首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The comparative cytogenetic analysis of the interspecific mouse-mink hybridoma cells revealed a segregation of the great number of the mink chromosomes, inter- and intraline variability according to the number of cells with the mink DNA and its quantity in the cells. No characteristics of the mink chromosomal material distribution in the hybridoma cells which secreted the immunoglobulins of the American mink or lost its secretion were found. The great changes in the karyotype of the hybrid cells were revealed by in situ hybridization with 3H-labelled total mink DNA. Numerous insertions of the regions from the mink chromosomes to the mouse chromosomes and the appearance of the chromosomes not typical of the mink and mouse parent cells were observed. The number of cells with translocations of fragments from the chromosomes to the mouse one was observed to grow in the hybridoma cell lines cultivated for a long time. Synthesis of the lambda-L-chains of the mink immunoglobulin in the cells of line 7 was absent because they lost lambda-gene.  相似文献   

2.
We have previously characterized a macrophage hybridoma clone, termed clone 59, which induced immunity but consistently failed to induce Ts responses. Macrophage 59 cells were cultured with supernatants from several activated T cell clones to determine if lymphokines could modulate the activity of this macrophage hybridoma to generate effector Ts. Culture supernatants from Th1 clones and from one atypical IL-4 and IFN-gamma-producing T cell clone successfully modulated clone 59 cells to induce effector Ts cells. In contrast, supernatants from activated Th2 cells failed to generate Ts-inducing activity in macrophage 59 cells. Culture with recombinant derived IFN-gamma was sufficient to cause modulation of Ts-inducing activity in macrophage 59 cells. The data imply that the differential functional activities ascribed to various macrophage hybridoma clones reflect macrophage heterogeneity instead of independent macrophage lineages. The suppression induced by clone 59 macrophages was genetically restricted to the putative I-J region. The ability of IFN-gamma containing supernatants to endow macrophage 59 with the capacity to induce effector suppressor cells was specifically abrogated by addition of an anti-IJk-idiotype antibody, which also reacts with IJ-interaction molecules, indicating that the mechanism of modulation most likely involves expression of IJ-interaction molecule determinants on antigen presenting cells.  相似文献   

3.
Monoclonal antibodies which recognize a region common to Friend spleen focus-forming virus encoded gp52 and Friend mink cell focus-inducing viral gp70 were isolated. One such antibody from hybridoma 7C10 was tested extensively in immune precipitation and was found to react with a determinant on envelope gp70s of all mink cell focus-inducing, xenotropic, and amphotropic mouse retroviruses tested, but not with envelope gp70s of ecotropic viruses, including Friend, Moloney, and AKR murine leukemia viruses. Monoclonal antibody from hybridoma 7C10 precipitated a 23,000-molecular-weight fragment, derived by V8 protease digestion of Friend mink cell focus-inducing gp70. This 23,000-molecular-weight peptide was determined to derive from the amino terminus of the molecule. These results correlate well with other genetic data which indicate that endogenously acquired sequences of mink cell focus-inducing viruses are found at the 5' end of the envelope gene.  相似文献   

4.
Summary A mouse hybridoma HS@03A secreting anti-horseradish peroxidase (HRPO) monoclonal antibodies (IgG1) was established. A HAT sensitive clone of HS@03A was obtained by culturing the hybridoma cells in a 6-thioguanine supplemented medium. The resulting clone 03AR10-2 was fused with a 5-bromo-2-deoxyuridine resistant (HAT sensitive) clone of a mouse hybridoma HB8852 secreting anti-bovine lactoferrin (bLF) antibodies. Hybrid-hybridomas secreting bispecific antibodies were selected and a hybrid-hybridoma clone HH1-4-3 was established. The bispecific antibodies secreted by the hybrid-hybridoma HH1-4-3 were found to be useful for the analysis of bLF by competitive ELISA.  相似文献   

5.
We characterized mink cell focus-forming murine leukemia viruses that were isolated from C3H/MCA-5 cells after induction with 5-iododeoxyuridine in culture. Mink lung epithelial cells malignantly transformed in vitro by induced virus were the source of four molecular clones of mink cell focus-forming virus. CI-1, CI-2, CI-3, and CI-4. Three clones, CI-1, CI-2, and CI-3, had full-length mink cell focus-forming viral genomes, one of which (CI-3) was infectious. In addition, we obtained a defective viral genome (CI-4) which had a deletion in the envelope gene. A comparison between the envelope genes of CI-4 and those of spleen focus-forming virus by heteroduplex mapping showed close homology in the substitution region and defined the deletion as being identical to the p15E deletion of spleen focus-forming virus. The recombinant mink cell focus-forming genomes are not endogenous in C3H/MCA-5 cells and therefore must have been formed in culture after induction by 5-iododeoxyuridine. CI-3, the infectious clone of mink cell focus-forming murine leukemia virus, was dualtropic, and mink cells infected with CI-3 were altered in their response to epidermal growth factor. In the presence of epidermal growth factor at 10 ng/ml, uninfected mink cells retained their epithelial morphology in monolayer culture and did not form colonies in soft agar. In contrast, CI-3 virus-infected mink cells grew with fibroblastic morphology in monolayer culture and showed an increased growth rate in soft agar in the presence of epidermal growth factor.  相似文献   

6.
Summary By means of metaphase chromosomes, the genes for mink thymidine kinase (TK) and hypoxanthine-phosphoribosyltransferase (HPRT) were transferred to mutant mouse cells, LMTK-, A9 (HPRT-) and teratocarcinoma cells, PCC4-aza 1 (HPRT-). Eighteen colonies were isolated from LMTK- (series A), 9 from A9 (series B) and none from PCC4-aza 1. The transformed clones contained mink TK or HPRT. Analysis of syntenic markers in series B demonstrated that one clone contained mink glucose-6-phosphate dehydrogenase (G6PD) and the other alpha-galactosidase; in series A, nine clones contained mink galactokinase (GALK) and six mink aldolase C (ALDC). Analysis of 12 asyntenic markers located in ten mink chromosomes showed the presence of only aconitase-1 (ACON1) (the marker of mink chromosome 12) in three clones of series A. The clones lost mink ACON1 between the fifth to tenth passages. Cytogenetic analysis established the presence of a fragment of mink chromosome 8 in eight clones of series A, but not in series B. The clones of series A lost mink TK together with mink GALK and ALDC during back-selection; in B, back-selection retained mink G6PD. No stable TK+ phenotype was detected in clones with a visible fragment of mink chromosome 8. Stability analysis demonstrated that about half of the clones of series B have stable HPRT+ phenotype whereas only three clones of series A have stable TK+ phenotype. It is suggested that the recipient cells, LMTK- and A9, differ in their competence for genetic transformation and integration of foreign genes.  相似文献   

7.
We constructed an infectious molecular clone of acquired immunodeficiency syndrome-associated retrovirus. Upon transfection, this clone directed the production of infectious virus particles in a wide variety of cells in addition to human T4 cells. The progeny, infectious virions, were synthesized in mouse, mink, monkey, and several human non-T cell lines, indicating the absence of any intracellular obstacle to viral RNA or protein production or assembly. During the course of these studies, a human colon carcinoma cell line, exquisitely sensitive to DNA transfection, was identified.  相似文献   

8.
The paper described a method of quantitative stability analysis of antibody production by hybridoma clones with flow cytometry (FACS). Through FACS analysis the frequency of antibody-negative variants was measured. The rate of generation of antibody-negative variants/cell/generation (mu) could be calculated through Luria-Delbrück fluctuation analysis. The results showed that the value of mu was correlated to the antibody production of hybridoma clones: the larger was the mu value, the more unstable was the antibody production by the hybridoma clones. The experimental results suggested that the clone was stable if its mu value was on the magnitude of 10(-3), while the clone was not stable if its mu value was on the magnitude of 10(-2). According to requirements of single cell for FACS analysis and presence of a variety of methods for dispersing cell aggregates to single cells, the authors regard that this method is fully suitable for analysis of cells in suspension or even in the form of aggregate.  相似文献   

9.
The 5'-terminal palindrome of the ADV-G strain of Aleutian mink disease parvovirus (ADV) was molecularly cloned and sequenced. A full-length molecular clone of ADV-G, denoted pXVB, was then constructed. When this clone was transfected into cell cultures, infectious ADV could be rescued. Virus derived from pXVB was nonpathogenic for adult mink, as is the parent ADV-G strain.  相似文献   

10.
Cloning and sequence analysis of mink growth hormone cDNA   总被引:2,自引:0,他引:2  
A cDNA clone for mink growth hormone (GH) was isolated from a mink pituitary cDNA library, employing a part of rat growth hormone cDNA sequence as a probe. According to the nucleotide sequence, mature mink GH consists of 190 amino acids with a calculated molecular weight of 21,720. The amino acid sequence homology between the mature region of mink GH and those of pig GH, rat GH, bovine GH and human GH was 98.4%, 93.7%, 89.0% and 66.7%, respectively.  相似文献   

11.
The principal problems in molecular and genetic immunology to be resolved are the structure of Ig-genes and the regulation of their expression. The isolation of mRNA for light and heavy Ig-chains would be a first step along this line. A combination of two approaches may be the best strategy in mRNA preparation. Affinity purification allows one to obtain pure mRNA in a one-step procedure whereas immunoprecipitation makes it possible to prepare mRNAs for both heavy and light immunoglobulin chains in considerable amounts. In the series of experiments, conditions for synthesis of long and short cDNA chains were elaborated and the clone containing the fragment of kappa-chain gene was isolated and characterized. This clone was used as a probe for hybridization with genomic DNA from myeloma and hybridoma cells. It was shown that both allelic genes on homologous chromosomes were rearranged in myeloma MOPC21 cells. The original cell line of hybridoma PTF02 contains the embryonic gene as well as the differentiated genes. However, only differentiated genes can be detected in a similar experiment conducted with the same hybridoma after passage on mice. In conclusion, the coordination of homologous and heterologous chromosome expression in B cells in discussed in terms of the feed-back control.  相似文献   

12.
Four phenotypically normal mink cell clones, each containing a transformation-defective provirus of the Snyder-Theilen strain of feline sarcoma virus (ST-FeSV), synthesized an 85,000-dalton viral polyprotein (P85) indistinguishable in size and antigenic complexity from that encoded by wild-type transforming ST-FeSV. An additional transformation-defective, ST-FeSV-containing flat cell clone produced a polyprotein of 88,000 daltons (P88). The viral polyproteins immunoprecipitated from cytoplasmic extracts of these cells lacked the tyrosine-specific protein kinase activity associated with the wild-type ST-FeSV gene product. In addition, the products encoded by representative transformation-defective ST-FeSV genomes were poorly phosphorylated in vivo and lacked detectable phosphotyrosine residues. Whereas proteins of ST-FeSV transformants contained elevated levels of phosphotyrosine, those of mink cells containing transformation-defective ST-FeSV exhibited phosphotyrosine levels no higher than those found in uninfected cells. These findings provide genetic evidence that the tyrosine-specific protein kinase activity associated with ST-FeSV P85 is required for virus-induced transformation.  相似文献   

13.
We succeeded in establishing a mouse-human (M-H) heterohybridoma clone which provides parental cells useful for human monoclonal antibody (hMoAb) production. Electron micrographs show that the M-H hybridoma cells retain characteristics of murine origin with regard to chromatin patterns, small granules, granular endoplasmic reticulum and Golgi apparatus. The human DNA incorporated into the M-H hybridoma is estimated to be about 1% of the total human chromosomal DNA. Mouse-human-human (M-H-H) hybridomas obtained by hybridization of the M-H hybridoma cells with Epstein-Barr virus(EBV)-transfected human B cells secrete immunoglobulin (Ig) in amounts comparable to those of murine hybridomas. Also the M-H-H hybridomas grow in nude mice and are capable of producing ascites containing large quantities of Ig. The Ig class switching takes place in the M-H-H hybridomas at a much higher frequency than in the original EBV transformant and the M-H hybridoma. Cells secreting specific monoclonal antibody of different Ig classes could be separated and concentrated by the use of fluorescence activated cell sorter (FACS).  相似文献   

14.
Modification of antibody class and binding properties typically requires cloning of antibody genes, antibody library construction, phage or yeast display and recombinant antibody expression. Here, we describe an alternative “cloning-free” approach to generate antibodies with altered antigen-binding and heavy chain isotype by mimicking the germinal center reaction in antibody-secreting hybridoma cells. This was accomplished by lentiviral transduction and controllable expression of activation-induced cytidine deaminase (AID) to generate somatic hypermutation and class switch recombination in antibody genes coupled with high-throughput fluorescence-activated cell sorting (FACS) of hybridoma cells to detect altered antibody binding properties. Starting from a single established hybridoma clone, we isolated mutated antibodies that bind to a low-temperature structure of polyethylene glycol (PEG), a polymer widely used in nanotechnology, biotechnology and pharmaceuticals. FACS of AID-infected hybridoma cells also facilitated rapid identification of class switched variants of monoclonal IgM to monoclonal IgG. Mimicking the germinal center reaction in hybridoma cells may offer a general method to identify and isolate antibodies with altered binding properties and class-switched heavy chains without the need to carry out DNA library construction, antibody engineering and recombinant protein expression.  相似文献   

15.
《MABS-AUSTIN》2013,5(4):1069-1083
Modification of antibody class and binding properties typically requires cloning of antibody genes, antibody library construction, phage or yeast display and recombinant antibody expression. Here, we describe an alternative “cloning-free” approach to generate antibodies with altered antigen-binding and heavy chain isotype by mimicking the germinal center reaction in antibody-secreting hybridoma cells. This was accomplished by lentiviral transduction and controllable expression of activation-induced cytidine deaminase (AID) to generate somatic hypermutation and class switch recombination in antibody genes coupled with high-throughput fluorescence-activated cell sorting (FACS) of hybridoma cells to detect altered antibody binding properties. Starting from a single established hybridoma clone, we isolated mutated antibodies that bind to a low-temperature structure of polyethylene glycol (PEG), a polymer widely used in nanotechnology, biotechnology and pharmaceuticals. FACS of AID-infected hybridoma cells also facilitated rapid identification of class switched variants of monoclonal IgM to monoclonal IgG. Mimicking the germinal center reaction in hybridoma cells may offer a general method to identify and isolate antibodies with altered binding properties and class-switched heavy chains without the need to carry out DNA library construction, antibody engineering and recombinant protein expression.  相似文献   

16.
The ADV-G strain of Aleutian mink disease parvovirus (ADV) is nonpathogenic for mink but replicates permissively in cell culture, whereas the ADV-Utah 1 strain is highly pathogenic for mink but replicates poorly in cell culture. In order to relate these phenotypic differences to primary genomic features, we constructed a series of chimeric plasmids between a full-length replication-competent molecular clone of ADV-G and subgenomic clones of ADV-Utah 1 representing map units (MU) 15 to 88. After transfection of the plasmids into cell culture and serial passage of cell lysates, we determined that substitution of several segments of the ADV-Utah 1 genome (MU 15 to 54 and 65 to 73) within an infectious ADV-G plasmid did not impair the ability of these constructs to yield infectious virus in vitro. Like ADV-G, the viruses derived from these replication-competent clones caused neither detectable viremia 10 days after inoculation nor any evidence of Aleutian disease in adult mink. On the other hand, other chimeric plasmids were incapable of yielding infectious virus and were therefore replication defective in vitro. The MU 54 to 65 EcoRI-EcoRV fragment of ADV-Utah 1 was the minimal segment capable of rendering ADV-G replication defective. Substitution of the ADV-G EcoRI-EcoRV fragment into a replication-defective clone restored replication competence, indicating that this 0.53-kb portion of the genome, wholly located within shared coding sequences for the capsid proteins VP1 and VP2, contained a determinant that governs replication in cell culture. When cultures of cells were studied 5 days after transfection with replication-defective clones, rescue of dimeric replicative form DNA and single-stranded progeny DNA could not be demonstrated. This defect could not be complemented by cotransfection with a replication-competent construction.  相似文献   

17.
The T cell receptor V beta 6 domain imparts reactivity to the Mls-1a antigen   总被引:20,自引:0,他引:20  
A monoclonal antibody secreting hybridoma was established by fusing spleen cells from a rat immunized with a murine T cell clone, OI11, which has I-Ab restricted specificity for the male H-Y antigen and unrestricted specificity for the minor lymphocyte stimulating antigen, Mls-1a, to the mouse myeloma P3X63AG8.653 and screening for the capacity of the hybridoma supernatants to stimulate the OI11 T cell clone. An antibody (RR4-7) was found to be specific not only for the immunizing T cell clone but virtually for all T cells using the V beta 6 TCR gene product as part of their surface antigen receptor. When the expression of the V beta 6 gene in various strains of mice was analyzed, it was found that strains expressing the Mls-1a antigen contained few T cells expressing V beta 6-encoded TCRs. The majority of T cell hybridomas which expressed V beta 6-encoded TCRs were found to be reactive to the Mls-1a antigen. These data confirm the finding of H. R. MacDonald et al. (Nature (London) 332, 40, 1988) that most TCRs encoded by the V beta 6 gene have a biased specificity for the Mls-1a antigen.  相似文献   

18.
It has been assumed, without direct evidence, that T cell hybridomas and non-transformed T cell clones are both good models of normal Ag-specific T cells. To compare directly the difference in activation of cloned normal T cells and T hybridoma cells with the same TCR, cloned T hybridoma cells were obtained by fusing pre-established, myoglobin-specific, Iad-restricted T cell clones (14.5 and 9.27) with BW5147 cells. T cell clones were pre-activated with IL-2 as well as specific Ag before fusion. Cloned T hybridoma A3.4C6 was derived from Lys 140-specific and I-Ed-restricted clone 14.5. The other cloned T hybridoma, C7R14, was a fusion product of Glu 109-specific and I-Ad-restricted clone 9.27. Both T hybridomas showed the same Ag specificity and Ia restriction as the parental cloned T cells. However, C7R14 showed higher apparent affinity and broader cross-reactivity than 9.27. Clone 14.5, but not hybridoma A3.4C6, appeared to stimulate splenic cells to secrete cytokines inhibiting HT-2A cell proliferation. The most striking difference between the clones and hybridomas was that both clones, but neither of the matched hybridomas, were induced to synthesize IL-1 on stimulation with Ag. Finally, both cloned T cells and T hybridomas killed Ag-pulsed Iad-bearing B lymphoma target cells. This evidence suggests that killing function can be inherited from clones to hybridomas. However, the clones were much more efficient at killing than the hybridomas, and the hybridomas were more efficient at IL-2 production than the clones. Thus, matched pairs of clones and hybridomas differ in their capacity to mediate the two functions or may tend to be selected differently during cloning. Thus, although our results generally support the validity of T cell hybridomas as faithful models of the corresponding T cell clones, a number of subtle and not-so-subtle differences indicate that caution must be used in such an extrapolation.  相似文献   

19.
For the production of monoclonal antibodies against pp60src and the gag precursor protein Pr76gag, the spleens of mice bearing tumors that had been induced by avian sarcoma virus Schmidt-Ruppin D-transformed cells were used. One hybridoma culture produced antibodies that were directed against the p19 portion of the gag precursor. However, no antibodies directed against pp60src could be detected in any of the hybridoma supernatants. The anti-p19-producing hybridoma culture was cloned twice in soft agar, and a stable clone was used for the production of high-titer ascites fluid in mice. The monoclonal antibodies belonged to the immunoglobulin G subclass 2b. The antibodies precipitated Pr76gag and the processed virion-associated p19, as well as the 75,000-molecular-weight gag fusion protein from avian erythroblastosis virus-transformed bone marrow cells. Also, viral ribonucleoprotein complexes were specifically precipitable, indicating that they contain p19 molecules.  相似文献   

20.
Summary A method for gene transfer by means of interphase nuclei encapsulated within lipid membranes was developed. The method was based on passage of interphase nuclei through a layer of organic solvents containing phospholipids. Evidence was obtained indicating that the nuclei become surrounded by a protective phospholipid membrane: measurements of bound labelled or non-labelled phospholipids; decrease in the permeability of lipid-encapsulated nuclei for high molecular compounds; visualization by direct electron microscopy. Lipid-encapsulated nuclei of mink fibroblasts were used for transformation of mutant mouse LMTK- cells (deficient for thymidine kinase). The frequency of occurrence of HAT-resistant colonies/recipient cell was 1.9x10-5. Biochemical analysis of 14 independent clones demonstrated that they all contained TK1 of mink origin. Analysis of 15 other biochemical markers located on 12 of the mink chromosomes revealed the activities of mink galactokinase (a syntenic marker) in 5 transformed clones, and that of mink aconitase-1 (the marker of mink chromosome 12) in 1 clone. No cytogenetically visible donor chromosomes were identified in the transformed clones. Nine transformed clones were tested for the stability of the TK+ phenotype; of these, the phenotype was expressed stably in 3 and unstably in 6. The method suggested is similar to the gene transfer procedure using total DNA. Its advantage is in ensuring efficient gene transfer and donor DNA integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号