chloramphenicol that also expressed high levels of the Z. mobilis genes. Analogous mutants were selected for increased expression of alcohol dehydrogenase on aldehyde indicator plates. These mutants were functionally equivalent to the previous plasmid-based strains for the fermentation of xylose and glucose to ethanol. Ethanol concentrations of 54.4 and 41.6 g/liter were obtained from 10% glucose and 8% xylose, respectively. The efficiency of conversion exceeded theoretical limits (0.51 g of ethanol/g of sugar) on the basis of added sugars because of the additional production of ethanol from the catabolism of complex nutrients. Further mutations were introduced to inactivate succinate production (frd) and to block homologous recombination (recA).  相似文献   

14.
Zymomonas mobilis genes for pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adhB) were integrated into the Escherichia coli chromosome within or near the pyruvate formate-lyase gene (pfl). Integration improved the stability of the Z. mobilis genes in E. coli, but further selection was required to increase expression. Spontaneous mutants were selected for resistance to high level of chloramphenicol that also expressed high levels of the Z. mobilis genes. Analogous mutants were selected for increased expression of alcohol dehydrogenase on aldehyde indicator plates. These mutants were functionally equivalent to the previous plasmid-based strains for the fermentation of xylose and glucose to ethanol. Ethanol concentrations of 54.4 and 41.6 g/liter were obtained from 10% glucose and 8% xylose, respectively. The efficiency of conversion exceeded theoretical limits (0.51 g of ethanol/g of sugar) on the basis of added sugars because of the additional production of ethanol from the catabolism of complex nutrients. Further mutations were introduced to inactivate succinate production (frd) and to block homologous recombination (recA).  相似文献   

15.
A mathematical model which describes ethanol production in a packed bed fermenter containing. Zymomonas mobilis entrapped in small spheres of calcium alginate within a packed bed fermenter has been developed. The equations combine simultaneous diffusion and reaction as well as a complex flow pattern to calculate glucose and ethanol profiles in the column type reactor. As part of the study, diffusivity values for glucose and ethanol in cell-loaded calcium alginate were determined. Also a freecell kinetic expression for Z. mobilis at 33 degrees C and ph 6.0 was developed. Comparison of the model with actual experimental results were made showing average deviations of ca. 30-40%.  相似文献   

16.
K Deanda  M Zhang  C Eddy    S Picataggio 《Applied microbiology》1996,62(12):4465-4470
The substrate fermentation range of the ethanologenic bacterium Zymomonas mobilis was expanded to include the pentose sugar, L-arabinose, which is commonly found in agricultural residues and other lignocellulosic biomass. Five genes, encoding L-arabinose isomerase (araA), L-ribulokinase (araB), L-ribulose-5-phosphate-4-epimerase (araD), transaldolase (talB), and transketolase (tktA), were isolated from Escherichia coli and introduced into Z. mobilis under the control of constitutive promoters that permitted their expression even in the presence of glucose. The engineered strain grew on and produced ethanol from L-arabinose as a sole C source at 98% of the maximum theoretical ethanol yield, based on the amount of consumed sugar. This indicates that arabinose was metabolized almost exclusively to ethanol as the sole fermentation product, with little by-product formation. Although no diauxic growth pattern was evident, the microorganism preferentially utilized glucose before arabinose, apparently reflecting the specificity of the indigenous facilitated diffusion transport system. This microorganism may be useful, along with the previously developed xylose-fermenting Z. mobilis (M. Zhang, C. Eddy, K. Deanda, M. Finkelstein, and S. Picataggio, Science 267:240-243, 1995), in a mixed culture for efficient fermentation of the predominant hexose and pentose sugars in agricultural residues and other lignocellulosic feedstocks to ethanol.  相似文献   

17.
Wild-type Zymomonas mobilis can utilize only three substrates (sucrose, glucose, and fructose) as sole carbon sources, which are largely converted into ethanol and carbon dioxide. Here, we show that although D-mannose is not used as a growth substrate, it is taken up via the glucose uniport system (glucose facilitator protein) with a Vmax similar to that of glucose. Moreover, D-mannose was phosphorylated by a side activity of the resident fructokinase to mannose-6-phosphate. Fructokinase was purified to homogeneity from an frk-recombinant Z. mobilis strain showing a specific activity of 205 +/- 25 U of protein mg-1 with fructose (K(m), 0.75 +/- 0.06 mM) and 17 +/- 2 U mg-1 (relative activity, 8.5%) with mannose (K(m), 0.65 +/- 0.08 mM). However, no phosphomannoseisomerase activity could be detected for Z. mobilis, and this appeared to be the reason for the lack of growth on mannose. Therefore, we introduced the Escherichia coli gene pmi (manA) in Z. mobilis under the control of a lacIq-Ptac system on a broad-host-range plasmid (pZY507; Cmr). Subsequently, in pmi-recombinant cells of Z. mobilis, phosphomannoseisomerase was expressed in a range of from 3 U (without isopropyl-beta-D-thiogalactopyranoside [IPTG]) to 20 U mg-1 of protein in crude extracts (after IPTG induction). Recombinant cells of different Z. mobilis strains utilized mannose (4%) as the sole carbon source with a growth rate of 0.07 h-1, provided that they contained fructokinase activity. When the frk gene was additionally expressed from the same vector, fructokinase activities of as much as 9.7 U mg-1 and growth rates of as much as 0.25 h-1 were detected, compared with 0.34 h-1 on fructose for wild-type Z. mobilis. Selection for growth on mannose was used to monitor plasmid transfer of pZY507pmi from E. coli to Z. mobilis strains and could replace the previous selection for antibiotic resistance.  相似文献   

18.
The wild type of Xanthomonas campestris and a mutant strain of Zymomonas mobilis CP4, tolerant to sucrose up to 40% (w/v), were used to produce either xanthan gum or ethanol, respectively, from peach pulp supplemented with different salts. Both bacteria grew well (2.7 mg/ml for X. campestris and 1.45 mg/ml for Z. mobilis) in fine peach pulp and the production of xanthan gum or ethanol was 0.1–0.2 g/l or 110 g/l, respectively.  相似文献   

19.
Genetic engineering of ethanol production in Escherichia coli   总被引:16,自引:0,他引:16  
The genes encoding essential enzymes of the fermentative pathway for ethanol production in Zymomonas mobilis, an obligately ethanologenic bacterium, were inserted into Escherichia coli under the control of a common promoter. Alcohol dehydrogenase II and pyruvate decarboxylase from Z. mobilis were expressed at high levels in E. coli, resulting in increased cell growth and the production of ethanol as the principal fermentation product from glucose. These results demonstrate that it is possible to change the fermentation products of an organism, such as E. coli, by the addition of genes encoding appropriate enzymes which form an alternative system for the regeneration of NAD+.  相似文献   

20.
Genetic engineering of ethanol production in Escherichia coli.   总被引:7,自引:0,他引:7       下载免费PDF全文
The genes encoding essential enzymes of the fermentative pathway for ethanol production in Zymomonas mobilis, an obligately ethanologenic bacterium, were inserted into Escherichia coli under the control of a common promoter. Alcohol dehydrogenase II and pyruvate decarboxylase from Z. mobilis were expressed at high levels in E. coli, resulting in increased cell growth and the production of ethanol as the principal fermentation product from glucose. These results demonstrate that it is possible to change the fermentation products of an organism, such as E. coli, by the addition of genes encoding appropriate enzymes which form an alternative system for the regeneration of NAD+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号