首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Summary Novel nurse culture methods have been developed for plant regeneration from protoplasts of rice (Oryza sativa). The nurse culture methods use the agarose-bead type culture in combination with actively growing nurse cells that are either in the liquid part of the culture or inside a culture plate insert placed in the centre of the dish. Protoplasts isolated from either primary seed calluses or suspension cultures of various callus origins, divided and formed colonies with a frequency of up to 10% depending on the protoplast source and the genotype. The presence of nurse cells was absolutely required for the induction of protoplast division. Plants were regenerated from protoplast-derived calluses of five tested cultivars with a frequency of 17%–50%. Close examination of the plant regeneration process suggested that plants are regenerated through somatic embryogenesis from protoplast-derived calluses. Over 300 protoplast-derived plants were transferred to either pots or the field and are being examined for karyotypic stability and various plant phenotypes.  相似文献   

2.
Plant regeneration from protoplasts of two commercially cultivated Indian indica rice varieties, Pusa Basmati 1 and Java, has been accomplished by plating embryogenic cell suspension-derived protoplasts on the surface of filter membranes overlying agarose-embedded feeder cells of Lolium multltiflorum and Oryza ridleyi, combined with the use of a maltose-containing shoot regeneration medium. Embryogenic cell suspension cultures of Pusa Basmati 1 and Jaya were initiated from mature seed scutellum-derived calli in liquid R2 medium modified by the addition of 560 mg l–1 of proline and 1.0 % (w/v) maltose. In both varieties, protoplast plating efficiencies up to 0.4 % were obtained, depending on the nature of the feeder cells. L. multiflorum feeder cells induced a 6-fold higher plating efficiency than feeder cells of O. ridleyi. In combination, O. ridleyi and L. multiflorum feedercells further enhanced protoplast plating efficiency. Protoplast-derived cell colonies were not obtained from protoplasts of either indica varieties in the absence of feeder cells. MS-based medium containing kinetin (2.0 mg l–1) and -naphthaleneacetic acid (0.5 mg 1–1), together with sucrose and maltose both at 1.5 % (w/v), induced green shoot regeneration in 44 % of protoplast-derived tissues, depending on the feeder cells used for protoplast culture. In both varieties, tissues obtained using O. ridleyi feeder cells were more morphogenic than tissues obtained using L. multiflorum feeder cells, either alone or in combination with cells of O. ridleyi. In the japonica rice variety Taipei 309, this new procedure resulted in a 30-fold increase in plant regeneration from protoplasts compared to previous published procedures.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - FDA fluorescein diacetate - GPFs growth promoting factors - NAA -naphthaleneacetic acid On leave from Department of Genetics, Haryana Agricultural University, Hisar, IndiaOn leave from Biotechnology Centre, Punjab Agricultural University, Ludhiana, India  相似文献   

3.
Regenerable embryogenic suspensions were established from one Indica (group 1) rice advanced breeding line and 9 Indica (group 1) rice varieties in 6–8 weeks. Four were chosen for protoplast culture and plant regeneration. About 4–7×107 protoplasts were isolated from one gram of 8-week-old cell suspension. High plating efficiency (30.5%) and colony formation (13.7%) were obtained using nurse culture methods. A high plant regeneration frequency (67.5%) was observed for line IR57311-95-2-3. In total, 322 plants were regenerated. All the regenerated plants were fertile.Abbreviation 2,4-D 2,4-dichlorophenoxy acetic acid - NAA 1-naphtalene acetic acid  相似文献   

4.
A protocol is described for high frequency plant regeneration from isolated leaf protoplasts of several genotypes of the wild tomato species Lycopersicon hirsutum f. hirsutum based on modified tomato protoplast culture methods. Three to four week old seedlings exposed to a low light pretreatment yielded protoplasts capable of sustained divisions on modified Lycopersicon Culture Medium. Plating efficiencies varied from 7.2%–25.9%. Colonies were transferred to modified solid greening medium after 25–35 days. Developing calli that turned bright green and produced dark green bud primordia were transferred to shoot induction medium. Shoot formation efficiencies ranged from 60%–85%. Shoots rooted easily and regenerated plants grown to complete maturity showed only transient somaclonal variation.Abbreviations BA benzylamino purine - MES 2-(N-morpholino)-ethane sulfonic acid - NAA naphthalene acetic acid  相似文献   

5.
A system for plant regeneration from protoplasts of the moss, Atrichum undulatum (Hedw.) P. Beauv. in vitro, is first reported. Viable protoplasts were isolated at about 9 × 105 protoplasts g−1 fresh weight from 10 to 18 days protonemata. For regeneration of protoplasts, viable protoplasts were cultured in liquid–solid medium containing surface liquid medium MS (0.4 M mannitol) and subnatant solid medium Benecke (0.3 M mannitol) at 20 °C under a 16-h photoperiod white light after 12 h preculture in darkness at 20 °C. The great majority of protoplasts follow a regenerative sequence: formation of asymmetric cells in 2–3 days; division of the asymmetric cells to 2–3 cells in 4–5 days, and further develop to produce a new chloronemal filament in 15 days. Juvenile gametophyte can be visible in 20 days. The plating ratio of cell cluster regenerated from protoplasts reaches up to 45%. Transient expression experiments indicate the electroporation uptake of DNA is possible.  相似文献   

6.
Fertile rice plants have been regenerated from protoplasts of two japonica rice varieties (Radon and Baldo) using a protocol initially developed for plant regeneration from protoplasts of an indica rice. Embryogenic calli were developed from immature embryos of Radon and Baldo rice on a callus induction medium, and then used to establish cell suspensions. Protoplasts were isolated from the cell suspensions, and cultured on a Millipore filter placed on a Kao/agarose medium that contained cell clusters from suspensions of IR52 or IR45. The protoplasts grew vigorously on Kao medium and developed into embryogenic calli within two to three weeks. Somatic embryo development occurred during a subsequent transfer of the calli to an LS medium for two to three weeks. The calli were then transferred to MS or N6 plant regeneration medium, and within one to three weeks, plants regenerated from 21 to 32% of the Radon calli, and 33 to 35% of the Baldo calli. Based upon these results and the previous success in regenerating an indica variety from protoplasts, this procedure has great promise for regenerating a range of rice varieties, and probably for regeneration of other monocotyledonous plants from protoplasts  相似文献   

7.
Protoplasts isolated from both 7-day-old light-grown and 4-day-old dark/dim light-grown cotyledons of four Brassica campestris varieties (Arlo, Sonja, Bunyip and Wonk Bok) were cultured in three liquid media: modified K8P, modified MS and modified Pelletier's B to compare the capacities for cell division and plant regeneration. Following cell wall regeneration the cultured protoplasts from dark/dim light-grown cotyledons of four varieties showed rapid division and high frequency of cell division compared with those isolated from light-grown cotyledons. The frequencies of cell division were significantly influenced by varieties and culture media but only in cultured protoplasts isolated from dark/dim light-grown cotyledons. The interaction between varieties and media was also significant. Cell colonies formed within 7–14 days in protoplast cultures from dark/dim light-grown cotyledons, and calli subsequently grown on a solid medium developed shoots when transferred onto a regeneration medium. Three of four tested varieties (Arlo, Sonja and Bunyip) showed shoot regeneration within 2–3 months after protoplast isolation, with a high degree of reproducibility in Arlo and Bunyip. Regenerated shoots, which were induced to root on half-strength MS medium with 0.1 mg.l–1 IBA, survived in soil and grew to produce siliques and set viable seeds in the greenhouse. The present report is the first to document the production of regenerated plants that set seeds in Brassica campestris from cotyledonary protoplasts.Abbreviations BAP benzylaminopurine - CPW Composition of Protoplast Washing-solution - 2,4-D 2,4-dichlorophenoxyacetic acid - EDTA ethylenediamine-tetraacetic acid - GA3 gibberellic acid - IBA indole-3-butyric acid - IAA indole-3-acetic acid - MS Murashige and Skoog medium - NAA -naphthaleneacetic acid - KT kinetin - FDA fluorescein diacetate - SDS sodium dodecyl sulfate  相似文献   

8.
The results are reported for the first time on successful plant regeneration from mesophyll-derived protoplasts of rapid cycling B. oleracea. Comparative data were also presented on plant regeneration from mesophyll-derived protoplasts of two other varieties namely var. botrytis and var. gemmifera. It was found that a modified Pelletier (Pelletier et al. 1983) protocol is highly beneficial for protoplast culture and plant regeneration from mesophyll-derived protoplasts. The plating efficiency of B. oleracea rapid cycling protoplasts was, in the best combination of isolation method, culture technique and culture media 4.5%±0.4% and the plant regeneration frequency approximately 15%. Plant regeneration was further improved by transferring the calli from the D medium of Pelletier to a callus growth medium (MS11) and subsequently to the K3 regeneration medium of Glimelius (Glimelius 1984). Various factors influencing plating efficiency and plant regeneration from mesophyll protoplasts of B. oleracea are discussed.Abbreviations BAP 6-benzylaminopurine - IAA 3-indoleacetic acid - IBA 3-indole butyric acid - NAA 1-naphtylacetic acid - 2iP N6-(2-isopentyl)adenine  相似文献   

9.
Summary Successful plant regeneration was achieved for the first time from hairy root-derived protoplasts of Hyoscyamus muticus. High yields (7 × 106 / g fresh weight) of protoplasts were isolated directly from the transformed roots of Hyoscyamus muticus using an enzyme mixture comprising 1 % macerozyme and 2 % cellulase in an osmoticum consisting of 0.2 M CaCl2 and 0.6 M mannitol. Protoplasts were first cultured in liquid NT/PRO I medium and further on semi-solid NT/PRO II agar medium. The procedure permits highly efficient formation of colonies. The plating efficiency varied from 1–9 %. The small individual colonies regenerated easily into shoots and roots at frequencies of 18 % and 70 %, respectively. The time required for the development of small plantlets from protoplasts was 8–11 weeks. The regenerated plants contained rolB from Ri-T-DNA and exhibited an altered phenotype compared to the control plants.Abbreviations BAP benzylaminopurine - NAA naphthaleneacetic acid - PCR Polymerase Chain Reaction - fw fresh weight  相似文献   

10.
Summary In P. hybrida and B. nigra an enhancement of transformation rates (direct gene transfer) of about six to seven-fold was obtained after irradiation of protoplasts with 12.5 Gy (X-ray). The effect of protoplast irradiation was similar in experiments where protoplasts were irradiated 1h before transformation (X-ray/DNA) or 1h after completion of the transformation procedure (DNA/X-ray). Increased X-ray doses up to 62.5 Gy resulted in further enhancement of percentages of transformed colonies, indicating a correlation between relative transformation frequencies (RTF) and the doses applied. Estimation of degradation rates of plasmid sequences in plant protoplasts yielded a reduction of plasmid concentration to 50% 8–12 h after transformation. In 1-day-old protoplasts, the level of plasmid fragments dropped to 0%–10% compared to 1h after transformation. The results demonstrate that the integration rates of plasmid sequences into the plant genome may in part be governed by DNA repair mechanisms. This could be an explanation for the observed genotypic dependence of transformation rates in different plant species and plant genotypes. Gene copy number reconstructions revealed enhanced integration rates of plasmid sequences in transformed colonies derived from irradiated protoplasts.  相似文献   

11.
Summary Green mesophyll protoplasts of the dihaploid potato line 1982 (Solanum tuberosum L.) were fused with herbicide-bleached mesophyll protoplasts of the dihaploid potato line 679 using a polyethylene glycol protocol. Heterokaryons were identified under a fluorescence microscope using the dual fluorescence of carboxyfluorescein-stained, herbicide-bleached protoplasts and the autofluorescence of green mesophyll protoplasts. About 20% of the protoplasts survived the fusion treatment, and the fusion frequency was 3%–4%. Unfused and fused protoplasts were mass cultured for 6 weeks after which vigorously growing calli were selected and transferred to shoot regeneration medium. Somatic hybrids were identified by a combination of five isozyme markers, and the ploidy level was determined by flow cytometry. Out of 15 calli that regenerated shoots, 6 plants derived from 2 different calli were identified as hexaploid somatic hybrids, while one morphologically deviant plant from a third callus was identified as a mixoploid that had lost some enzyme markers after 4 months of culturing.  相似文献   

12.
Tang  K.  Sun  X.  An  D.  Power  J.B.  Cocking  E.C.  Davey  M.R. 《Plant Cell, Tissue and Organ Culture》2000,60(1):79-82
A reproducible plant regeneration system has been developed for protoplasts from embryogenic cell suspension cultures of the commercial Asian long-grain javanica rice, Oryza sativa cv. Azucena. Protoplasts were isolated routinely from cell suspensions with yields of 5.5–12.0 × 106 g-1 fresh weight. A membrane filter nurse-culture method was adopted and was essential to support sustained mitotic division of protoplast-derived cells, leading to cell colony formation. The protoplast plating efficiency was higher when suspension cells of Lolium multiflorum, rather than those of the japonica rice O. sativa L. cv. Taipei 309, were employed as nurse cells. A two-step shoot regeneration procedure, in which protoplast-derived calli were cultured initially on medium semi-solidified with 1% (w/v) agarose followed by culture on medium containing 0.4% (w/v) agarose, induced plant regeneration from protoplast-derived calli. Fifteen percent of protoplast-derived tissues regenerated shoots; tissues not subjected to this treatment failed to develop shoots.  相似文献   

13.
Summary Mesophyll protoplasts of eggplant (cv Black Beauty) and of Solanum torvum (both 2n=2x=24) were fused using a modification of the Menczel and Wolfe PEG/DMSO procedure. Protoplasts post-fusion were plated at 1 × 105/ml in modified KM medium, which inhibited division of S. torvum protoplasts. One week prior to shoot regeneration, ten individual calluses had a unique light-green background and were verified as cell hybrids by the presence of the dimer isozyme patterns for phosphoglucoisomerase (PGI) and glutamate oxaloacetate transaminase (GOT). Hybridity was also confirmed at the plant stage by DNA-DNA hybridization to a pea 45S ribosomal RNA gene probe. The ten somatic hybrid plants were established in the greenhouse and exhibited intermediate morphological characteristics such as leaf size and shape, flower size, shape, color and plant stature. Their chromosome number ranged from 46–48 (expected 2n=4x=48) and pollen viability was 5%–70%. In vitro shoots taken from the ten hybrid plants exhibited resistance to a verticillium wilt extract. Total DNA from the ten hybrids was restricted and hybridized with a 5.9 kb Oenothera chloroplast cytochrome f gene probe, a 2.4 kb EcoRI clone encoding mitochondrial cytochrome oxidase subunit II from maize and a 22.1 kb Sal I mitochondrial clone from Nicotiana sylvestris. Southern blot hybridization patterns showed that eight of ten somatic hybrids contained the eggplant cpDNA, while two plants contained the cpDNA hybridization patterns of both parents. The mtDNA analysis revealed the presence of novel bands, loss of some specific parental bands and mixture of specific bands from both parents in the restriction hybridization profiles of the hybrids.Michigan Agricultural Experiment Station Journal Article No. 12545  相似文献   

14.
Protoplasts isolated from cotyledons of a number of cultivars of Brassica napus, B. campestris and B. oleracea were cultured in different media to study the characteristics of cell wall regeneration and cell division at early stages of culture. Time course analysis using Calcolfluor White staining indicated that cell wall regeneration began in some protoplasts 2–4 h following isolation in all cultivars. 30–70% of cultured cotyledon protoplasts exhibited cell wall regeneration at 24 h and about 60–90% at 72 h after the initiation of culture. Results also indicated that a low percentage (0.4–5.4%) of cultured cotyledon protoplasts entered their first cell division one day after initial culture in all twelve cultivars. The percentage of dividing cells increased linearly up to 40% from 1 to 7 day, indicating that cotyledon protoplasts of Brassica had a high capacity for cell division. Factors that influence the level of cell wall regeneration and cell division during cotyledon protoplast culture have been investigated in this study. Cotyledons from seedlings germinated in a dark/dim light regime provided a satisfactory tissue source for protoplast isolation and culture for all Brassica cultivars used. The percentages of protoplasts exhibiting cell wall regeneration and division were significantly influenced by cultivar and species examined, with protoplasts from all five cultivars of B. campestris showing much lower rates of cell wall regeneration than those of B. napus and B. oleracea over 24–120 h, and with the levels of cell division in B. napus cultivars being much higher than those in B. campestris and B. oleracea over 1–9 days. The capacity of cell wall regeneration and cell division in cotyledon protoplast culture of the Brassica species appears under strong genetic control. Cell wall regeneration in protoplast culture was not affected by the culture medium used. In contrast, the composition of the culture medium played an important role in determining the level of cell division, and the interaction between medium type and cultivars was very significant.Abbreviations BA benzylaminopurine - CPW Composition of Protoplast Washing-solution - CW Calcolfluor White - EDTA ethylenediamine-tetraacetic acid - KT Kinetin - Md MS modified Murashige and Skoog medium - 2,4-d 2,4-dichlorophenoxyacetic acid - NAA -naphthaleneacetic acid - IAA indole-3-acetic acid - PAR photosynthetically active radiation - SDS sodium dodecyl sulfate  相似文献   

15.
Summary A simple and efficient method has been developed to improve plant regeneration from protoplasts isolated from >1-yr-old cell-suspension culture of Indica rice (Oryza sativa) cv. Pusa Basmati 1. A two-step regeneration procedure, involving the transfer of calluses to shoot-regeneration medium containing 1% (w/v) agarose prior to culture on a medium containing 0.4% (w/v) agarose, was found to improve plant regeneration. High concentrations of kinetin in the regeneration medium were also found to be beneficial. The two-step regeneration procedure, combined with a high concentration of kinetin (10.0 mgl−1) in the medium, significantly increased plant regeneration. By this method, even though protoplasts were isolated from over 1-yr-old cell-suspension cultures, protoplast-derived plant regeneration frequency reached 16.1% compared with <4% regeneration frequency without such treatment. Use of a similar protocol might improve plant regeneration from other plant species, especially recalcitrant species.  相似文献   

16.
Irradiation (X-ray; 5–15 Gy) of protoplasts treated with plasmid-DNA and PEG yielded higher transformation rates in comparison to non-irradiated protoplasts transformed by the same method. This could be demonstrated for four plant species. The irradiation doses used did not affect the total number of colonies regenerated without selection pressure, but resulted in 3–6-fold enhancement of hygromycin- or kanamycin-resistant colonies. Plant regeneration frequencies of transformed colonies derived from irradiated and non-irradiated protoplasts were similar in tobacco as well as in Petunia. Higher integration rates of foreign DNA as a consequence of an increased recombination machinery in irradiated cells may be responsible for the enhancement of the number of stably transformed colonies.  相似文献   

17.
Summary Hypocotyl calli-derived protoplasts of two cultivars of Brassica juncea (2n=36), a major oil-seed crop, were fused with normal as well as -irradiated mesophyll protoplasts of Eruca sativa (2n=22). The irradiation of the Eruca fusion partner increased the plating efficiency as well as the morphogenic potentiality of the fusion products over the normal fusion. Fertile plants could be regenerated from such fusion products. Analysis of 63 out of 181 plants regenerated showed that, indeed, 11 somatic hybrids (2n=58) and 10 partial somatic hybrids (chromosome number ranged between 50 and 56) had been obtained. Pollen viability (0%–82.9%) and seed set (0%–50%) of the hybrids indicated them to be useful for future studies.  相似文献   

18.
An efficient plant regeneration system was developed from isolated protoplasts of Echinacea purpurea L. using an alginate block/liquid culture system. Viable protoplasts could be routinely isolated from young leaves of Echinacea seedlings in an isolation mixture containing 1.0% cellulase Onozuka R-10, 0.5% pectinase and 0.3 mol l–1 mannitol. Purified protoplasts were embedded in 0.6% Na-alginate block at a density of 1 × 105/ml and cultured in a modified MS medium containing 0.3 mol l–1 sucrose, 2.5 µmol l–1 BA and 5.0 µmol l–1 2,4-D. Cell colonies were observed after 4 weeks of culture, and the protoplast-derived colonies formed calluses when transferred onto 0.25% gellan gum-solidified MS medium supplemented with 1.0 µmol l–1 BA and 2.0 µmol l–1 IBA. Shoot organogenesis from protoplast-derived callus was induced on MS medium supplemented with 5.0 µmol l–1 BA and 2.0 µmol l–1 IBA. Complete plantlets were obtained from the regenerated shoots on MS basal medium. The protoplast to plant regeneration protocol developed in this study provides the prerequisite for creating novel genotypes of this valuable medicinal species through genetic manipulation.  相似文献   

19.
Summary Mesophyll protoplasts from Nicotiana glauca were fused with epidermal protoplasts from N. langsdorffii by an electric pulse. After the fusion products were centrifuged on stepwise density gradient centrifugation using Percoll and sea water, somatic hybrids were observed at 70%–80% in the fraction recovered from the intermediate specific gravity fraction between epidermis and mesophyll protoplasts. From offsprings of these somatic hybrids, teratomatous plants were regenerated. Since the difference of specific gravity between mesophyll and epidermis protoplasts is inherent, this procedure can be essentially applied to obtain somatic hybrids between any combination of plants. The significance of this study is discussed in relation to obtaining somatic hybrids between plant materials without any appropriate genetic markers.  相似文献   

20.
Protoplasts were isolated from callus derived from a single homozygous seed of Oryza sativa L. var. Norin 8. Thirty protoclones were randomly selected and these showed variation in regeneration frequency ranging from 0–87% with an average of 52%. The potential for regeneration of each protoclone as reflected in the regeneration frequency was analyzed five times over a period of 250 days and showed that the protoclones can be classified into three types, namely: protoclones with high regeneration frequency; protoclones with low regeneration frequency, both of which maintained their respective levels of regeneration potential; and protoclones with gradually decreasing regeneration frequency. Secondary protoclones established from protoplasts isolated from some of these protoclones and regenerated 2–3 times for a period of 120 days also showed further reduction in regeneration frequency. The polypeptide composition analyzed by two dimensional gel electrophoresis suggests the presence of specific polypeptides related to regeneration potential. Analysis of ploidy level based on plant morphology and pollen size suggests the predominance of tetraploids among the regenerated plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号