首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of intraperitoneal injection of imipramine hydrochloride on the activity of gamma-aminobutyric acid transaminase was determined in three regions of the rat brain.The cerebral hemispheres did not show a significant change in the activity of gamma-aminobutyric acid transaminase. Cerebellum and brain stem, both, however, showed a very significant decrease in the activity of the enzyme at 15 and 30 minutes after drug administration. At 90 minutes after drug administration, the activity of gamma-aminobutyric acid transaminase had returned to nearly control values.  相似文献   

2.
l-2,4-diaminobutyric acid was studied as an inhibitor of gamma-aminobutyric acid uptake by a synaptosomal fraction isolated from rat brain. Competitive inhibition was observed during short-term exposure of the synaptosomal fraction to the inhibitor but noncompetitive inhibition was observed following prolonged exposure. Studies on the mode of action of l-2,4-diaminobutyric acid showed that the synaptosomal fraction was capable of accumulating this compound and that both the uptake and the effectiveness of the inhibitor were sodium-dependent and temperature-sensitive. In addition, the degree of inhibition of gamma-aminobutyric acid uptake was related to the amount of l-2,4-diaminobutyric acid accumulated. It is suggested that the observed noncompetitive inhibition of gamma-aminobutyric acid uptake by l-2,4-diaminobutyric acid is a result of the accumulation of the inhibitor which exerts its effect from within the synaptosomes. Raising the external concentration of gamma-aminobutyric acid to saturating levels did not completely inhibit the accumulation of l-2,4-diaminobutyric acid. Thus, the transport of l-2,4-diaminobutyric acid appears to be mediated, at least in part, by a carrier which is not involved in the transport of gamma-amiuobutyric acid.  相似文献   

3.
We sought to identify amino acid neurotransmitter candidates within the nucleus of the solitary tract in rats. Twenty endogenous amino acids were quantified by reverse-phase HPLC with fluorescence detection (30-fmol limit). Micropunches (1 mm) of the intermediate area of the solitary nucleus were prepared, and the amino acid content determined. Of all the components measured, the putative transmitters Glu, Gly, gamma-aminobutyric acid, taurine, Asp, and Ala appeared in greatest concentrations. Bilateral micropunches superfused in vitro with buffered medium containing 56 mM potassium released Glu, gamma-aminobutyric acid, and Gly in a significant manner (p less than 0.05) compared with basal levels. With Glu, 78% was calcium-dependent and, therefore, presumably from nerve endings; 99% of gamma-aminobutyric acid and 42% of Gly were dependent on calcium. After removal of the nodose ganglion, a bilateral decrease in the calcium-dependent release of Glu and gamma-aminobutyric acid, but not Gly, was observed; decreases were significant ipsilateral to the site of ablation. We conclude that (a) Glu is a transmitter of primary afferents in the nucleus of the solitary tract; (b) glutamatergic afferents may interact with gamma-aminobutyric acid system(s) in this region; (c) Gly also may participate in the mediation and/or modulation of cardiovascular or other visceral reflexes; and (d) amino acid neurotransmission may play an integral role in the neurogenic control of arterial pressure.  相似文献   

4.
The effect of local application of drugs affecting gamma-aminobutyric acid metabolism and receptors on cortical aminoacid release has been investigated in freely-moving guinea pigs equipped with epidural cups. Topical treatment with gamma-aminobutyric acid reuptake and/or metabolism inhibitors (alone and in combination) produced a slow and progressive increase in cortical aminoacid release. The inhibition of gamma-aminobutyric acid-transaminase with ethanolamino-O-sulphate seemed to be a suitable procedure for enhancing the gamma-aminobutyric acid efflux without interfering with its autoreceptor-mediated negative feedback, tested with the gamma-aminobutyric acid agonist (+/-)baclofen and antagonist phaclofen. A substantial part of the gamma-aminobutyric acid outflowing from the cortex was of neuronal origin since tetrodotoxin halved the basal efflux in the presence of gamma-aminobutyric acid reuptake and/or metabolism inhibitors. These results, considered together, indicate that the epidural cup technique may be a useful approach to study changes in cortical gamma-aminobutyric acid release induced by drugs acting on gabaergic transmission and directly applied on the surface of the cortex.  相似文献   

5.
Transport of gamma-aminobutyric acid (GABA) is electrogenic and completely depends on the presence of both sodium and chloride ions. These ions appear to be cotransported with gamma-aminobutyric acid through its transporter [reviewed in Kanner, B. I. (1983) Biochim. Biophys. Acta 726, 293-316]. Using proteoliposomes into which a partially purified gamma-aminobutyric acid transporter preparation was reconstituted, we have been able--for the first time--to provide direct evidence for sodium- and chloride-coupled gamma-aminobutyric acid transport. This has been done by measuring the fluxes of 22Na+, 36Cl-, and [3H]GABA. These fluxes have the following characteristics: There are components of the net fluxes of sodium and chloride that are gamma-aminobutyric acid dependent. The sodium flux is chloride dependent; i.e., when Cl- is replaced by inorganic phosphate or by SO4(2-), gamma-aminobutyric acid dependent sodium fluxes are abolished. The chloride flux is sodium dependent; i.e., when Na+ is replaced by Tris+ or by Li+, gamma-aminobutyric acid dependent chloride fluxes are abolished. Thus, the gamma-aminobutyric acid dependent sodium and chloride fluxes appear to be catalyzed by the transporter. Using these fluxes we have attempted to determine the stoichiometry of the process. We measured the initial rate of sodium-dependent gamma-aminobutyric acid fluxes and that of gamma-aminobutyric acid dependent sodium fluxes. This yields the stoichiometry between sodium and gamma-aminobutyric acid (2.58 +/- 0.99). Similarly, we measured the stoichiometry between chloride and gamma-aminobutyric acid, which is found to be 1.27 +/- 0.12.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Bacillus cereus strain K-22 produced two distinct omega-amino acid transaminases, one catalyzing the transamination between beta-alanine and pyruvic acid and the other that between gamma-aminobutyric acid and alpha-ketoglutaric aic. The two enzymes were partially purified and separated from each other by various chromatographies. beta-Alanine:pyruvic acid transaminase and gamma-aminobutyric acid:alpha-ketoglutaric acid transaminase were induced by the addition of beta-alanine and gamma-aminobutyric acid, respectively, to the growth medium. beta-Alanine transaminase showed an optimum pH of 10.0 and optimum temperature of 35 degrees C, and its Km values for beta-alanine and pyruvic acid were both 1.1 mM. gamma-Aminobutyric acid, epsilon-aminocaproic acid, 2-aminoethylphosphonic acid, and propylamine showed about 30-40% of the activity of beta-alanine as amino donors, and oxalacetic acid was as good an amino acceptor as pyruvic acid. The optimum pH and temperature of gamma-aminobutyric acid transaminase were 9.0 and 50 degrees C, respectively, and its Km value for gamma-aminobutyric acid was 2.8 mM, while that for alpha-ketoglutaric acid was 2.3 mM. gamma-Aminobutyric acid and delta-aminovaleric acid were good amino donors but other omega-amino acids were virtually inactive with gamma-aminobutyric acid transaminase; alpha-ketoglutaric acid, and to a lesser extent glyoxylic acid, were active amino acceptors. Sulfhydryl reagents specifically activated gamma-aminobutyric acid transaminase.  相似文献   

7.
The binding of radioactive gamma-aminobutyric acid to particulate fractions of mammalian brain was measured by a centrifugation assay, using repeatedly washed and frozen and thawed membranes and sodium-free assay conditions. Studies of over 30 structural analogues indicated an excellent correlation between inhibition of gamma-aminobutyric acid binding and activity as agonists or antagonists on gamma-aminobutyric acid synapses as reported in the neurophysiology literature. In particular, binding was inhibited by low concentrations of the gamma-aminobutyric acid receptor-specific drugs muscimol, homotaurine, and isoguvacine, but very poorly by analogues such as 2,4-diaminobutyric acid and nipecotic acid which specifically inhibit gamma-aminobutyric acid transport but are inactive on synaptic receptors. Binding was inhibited by the synaptic antagonist bicuculline but not by picro-toxinin. Thus, these binding sites show the chemical specificity required of physiological receptors for the neurotransmitter gamma-aminobutyric acid.  相似文献   

8.
The release of gamma-aminobutyric acid (GABA) in rat dorsolateral striatum was studied using in vivo microdialysis. Dialysis was conducted 2 days after probe implantation in awake, freely moving rats using a modified Ringer solution. Calcium induced a reversible increase in GABA release that was abolished by tetrodotoxin but was only slightly attenuated by a maximally effective dose of pergolide, a D2 receptor agonist. It was thus concluded that pergolide inhibits calcium-stimulated release of GABA presynaptically by a mechanism distinct from that of tetrodotoxin.  相似文献   

9.
A new potent, blood-brain barrier permeable gamma-aminobutyric acid (GABA) uptake blocker, 1-[2-[bis[4-(trifluoromethyl)-phenyl]methoxy]ethyl]-1,2,5,6- tetrahydro-3-pyridinecarboxylic acid (CI-966) was administered systemically by i.p. injection (5 mg/kg) in Sprague-Dawley rats under urethane anaesthesia. Twenty to thirty minutes after injection there was a highly variable, but overall significant, enhancement of the inhibition of hippocampal population spikes by GABA applied by microiontophoresis in the CA1 region. Like the effect of nipecotic acid (applied locally by iontophoresis), the potentiation by CI-966 was clearest when GABA was applied in or near the stratum pyramidale where its action normally is weakest and shows the most pronounced fading. This change in GABA potency is most simply explained by a reduction in GABA uptake.  相似文献   

10.
为实现微生物法高效率生产γ-氨基丁酸(GABA),从一株经多次诱变筛选的具有较高谷氨酸脱羧酶(GAD)活力植物乳杆菌GB 01-21全基因组DNA中PCR扩增获得GAD酶基因lpgad,构建重组质粒pET-28a-lpgad,在大肠杆菌E.coli BL21(DE3)中高效诱导表达。并采用Ni柱亲和层析纯化获得重组GAD,并对其酶学性质进行初步研究,为改良转化工艺提高GABA产量提供可靠理论依据。结果显示,重组大肠杆菌中GAD酶活显著提高,可达8.53 U/mg,是植物乳杆菌GB 01-21中GAD酶活的4.24倍。将该重组菌应用于转化L-谷氨酸生产GABA,5 L发酵罐水平转化24 h产量可达143.5 g/L,摩尔转化率为97.32%,是植物乳杆菌GB 01-21的2.19倍。纯化后酶学性质进行初步研究表明:其最适pH为4.8;最适温度为37℃;Ca2+、Mg2+对其有较强的激活作用,将上述实验结果用于转化条件的优化,最终5 L发酵罐上进行转化实验,批次添加底物L-谷氨酸共600 g,转化24 h,GABA累计浓度可达204.5 g/L,摩尔转化率为97.92%,与最初转化条件相比,GABA浓度提高了42.5%,为其工业化应用打下了良好的基础。  相似文献   

11.
Effects of diazepam and gamma-aminobutyric acid-related compounds on the release of [14C]cysteine sulfinate and [3H]glutamate from preloaded hippocampal slices of rat brain were examined by a superfusion method. Diazepam markedly inhibited the release of cysteine sulfinate and glutamate evoked either by high K+ or veratridine without affecting that of other neurotransmitter candidates, e.g., gamma-aminobutyric acid, acetylcholine, noradrenaline, and dopamine; IC50 values for the release of cysteine sulfinate and glutamate were about 20 and 7 microM, respectively. gamma-Aminobutyric acid (1 to 10 microM) and muscimol (100 microM) significantly reduced high K+-stimulated release of glutamate. Bicuculline, which had no effect on the release at a concentration of 50 microM by itself, antagonized the inhibitor effects of diazepam and gamma-aminobutyric acid on glutamate release. Similar results were obtained with the release of cysteine sulfinate except that a high concentration (100 microM) of gamma-aminobutyric acid was required for the inhibition. These results indicate the modulation by gamma-aminobutyric acid innervation of the release of excitatory amino acids in rat hippocampal formation, and also suggest that some of the pharmacological effects of diazepam may be a consequence of inhibition of excitatory amino acid transmission.  相似文献   

12.
A sensitive and reproducible [3H]muscimol radioreceptor assay was developed for measuring low levels of both glutamic acid decarboxylase activity and gamma-aminobutyric acid. By using this technique, endogenous gamma-aminobutyric acid and glutamic acid decarboxylase activity were detected in two rat neuroblastomas, B35 and B50, a human medulloblastoma cell line, TE671, and cultured human skin fibroblasts. Glutamic acid decarboxylase activities and gamma-aminobutyric acid levels were compared for human skin fibroblasts obtained from patients with Huntington's disease and their controls in a well-controlled, blind study. However, no significant difference was found to either measure between Huntington and control cells. Glutamic acid decarboxylase activity was relatively low in all cell types examined except for the TE671 cells, which had more than four times the activity found in the other cells. This human medulloblastoma cell line appears to be a good model for studying gamma-aminobutyric acid metabolism and the control of glutamic acid decarboxylase expression.  相似文献   

13.
When synaptosomes were depolarized in the presence of Ca2+, or when Ca2+ was added to synaptosomes pretreated with Ca2+ ionophore (A23187), free arachidonic acid was clearly increased within synaptosomes, and at the same time an efflux of gamma-aminobutyric acid from synaptosomes was observed. Moreover, when synaptosomes labelled with [14C]arachidonic acid were depolarized in the presence of Ca2+, there was a significant decrease in the radioactivity of the fatty acid of phosphatidylinositol and phosphatidylcholine. Exogenously added arachidonic acid, but not other fatty acids, stimulated the efflux of gamma-aminobutyric acid in the absence of Ca2+. These observations suggest that the release of arachidonic acid from phospholipids is an intrinsic part of the biochemical mechanism that modulates the gamma-aminobutyric acid efflux.  相似文献   

14.
Haixing Li  Yusheng Cao 《Amino acids》2010,39(5):1107-1116
Gamma-aminobutyric acid is a non-protein amino acid that is widely present in organisms. Several important physiological functions of gamma-aminobutyric acid have been characterized, such as neurotransmission, induction of hypotension, diuretic effects, and tranquilizer effects. Many microorganisms can produce gamma-aminobutyric acid including bacteria, fungi and yeasts. Among them, gamma-aminobutyric acid-producing lactic acid bacteria have been a focus of research in recent years, because lactic acid bacteria possess special physiological activities and are generally regarded as safe. They have been extensively used in food industry. The production of lactic acid bacterial gamma-aminobutyric acid is safe and eco-friendly, and this provides the possibility of production of new naturally fermented health-oriented products enriched in gamma-aminobutyric acid. The gamma-aminobutyric acid-producing species of lactic acid bacteria and their isolation sources, the methods for screening of the strains and increasing their production, the enzymatic properties of glutamate decarboxylases and the relative fundamental research are reviewed in this article. And the potential applications of gamma-aminobutyric acid-producing lactic acid bacteria were also referred to.  相似文献   

15.
Four different muscle relaxants were compared as to their effects on tonic Ascaris suum muscle to: physiological activity, intracellular response to regulatory light chain phosphorylation, and receptor pharmacology. Perfusion of Ascaris suum muscle with each relaxant, gamma-aminobutyric acid, avermectin, piperazine and chlorpromazine resulted in a dose-dependent loss of muscle tone. Comparison of intracellular effects indicated that gamma-aminobutyric acid and avermectin perfusion initiated an increase in the levels of dephosphorylated regulatory light chain while piperazine increased first site phosphorylation and chlorpromazine increased second site phosphorylation. Receptor pharmacology studies were used to compare the actions of gamma-aminobutyric acid and piperazine. It was found that bicuculline-methiodide and picrotoxin inhibited the effects of gamma-aminobutyric acid in a dose-dependent manner, but these drugs had no effect on muscle relaxation stimulated with piperazine.  相似文献   

16.
The effects of N-(4,4-diphenyl-3-butenyl) derivatives of nipecotic acid (SKF-89976-A and SKF-100844-A) and guvacine (SKF-100330-A) on neuronal and astroglial gamma-aminobutyric acid (GABA) uptake were investigated. In addition, the uptake of SKF-89976-A was studied using the tritiated compound. All of the compounds were found to be competitive inhibitors of GABA uptake irrespective of the cell type, with Ki values similar to or lower than those of the parent amino acids. Moreover, none of the compounds exhibited selectivity with regard to inhibition of neuronal and glial GABA uptake. In spite of the competitive nature of SKF-89976-A, the compound was not transported by the GABA carriers in the two cell types, because no saturable uptake could be demonstrated.  相似文献   

17.
Chloride fluxes in synaptoneurosomes in response to additions of gamma-aminobutyric acid, glycine, and ethanol were measured using a chloride-sensitive fluorescent probe 6-methoxy-N-(3-sulfopropyl)quinolinium (SPQ). The Cl- gradient was directed outward by bathing cells in a medium low in Cl- concentration. The synaptoneurosomes responded to both gamma-aminobutyric acid and glycine by outflow of Cl- ions, as judged from an increase in SPQ fluorescence. These effects were inhibited by picrotoxin and strychnine, respectively. Ethanol also produced an outflow of Cl- ions from the synaptoneurosomes. Both picrotoxin and strychnine inhibited this effect. When the antagonists were used together, the inhibiting effect was additive. These results indicate that ethanol affects both gamma-aminobutyric acid and glycine receptor-linked chloride fluxes in the rat brain.  相似文献   

18.
N J Mabjeesh  B I Kanner 《Biochemistry》1989,28(19):7694-7699
The low-affinity (Km = 100-200 microM) gamma-aminobutyric acid (GABA) transporter from membrane vesicles from rat brain has been characterized and found to be in many aspects similar to the well-known sodium- and chloride-coupled high-affinity gamma-aminobutyric acid transporter (Km = 2-4 microM). Influx by this system is sodium and chloride dependent and stimulated by an interior negative membrane potential. Steady-state levels obtained by both systems are lowered by the sodium channel openers veratridine and aconitine. However, while the channel blocker tetrodotoxin fully reverses this inhibition with the high-affinity system, this is not the case for its low-affinity counterpart. Furthermore, the toxin from the scorpion Androctonus australis Hector inhibited high-affinity transport only. Efflux of gamma-aminobutyric acid taken up by the high-affinity system displayed a Km of about 100 microM. Exchange catalyzed by the low-affinity system was observed in the absence of external sodium and chloride. Furthermore, both activities copurified in the fractionation procedure developed to purify the high-affinity transporter. All these observations are consistent with the idea that both activities are manifestations of only one gamma-aminobutyric acid transporter. The high-affinity binding site represents the extracellular and the low-affinity site the cytosolic aspect of the transporter. In addition, it was found that right-side-out synaptosomes also contain a low-affinity GABA transporter. This apparently represents a different transport protein.  相似文献   

19.
The effects of methylmercury on the spontaneous and potassium-evoked release of endogenous amino acids from mouse cerebellar slices have been examined. Methylmercury induced a concentration-dependent increase in the spontaneous release of glutamate, aspartate, gamma-aminobutyric acid, and taurine from mouse cerebellar slices. Glycine release was slightly increased, but not in a concentration-dependent manner. The spontaneous release of glutamine from mouse cerebellar slices was not altered by any concentration of methylmercury examined (10, 20, and 50 microM). The tissue content of glutamate, gamma-aminobutyric acid, glutamine, and taurine decreased after exposure to methylmercury. Exposure of cerebellar slices to 20 microM methylmercury resulted in a significant enhancement in glutamate release during stimulation with 35 mM K+. This increase could be accounted for by the methylmercury-induced increase in spontaneous glutamate release. The increase in spontaneous release of glutamate and gamma-aminobutyric acid was independent of the availability of extracellular calcium. These results suggest that methylmercury increases the release of neurotransmitter amino acids, particularly gamma-aminobutyric acid and glutamate, by acting at intracellular sites to increase release from a neurotransmitter pool. The increase in the potassium-stimulated release of glutamate may reflect an increased sensitivity of the cerebellar granule cell to the effects of methylmercury. It is suggested that alterations in amino acid neurotransmitter function in the cerebellum may contribute to some of the neurological symptoms of methylmercury intoxication.  相似文献   

20.
Acute excitotoxicity in embryonic chick retina and the ability of Cl- channel blockers to prevent toxicity were evaluated by measurement of endogenous amino acid release and histology. Treatment of retina with kainate, quisqualate, or N-methyl-D-aspartate resulted in a large dose-dependent release of gamma-aminobutyric acid and taurine, moderate release of glutamine and alanine, and no measurable release of glutamate or aspartate. Concentrations inducing maximal gamma-aminobutyric acid release were 50 microM quisquaalate, 100 microM kainate, and 100 microM N-methyl-D-aspartate. Treatment with 1 mM glutamate resulted in significant gamma-aminobutyric acid release, as well as an elevation in medium aspartate levels. Typical excitotoxic retinal lesions were produced by the agonists and, at the lower concentrations tested, revealed a regional sensitivity. There was a positive correlation between the amount of gamma-aminobutyric acid release and the extent of tissue swelling, suggesting that release may be secondary to toxic cellular events. Omission of Cl- completely blocked cytotoxic effects due to kainate or glutamate. Likewise, addition of the Cl-/bicarbonate anion channel blocker 4,4'-diisothiocyanatostilbene-2,2'-disulfonate at 600 microM protected retina from cytotoxic damage from all excitotoxic analogs and restored amino acid levels to baseline values. Furosemide, which blocks Na+/K+/2Cl- cotransport, was only minimally effective in reducing amino acid release induced by the agonists. Consistent with the latter, histological examination showed the continued presence of the lesion but with general reduction of cellular edema. These results indicate that although influx of Cl- is a central component of the acute excitotoxic phenomenon, mechanisms other than passive Cl- flux may be involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号