首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although it is well established that symptomatology, morbidity and death following scorpion envenomation are due to increases in neurotransmitter release secondary to toxins binding to voltage-sensitive sodium channels, the mechanism by which venom action is involved in damaging heart, liver, lungs and kidneys remains unclear. We hypothesized that scorpion toxins could induce the generation of high levels of free radicals responsible for membrane damage in organs targeted by venom action. We have investigated lipid peroxidation in different organs, through the evaluation of thiobarbituric acid reactive substances (TBARS), after experimental envenomation of rats by toxic fractions of Androctonus australis Hector venom. We have shown that scorpion toxins cause considerable lipid peroxidation in most vital organs. We also evaluated the protective effects of antioxidants in mice injected with lethal doses of toxins. Among the drugs tested, N-acetylcysteine (NAC) was effective in protecting the mice when injected prior to toxin application. However, the free radical scavenging properties of NAC seem less implicated in these protective effects than its ability to increase the fluidity of bronchial secretions. We therefore conclude that free radical generation only plays a minor role in the toxicity of scorpion venom.  相似文献   

2.
Soualmia H  Abroug F  Djeridane Y 《Peptides》2008,29(3):364-368
Scorpion envenomation is considered public health problem in Northern African countries. The mechanisms of cardiac dysfunction following scorpion envenomation are not fully understood. This study examined the effect and mechanisms underlying scorpion toxin action from Androctonus australis garzonii on atrial natriuretic peptide (ANP) release from rat atrium using in vitro organ perifusion. Male Sprague Dawley rats were used in this study. Three experiments were conducted. In experiment 1, atrial tissues were exposed either to Krebs-bicarbonate buffer medium (control) or to scorpion toxin (10(-8) M to 10(-6) M). In experiment 2, animals were chemically sympathectomized with a single intraperitoneal injection of 6-hydroxydopamine (6-OHDOPA) at a dose of 40 microg/g 24 h before sacrifice. Vehicle-treated rats served as control. Atrial tissues were collected and perifused in the presence of 10(-6) M scorpion toxin. In experiment 3, atrial tissues were exposed to 10(-6) M scorpion toxin either in the absence or presence of 10(-6) M propranolol (a beta-adrenoceptor blocker), or 10(-6) M tetrodotoxin (a sodium channel blocker). ANP levels released in the perifusion medium were determined by radioimmunoassay. The scorpion toxin at 10(-6) M induced a significant (p<0.01) increase (106%) in ANP levels. This effect was decreased (20%) by 6-OHDOPA. Propranolol and tetrodotoxin significantly (p<0.01) inhibited 55% and 60%, respectively, the toxin-induced ANP release. The data show that the North African scorpion toxin from Androctonus australis garzonii increases the ANP release in rat atrium through stimulation of sympathetic cardiac nerves and sodium channels activation.  相似文献   

3.
The lethal effects of scorpion envenomation is due to neurotoxins active on voltage-sensitive sodium channels. Dysfunctions of the peripheral and central nervous systems with neurological manifestations are commonly observed after scorpion stings, specially in young children. Since the neurotoxicity of venom fraction is greatly higher by intracerebroventricular than by subcutaneous injections, a direct effect of venom on CNS cannot be excluded specially in infants where the blood-brain barrier is not fully functional. We investigated the activity of a neurotoxin from the scorpion Androctonus australis hector (AahII) in newborn mice at 3, 7 and 14 days after birth and in adults. Young mice (P3, P7) were more sensitive to AahII injected subcutaneously than were adults, but were less sensitive to intracerebroventricular injection. The affinity of AahII for its receptor site on brain synaptosomes from P3 and P7 mice was slightly higher and the density of the binding sites was half that of adult mice. After subcutaneous injection of [125I]-AahII it was also observed that a small amount of radioactivity was found in brains of neonate mice but not in that of adults. This amount is however extremely lower than the value of the LD50 determined by intracerebroventricular injection. Results are consistent with a peripheral action of AahII and show that its toxic activity changes during the mouse nervous system development.  相似文献   

4.
The tissue distribution of phospholipid hydroperoxide glutathione peroxidase (PHGPX) was studied in rats of different ages. In the same samples the activities of Se-dependent glutathione peroxidase (GPX), and non-Se-dependent glutathione peroxidase (non Se-GPX) were also determined using specific substrates for each enzyme. Enzymatically generated phospholipid hydroperoxides were used as substrate for PHGPX, hydrogen peroxide for GPX, and cumene hydroperoxide for non-Se-GPX (after correction for the activity of GPX on this substrate). PHGPX specific activity in different organs is as follows: liver = kidney greater than heart = lung = brain greater than muscle. Furthermore, this activity is reasonably constant in different age groups, with a lower specific activity observed only in kidney and liver of young animals. GPX activity is expressed as follows: liver greater than kidney greater than heart greater than lung greater than brain = muscle, and substantial age-dependent differences have been observed (adult greater than old greater than young). Non-Se-GPX activity was present in significant amount only in liver greater than lung greater than heart and only in adult animals. These results suggest a tissue- and age-specific expression of different peroxidases.  相似文献   

5.
Changes in the activity of proteases (cathepsin D and calpains) caused by 48-h food withdrawal were studied in the brain, liver, kidney, spleen, and heart of 3-, 12-, and 24-month-old Fischer rats. Cathepsin D activity was similar in brain, liver, and heart of control animals; in kidney it was 5-fold higher and in spleen about 10-fold higher. With age, activity increased in all organs tested except spleen. Brief starvation caused no change of cathepsin D activity in brain, but caused an increase in liver and a decrease in spleen. Neutral proteolytic activity in control was highest in the pons-medulla-cerebellum fraction of brain, and activity in liver and heart was below that in brain. Activity increased with age in brain and decreased in other organs. Brief starvation in young animals caused an increase in activity in brain, and a decrease in liver and spleen. Isolated calpain II activity was high in control brain. It increased with age in the cerebrum. Brief starvation resulted in a decrease in the brain. The results indicate that the protease content of the brain is altered with age and in malnutrition, with changes not being the same for all proteases, and changes in brain being different from those in other organs.Special issue dedicated to Dr. Louis Sokoloff.  相似文献   

6.
Abstract: Catechol- O -methyltransferase (COMT) activity in the liver and kidneys of adult Fischer-344 (F-344) rats is only half of that in the same organs of Wistar-Furth (W-F) rats. The trait of low COMT activity in these animals is inherited in an autosomal recessive fashion. A comprehensive study of patterns of change in COMT activity during growth and development was performed to determine whether "temporal gene" effects might play a role in the inherited differences in enzyme activity present in adult animals. The COMT activity expressed per mg protein in liver and kidneys of newborn F-344 rats is only 50–60% of that in the same organs of W-F animals. The liver and the kidneys of newborn rats of both strains have COMT activity an order of magnitude higher than those in brain, heart, or blood. In addition, in both strains there are much larger increases in liver and kidney COMT activities during growth and development (5–10 fold) than in blood, brain, or heart (one- to twofold). Immunotitration with antibodies against rat COMT demonstrates that differences in immunoreactive COMT parallel differences in COMT activity, both between strains and within strains during growth and development. However, when the temporal patterns of change in enzyme activities in the liver and the kidneys of the two strains of rat are compared at multiple times during growth and development, no differences in the patterns are present. These results make it unlikely that temporal gene effects can explain the inherited differences in COMT activity in liver and kidneys of F-344 and W-F rats.  相似文献   

7.
Comparisons of the specific activity of cytoplasmic superoxide dismutase, in homogenates of liver, brain and heart demonstrate considerably reduced activity in livers of aging rats and mice, a very small reduction in specific activity in the heart and no reduction in the brain of aging animals.Antisera elicited in rabbits against purified superoxide dismutase from liver of either young or old rats revealed complete cross-reactivity with the heart and brain enzymes. They also exhibited complete cross-reactivity with the mouse enzymes from all three organs. This finding has, for the first time, enabled a comparison of possible age-dependent alterations in the same enzyme antigen in different cell types.Despite the differences in age-related changes in specific activity in homogenates of liver, heart and brain the enzyme shows a considerable decline in catalytic activity per antigenic unit in all three organs in both aging rats and mice.  相似文献   

8.
It has been shown that the lowest level of total lipids, cholesterol, triacylglycerols and products of lipid peroxidation of blood and liver, as a rule, is specific to adult rats. These characteristics are significantly higher for old and young animals. At the same time, the level of glutathione and alphatocopherols in adults' liver is much higher than in young and old rats. It suggests the lower level of processes of lipid peroxidation in adult mature rats. The relative high level of products of lipid peroxidation and low content of alpha-tocopherols in old rats' liver (against the background of higher activity and glutamineperoxidase, and glutathionereductase than in adults) suggests tocopherol deficiency in old animals. High content of total lipids, cholesterol and cholesterol entering into the composition of lipoprotein of different density, triacylglycerols, diene conjugates and malonic dialdehide, activity of glutathione-dependent enzymes of antioxidant defence in young animals as compared with these levels in adult rats seems to be associated with agerelated hypercholesterolemia and intensive plastic changes of a growing organism.  相似文献   

9.
Lipid peroxidation in rat liver and brain has been studied to see if it increases with old age. No significant differences in the level of endogenous, nonstimulated lipid peroxidation (TBA-RS) is found between 9 month-old (mature adults) and 28 month-old animals in liver or cerebral cortex. Liver homogenates subjected in vitro to an oxidative stress (ascorbate-Fe++), show a clearly slower peroxidation rate in old than in young animals. On the other hand, the in vitro peroxidation rate of cerebral homogenates was similar in young and old animals. The in vitro peroxidation rate was much higher in brain than in liver tissue. These results do not support the view that old rats liver and brain are more susceptible to free radical oxidative damage than those of young ones.  相似文献   

10.
We studied organ concentration, excretion and excreted forms of selenium in young and adult rats after a single s.c. injection of a sublethal dose of 75Se-selenite. In the young about a 10-fold higher concentration of 75Se in blood, liver, kidneys and In the young, about a 10-fold higher concentration of 75Se in blood, liver, kidneys and heart was found at all the experimental intervals studied (1-7 days). The highest 75Se concentration in the young was in the liver while in the adults it was found in the kidneys. The spectrum of radioselenium metabolites in the urine was the same in both groups. However, the main product excreted by young rats was 75Se-glutathione selenotrisulphide and an unidentified neutral substance while it was the trimethylselenonium ion in the adults. Ontogenetic differences in selenium metabolism could be one of the factors underlying the differences in the response of the young and the adult rats to toxic doses of selenite.  相似文献   

11.
The appearance and fluctuations of specific insulin binding sites in several tissues in vivo during rat development, have been determined. After intravenous administration of 125I-insulin to fetal, suckling and adult rats, changes on specific hormone uptake were observed depending on the tissues tested and on the age of animals. Thus, in liver, specific insulin uptake was much greater in 19 day-old fetuses and 10 day-old suckling animals than in adult rats. By contrast, brown fat and spleen insulin uptake was undetected in fetal animals but present in suckling rats, while lung insulin uptake was absent in the adults but present in fetal and suckling animals. Of interest were the specific insulin uptakes by three different muscle tissues. In fact, heart insulin uptake was much higher in younger animals than in adult rats, while in the diaphragm it was significantly smaller in all groups and in skeletal muscles hormone uptake was much smaller than in the other two muscle tissues and was even absent in the fetuses. In those tissues that had previously been shown to exhibit a specific insulin uptake, the iodinated hormone uptake decreased proportionally with simultaneous injection of increasing amounts of unlabelled insulin. These results indicate that insulin binding sites appear at different times and fluctuate in a different manner according to the tissues tested during rat development; this might be important in the stimulation of the functional activities of those tissues during perinatal age.  相似文献   

12.
Chlorpyrifos (CPF), a commonly used cholinesterase-inhibiting insecticide, is lethal at much lower doses to young animals than adults. To explain this higher sensitivity in younger animals, we hypothesized that young rats have less chlorpyrifos-oxonase (CPFOase) activity than adults. To test this hypothesis, CPFOase activity was measured in the brain, plasma, and liver of male, postnatal day 4 (PND4) and adult (PND90) Long-Evans rats. CPFOase is biochemically defined as a Ca2+-dependent A-esterase that hydrolyzes chlorpyrifos-oxon (CPFO), the active metabolite of CPF. No brain CPFOase activity was detected at either age. Plasma and liver CPFOase activities were markedly lower at PND4 compared to adult: PND4 plasma and liver CPFOase activities were 1/11 and 1/2 the adult plasma and liver activities, respectively. Because the Km of CPFOase activity was high (i.e., 210–380 μM), it was important to determine if this CPFOase activity could hydrolyze physiologically relevant concentrations (i.e., nM to low μM) of CPFO. This was accomplished by comparing the shifts in the tissue acetylcholinesterase (AChE) IC50 for CPFO in the presence or absence of CPFOase activity. One would expect an increase in the “apparent” IC50 if CPFOase hydrolyzes substantial amounts of CPFO during the 30 minutes the tissue is preincubated with the CPFO. In the adult, both plasma and liver AChE apparent IC50 values were higher in the presence of CPFOase activity, suggesting that the CPFOase in those tissues was capable of hydrolyzing physiologically relevant concentrations of CPFO within 30 minutes. In young animals, however, there was less of a shift in the IC50 curves compared to the adult, confirming that the young animal has less capacity than the adult to detoxify physiologically relevant concentrations of CPFO via CPFOase. © 1997 John Wiley & Sons, Inc. J Biochem Toxicol 11: 279–287, 1997.  相似文献   

13.
The activity and induction pattern of phosphoenolpyruvate carboxykinase (PEPCK) in the liver and brain of young (6-), adult (30-) and old (90-weeks) male rats were studied. The activity of this enzyme increases in both tissues until adulthood and decreases gradually thereafter. Further, the activity of PEPCK is higher in the liver than the brain. Adrenalectomy decreases significantly the activity of this enzyme in the liver of rats of all ages. However, this treatment inhibits brain PEPCK in young and adult rats. Administration of hydrocortisone to adrenalectomized rats increases PEPCK in both tissues of young and adult rats. However, the magnitude of induction is higher in the young, as compared to the adult, rats. This hormone-mediated induction of the enzyme is actinomycin D-sensitive.  相似文献   

14.
Iron-deficiency anemia leads directly to both reduced hemoglobin levels and work performance in humans and experimental animals. In an attempt to observe a direct link between work performance and insufficient iron at the cellular level, we produced severe iron deficiency in female weanling Sprague-Dawley rats following five weeks on a low-iron diet. Deficient rats were compared with normal animals to observe major changes in hematological parameters, body weight, and growth of certain organs and tissues. The overall growth of iron-deficient animals was approximately 50% of normal. The ratio of organ weight: body weight increased in heart, liver, spleen, kidney, brain, and soleus muscle in response to iron deficiency. Further, mitochondria from heart and red muscle retained their iron more effectively under the stress of iron deficiency than mitochondria from liver and spleen. Metabolism of iron in normal and depleted tissue was measured using tracer amounts of59Fe administered orally. As expected, there was greater uptake of tracer iron by iron-deficient animals. The major organ of iron accumulation was the spleen, but significant amounts of isotope were also localized in heart and brain. In all muscle tissue examined the59Fe preferentially entered the mitochondria. Enhanced mitochondrial uptake of iron prior to any detectable change in the hemoglobin level in experimental animals may be indicative of nonhemoglobin related biochemical changes and/or decrements in work capacity.  相似文献   

15.
1. Angiotensin II receptors have been studied by quantitative autoradiography in selected brain areas of young (2-week-old) and adult (8-week-old) rats. 2. In young rats, angiotensin II receptors were present in brain areas which did not express receptors in the adult brain, such as thalamic nuclei, cortical areas, and the cerebellum. 3. Young rats had more angiotensin II receptors in the subfornical organ than adult rats. In the inferior olive, the number of angiotensin receptors in young animals was 10 times higher than that in adult rats. Angiotensin II binding in the inferior olive was insensitive to incubation in the presence of dithiothreitol. 4. Conversely, the number of angiotensin II receptors in the nucleus of the solitary tract was lower in young rats compared to adults. Incubation in the presence of dithiothreitol resulted in a more than 90% inhibition of angiotensin II binding in the nucleus of the solitary tract. 5. Our results indicate the presence of two types of angiotensin II receptor in brain, one sensitive (type 1) and one insensitive (type 2) to the reducing agent dithiothreitol. 6. The expression of type 2 angiotensin II receptors, insensitive to dithiothreitol, is more marked in young rats, indicating a role for this type of angiotensin receptors in brain development.  相似文献   

16.
Scorpion toxins, the basic miniproteins of scorpion venom, stimulated the passive uptake of Na+ and Ca2+ in chick embryo heart cells. Half-maximum stimulation was obtained for 20-30 nM Na+ and 40-50 nM Ca2+. Scorpion toxin-activated Na+ and Ca2+ uptakes were fully inhibited by tetrodotoxin, a specific inhibitor of the action potential Na+ ionophore in excitable membranes. Half-maximum inhibition was obtained with the same concentration of tetrodotoxin (10 nM) for both Na+ and Ca2+. Scorpion toxin-stimulated Ca2+ uptake was dependent on extracellular Na+ concentration and was not inhibited by Ca2+ channel blocking drugs which are inactive on heart cell action potential. Thus, in heart cells scorpion toxin affects the passive Ca2+ transport, which is coupled to passive Na+ ionphore. Other results suggest that (1) tetrodotoxin and scorpion toxin bind to different sites of the sarcolemma and (2) binding of scorpion toxin to its specific sites may unmask latent tetrodotoxin - sensitive fast channels.  相似文献   

17.
A hydrophilic protein component (12-17 kDa) of the thermostable protein complex (TSPC) of different organs (heart, liver, kidney, brain) of adult white rats has been identified using hydrophobic interaction chromatography (HIC). Chromatograms and spectra of the myocardial hydrophilic component of different animals (snail, pigeon, rat, pig) detected within the UV region (190-360 nm) have shown that in different organs of the same animal species as well as in the same organ (e.g. heart) of different species, TSPC contains identical hydrophilic components, i.e. there is clearly a phylogenetically conserved group of thermostable proteins that regulates proliferation processes.  相似文献   

18.
The kinins are implicated in the pathogenesis of scorpion envenomation. Therefore, this study was carried out to examine the involvement of kinins for the ECG abnormalities induced by M. tamulus concanesis, (BT) venom in anaesthetized rats. ECG was recorded using needle electrodes with limb lead II configuration. The PR interval, QRS wave pattern, QRS duration, ST segment and heart rate were examined in saline only, venom alone, and venom after aprotinin groups. BT venom (5 mg/kg) produced heart block of varying degree and ischemia-like changes in ECG wave pattern and the animals died within 30 min after exposure to venom. In aprotinin pretreated animals, the initial ECG changes produced by venom persisted, but after 15 min the ECG pattern improved and the animals survived for the entire period of observation (120 min). The results indicate that aprotinin protected the rats against the cardiotoxicity induced by BT venom.  相似文献   

19.
Effect of cigarette smoke on lipid peroxidation (LPX) and antioxidant enzymes like catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and glutathione-S-transferase (GST) in various organs like brain, heart, lung, liver and kidney of the albino rats exposed to cigarette smoke for 30 min/day for a period of 30 days were assayed. It was observed that the lipid peroxide levels in liver, lung and kidney were enhanced in case of animals exposed to cigarette smoke, whereas brain and heart did not show any change as compared to control animals. The activity of the antioxidant enzymes was also elevated in liver, lung and kidney of the test animals whereas, brain and heart did not show any change in the activities of all of these antioxidant enzymes except glutathione-s-transferase which was increased in brain also. The level of reduced glutathione (GSH) was lowered in liver, lung and kidney of the tested animals when compared with the control animals but there was no significant change in brain and heart. The results of our study suggest that cigarette smoke induces lipid peroxidation in liver, lung and kidney, and the antioxidant enzymes levels were enhanced in order to protect these tissues against the deleterious effect of the oxygen derived free radicals. The depletion of reduced glutathione in these organs could be due to it's utilization by the tissues to mop off the free radicals.  相似文献   

20.
The hepatobiliary transport of asialoorosomucoid (ASOR) was examined in aging male Fischer 344 rats. The time course of transport of 125I-ASOR from blood to bile was identical in both senescent and young adult rats. Peak secretion occurred at approximately 35 minutes after injection via the femoral vein. Total secretion of radiolabeled ASOR (3.6% of injected dose), bile secretion and rate of secretion of radiolabeled ligand (approximately 2% of administered dose/hr/gm bile/liver) were not significantly different for the two age groups. Determination of the binding capacity for 125I-ASOR with liver plasma membrane-enriched preparations showed the membranes from old animals capable of binding approximately 50% less radiolabeled ligand as the young adult animals. Analysis of the distribution of 125I-ASOR autoradiographic grains along the liver lobule indicated extensive uptake of ligand in Zone 2 and 3 cells in senescent animals, whereas uptake in young rats was essentially limited to Zone 1 parenchymal cells. These results indicate that, contrary to the age-related loss of hepatic receptors for dimeric IgA and the concomitant reduction in hepatobiliary secretion of IgA, loss of ASOR binding capacity on liver plasma membranes from old animals is not reflected in diminished hepatobiliary secretion of ASOR. The loss of ASOR binding capacity is offset by the recruitment of Zone 2 and 3 hepatocytes along the liver lobule. This result suggests that hepatic metabolism and hepatobiliary secretion of macromolecules which exhibit a lobular gradient of uptake (e.g. ASOR) will be relatively less affected by loss of receptors compared to ligands which do not display such a gradient (e.g. IgA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号