共查询到20条相似文献,搜索用时 0 毫秒
1.
The amyloid precursor protein (APP) and presenilin-1 (PS-1) are not only of importance for the normal functioning of the various neurons, but also play central roles in the pathogenesis of Alzheimer’s disease (AD). Through the use of immunohistochemical and Western blot techniques, the bidirectional axonal transport of these proteins has been demonstrated in the sciatic nerve of adult rat. Double-ligation of the sciatic nerve for 6, 12 or 24 h was observed to cause a progressive accumulation of the 45 kDa presenilin-1 holoprotein and APPs with molecular masses of 116 and 94 kDa on both sites of the ligature. It is concluded that the functions of presenilin-1 and APPs are not restricted to the neuronal perikarya: they may carry information in both directions, from the cell body to the axon terminals and vice versa. 相似文献
2.
Bai JZ 《Cell biology international》2008,32(4):447-455
Amyloid deposition is a common feature of Alzheimer's disease and type 2 diabetes related to beta-amyloid peptides (betaA) and human amylin (hA), respectively. Both betaA and hA form aggregates and fibrils and kill cultured cells. To investigate whether betaA and hA display peptide-specific toxicity on cultured islet beta-cells, we examined the effects of (1-40)betaA and (25-35)betaA peptides on hA-mediated cell death and [(125)I-Tyr(37)]hA precipitation. Synthetic hA aggregated in solution and evoked both conformation- and sequence-dependent cell death. While neither (1-40)betaA nor (25-35)betaA was toxic to islet beta-cells, they suppressed hA-evoked cell death in a concentration-dependent and saturable manner. Only (1-40)betaA, but not (25-35)betaA, showed trophic effects on cultured islet beta-cells and inhibited the precipitation of [(125)I]hA caused by hA. These results suggest that (25-35)betaA does not interfere with hA-mediated fibril formation. Suppression of hA-evoked death of cultured pancreatic islet beta-cells by the betaA peptides is likely to occur through a competing interaction at these cells. 相似文献
3.
Tumor necrosis factor-alpha (TNF-alpha) mediated attenuation of insulin signaling pathway is an important cause in several disorders like obesity, obesity linked diabetes mellitus. TNF-alpha actions vary depending upon concentration and time of exposure in various cells. In the present study, the effects of long-term TNF-alpha (1 ng/ml) exposure on the components of insulin signaling pathway in HepG2 and HepG2 cells overexpressing constitutively active Akt1/PKB-alpha (HepG2-CA-Akt/PKB) have been investigated. In parental HepG2 cells, TNF-alpha treatment for 24 h reduced the phosphorylation of Akt1/PKB-alpha and GSK-3beta and under these conditions cells also showed reduced insulin responsiveness in terms of Akt1/PKB-alpha and GSK-3beta phosphorylation. TNF-alpha pre-incubated HepG2-CA-Akt/PKB cells showed lower reduction in Akt1/PKB-alpha and GSK-3beta phosphorylation and insulin responsiveness after 24 h as compared to parental HepG2 cells. We report that the long-term TNF-alpha pre-incubation in both parental HepG2 and HepG2-CA-Akt/PKB-alpha cells leads to the reduction in the levels of IRS-1 without altering the levels of IRS-2. In order to understand the reason for the differential insulin resistance in both the cell types, the effect of long-term TNF-alpha treatment on the proteins upstream to Akt/PKB was investigated. TNF-alpha pre-incubation also showed reduced insulin-stimulated Tyr phosphorylation of insulin receptor (IR-beta) in both the cell types, moreover hyperphosphorylation of IRS-1 at Ser 312 residue was observed in TNF-alpha pre-incubated cells. As hyperphosphorylation of IRS-1 at Ser 312 can induce its degradation, it is possible that reduced insulin responsiveness after long-term TNF-alpha pre-incubation observed in this study is due to the decrease in IRS-1 levels. 相似文献
4.
Nuclear localization of β-catenin is integral to its role in Wnt signaling and cancer. Cellular stimulation by Wnt or lithium chloride (LiCl) inactivates glycogen synthase kinase-3β (GSK-3β), causing nuclear accumulation of β-catenin and transactivation of genes that transform cells. β-catenin is a shuttling protein; however, the mechanism by which GSK-3β regulates β-catenin nuclear dynamics is poorly understood. Here, fluorescence recovery after photobleaching assays were used to measure the β-catenin-green fluorescent protein dynamics in NIH 3T3 cells before and after GSK-3β inhibition. We show for the first time that LiCl and Wnt3a cause a specific increase in β-catenin nuclear retention in live cells and in fixed cells after detergent extraction. Moreover, LiCl reduced the rate of nuclear export but did not affect import, hence biasing β-catenin transport toward the nucleus. Interestingly, the S45A mutation, which blocks β-catenin phosphorylation by GSK-3β, did not alter nuclear retention or transport, implying that GSK-3β acts through an independent regulator. We compared five nuclear binding partners and identified LEF-1 as the key mediator of Wnt3a and LiCl-induced nuclear retention of β-catenin. Thus, Wnt stimulation triggered a LEF-1 positive feedback loop to enhance the nuclear chromatin-retained pool of β-catenin by 100-300%. These findings shed new light on regulation of β-catenin nuclear dynamics. 相似文献
5.
Increased lipid peroxidation is shown to be an early event of Alzheimer's disease (AD). However, it is not clear whether and how increased lipid peroxidation might lead to amyloidogenesis, a hallmark of AD. Glutathione peroxidase 4 (Gpx4) is an essential antioxidant defense enzyme that protects an organism against lipid peroxidation. Gpx4+/- mice show increased lipid peroxidation in brain, as evidenced by their elevated levels of 4-hydroxy-2-nonenal. To understand the role of lipid peroxidation in amyloidogenesis, we studied secretase activities in Gpx4+/- mice as a function of age. Both young (6 months) and middle-aged (17-20 months) Gpx4+/- mice had higher levels of beta-secretase activity than their age-matched wildtype controls, and the increased beta-secretase activity in Gpx4+/- mice was a result of up-regulation of beta-site amyloid precursor protein cleavage enzyme 1 (BACE1) expression at the protein level. The high level of BACE1 protein led to increased endogenous beta-amyloid (Abeta)(1-40) in middle-aged Gpx4+/- mice. We further studied amyloidogenesis in APPGpx4+/- mice. Our data indicate that APPGpx4+/- mice had significantly increased amyloid plaque burdens and increased Abeta(1-40) and Abeta(1-42) levels compared with APPGpx4+/+ mice. Therefore, our results indicate that increased lipid peroxidation leads to increased amyloidogenesis through up-regulation of BACE1 expression in vivo, a mechanism that may be important in pathogenesis of AD at early stages. 相似文献
6.
Tsubaki M Kato C Isono A Kaneko J Isozaki M Satou T Itoh T Kidera Y Tanimori Y Yanae M Nishida S 《Journal of cellular biochemistry》2010,111(6):1661-1672
Multiple myeloma (MM) is a bone disease that affects many individuals. It was recently reported that macrophage inflammatory protein (MIP)-1α is constitutively secreted by MM cells. MIP-1α causes bone destruction through the formation of osteoclasts (OCs). However, the molecular mechanism underlying MIP-1α-induced OC formation is not well understood. In the present study, we attempted to clarify the mechanism whereby MIP-1α induces OC formation in a mouse macrophage-like cell line comprising C7 cells. We found that MIP-1α augmented OC formation in a concentration-dependent manner; moreover, it inhibited IFN-β and ISGF3γ mRNA expression, and IFN-β secretion. MIP-1α increased the expressions of phosphorylated ERK1/2 and c-Fos and decreased those of phosphorylated p38MAPK and IRF-3. We found that the MEK1/2 inhibitor U0126 inhibited OC formation by suppressing the MEK/ERK/c-Fos pathway. SB203580 induced OC formation by upregulating c-fos mRNA expression, and SB203580 was found to inhibit IFN-β and IRF-3 mRNA expressions. The results indicate that MIP-1α induces OC formation by activating and inhibiting the MEK/ERK/c-Fos and p38MAPK/IRF-3 pathways, respectively, and suppressing IFN-β expression. These findings may be useful in the development of an OC inhibitor that targets intracellular signaling factors. 相似文献
7.
Vaccinations against amyloid β protein (AβP) reduce amyloid deposition and reverse learning and memory deficits in mouse models of Alzheimer’s disease. This has raised the question of whether circulating antibodies, normally restricted by the blood–brain barrier (BBB), can enter the brain [Nat. Med. 7 (2001) 369–372]. Here, we show that antibody directed against AβP does cross the BBB at a very low rate. Entry is by way of the extracellular pathways with about 0.11% of an intravenous (i.v.) dose entering the brain by 1 h. Clearance of antibody from brain increasingly dominates over time, but antibody is still detectable in brain 72 h after i.v. injection. Uptake and clearance is not altered in mice overexpressing AβP. This ability to enter and exit the brain even in the presence of increased brain ligand supports the use of antibody in the treatment of Alzheimer’s and other diseases of the brain. 相似文献
8.
Alexander Ludwig Jessica Blume Tu-My Diep Ju Yuan José María Mateos Kerstin Leuthäuser Martin Steuble Peter Streit Peter Sonderegger 《Traffic (Copenhagen, Denmark)》2009,10(5):572-589
Kinesin motors are required for the export of membranous cargo from the trans-Golgi network (TGN), yet information about how kinesins are recruited to forming transport intermediates is sparse. Here we show that the Kinesin-1 docking protein calsyntenin-1 localizes to the TGN in vivo and directly and specifically recruits Kinesin-1 to Golgi/TGN membranes as well as to dynamic post-Golgi carriers. Overexpression of various calsyntenin chimeras and kinesin light chain 1 (KLC1) at high levels caused the formation of aberrant membrane stacks at the endoplasmic reticulum (ER) or the Golgi, disrupted overall Golgi structure and blocked exit of calsyntenin from the TGN. Intriguingly, this blockade of calsyntenin exit strongly and selectively impeded TGN exit of amyloid precursor protein (APP). Using live cell microscopy we found that calsyntenins exit the TGN in Kinesin-1-decorated tubular structures which may serve as carriers for calsyntenin-1-mediated post-TGN transport of APP. Abrogation of this pathway via virus-mediated knockdown of calsyntenin-1 expression in primary cultured neurons caused a marked elevation of APP C-terminal fragments. Together, these results indicate a role for calsyntenin-1 in Kinesin-1-dependent TGN exit and post-Golgi transport of APP-containing organelles and further suggest that distinct intracellular routes may exhibit different capacities for proteolytic processing of APP. 相似文献
9.
Langnaese K Richter K Smalla KH Krauss M Thomas U Wolf G Laube G 《Developmental neurobiology》2007,67(4):422-437
Knock out mice deficient for the splice-isoform alphaalpha of neuronal nitric oxide synthase (nNOSalphaalpha) display residual nitric oxide synthase activity and immunosignal. To attribute this signal to the two minor neuronal nitric oxide synthase splice variants, betabeta and gammagamma, we generated isoform-specific anti-peptide antibodies against the nNOSalphaalpha specific betabeta-finger motif involved in PDZ domain scaffolding and the nNOSbetabeta specific N-terminus. The nNOSalphaalpha betabeta-finger-specific antibody clearly recognized the 160-kDa band of recombinant nNOSalphaalpha on Western blots. Using immunocytochemistry, this antibody displayed, in rats and wild-type mice, a labeling pattern similar to but not identical with that obtained using a commercial pan-nNOS antibody. This similarity indicates that the majority of immunocytochemically detectable nNOS is not likely to be complexed with PDZ-domain proteins via the betabeta-finger motif. This conclusion was confirmed by the inhibition of PSD-95/nNOS interaction by the nNOSalphaalpha betabeta-finger antibody in pull-down assays. By contrast, nNOSalphaalpha betabeta-finger labeling was clearly reduced in hippocampal and cortical neuropil areas enriched in NMDA receptor complex containing spine synapses. In nNOSalphaalpha knock out mice, nNOSalphaalpha was not detectable, whereas the pan-nNOS antibody showed a distinct labeling of cell bodies throughout the brain, most likely reflecting betabeta/gammagamma-isoforms in these cells. The nNOSbetabeta antibody clearly detected bacterial expressed nNOSbetabeta fusion protein and nNOSbetabeta in overexpressing HEK cells by Western blotting. Immunocytochemically, individual cell bodies in striatum, cerebral cortex, and in some brain stem nuclei were labeled in knock out but not in wild-type mice, indicating an upregulation of nNOSbetabeta in nNOSalphaalpha deficient animals. 相似文献
10.
Tomasselli AG Qahwash I Emmons TL Lu Y Leone JW Lull JM Fok KF Bannow CA Smith CW Bienkowski MJ Heinrikson RL Yan R 《Journal of neurochemistry》2003,84(5):1006-1017
The involvement of beta-secretase (BACE1; beta-site APP-cleaving enzyme) in producing the beta-amyloid component of plaques found in the brains of Alzheimer's patients, has fueled a major research effort to characterize this protease. Here, we describe work toward understanding the substrate specificity of BACE1 that began by considering the natural APP substrate and its Swedish mutant, APPSw, and proceeded on to include oxidized insulin B chain and ubiquitin substrates. From these findings, and the study of additional synthetic peptides, we determined that a decapeptide derived from APP in which the P3-P2' sequence, ...VKM--DA..., was replaced by ...ISY--EV... (-- = beta site of cleavage), yielded a substrate that was cleaved by BACE1 seven times faster than the corresponding APPSw peptide, SEVNL--DAEFR. The expanded peptide, GLTNIKTEEISEISY--EVEFRWKK, was cleaved an additional seven times faster than its decapeptide counterpart (boldface), and provides a substrate allowing assay of BACE1 at picomolar concentrations. Several APP mutants reflecting these beta-site amino acid changes were prepared as the basis for cellular assays. The APPISYEV mutant proved to be a cellular substrate that was superior to APPSw. The assay based on APPISYEV is highly specific for measuring BACE1 activity in cells; its homolog, BACE2, barely cleaved APPISYEV at the beta-site. Insertion of the optimized ISY--EV motif at either the beta-site (Asp1) or beta'-site (Glu11) directs the rate of cellular processing of APP at these two accessible sites. Thus, we have identified optimal BACE1 substrates that will be useful to elucidate the cellular enzymatic actions of BACE1, and for design of inhibitors that might be of therapeutic benefit in Alzheimer's disease. 相似文献
11.
It has previously been shown that nicotine-evoked dopamine release from rat striatal synaptosomes and nicotine-evoked norepinephrine release from hippocampal synaptosomes are mediated by distinct nicotinic acetylcholine receptor (nAChR) subtypes. In the present study, the functional association of these nicotinic receptors with specific subtypes of voltage-gated calcium channels was examined. Cd(2+) (200 microM), as well as omega-conotoxin MVIIC (5 microM), blocks approximately 85% of nicotine-evoked dopamine release from striatal synaptosomes, indicating a major involvement of calcium channels. Furthermore, the toxin-susceptibility suggests that these calcium channels contain alpha(1A) and/or alpha(1B) subunits. Inhibition of nicotine-evoked dopamine release by conotoxins alpha-MII and omega-GVIA is additive and indicates that presynaptic alpha3beta2 nAChRs are functionally coupled to alpha(1A), but not alpha(1B), calcium channel subtypes. Conversely, insensitivity to alpha-AuIB and sensitivity to omega-MVIIC indicate that non-alpha3beta2/alpha3beta4-containing nAChRs are functionally coupled to alpha(1B)-containing calcium channels. In contrast, Cd(2+) blocks only 65% of nicotine-evoked norepinephrine release from hippocampal synaptosomes, indicating that a substantial fraction of this release occurs through mechanisms not involving calcium channels. This Cd(2+)-insensitive component of release is blocked by alpha-AuIB and therefore appears to be triggered by Ca(2+) flowing directly through the channels of presynaptic alpha3beta4 nAChRs. Thus, these data indicate that different presynaptic termini can have distinctive functional associations of specific nAChRs and voltage-gated calcium channels. 相似文献
12.
The class A beta-lactamase TEM-1 is a key bacterial resistance enzyme against beta-lactam antibiotics, but little is known about the energetic bases for complementarity between TEM-1 and its inhibitors. Most inhibitors form a covalent adduct with the catalytic Ser70, making the measurement of equilibrium constants, and hence interaction energies, technically difficult. This study evaluates noncovalent interactions within covalent complexes by examining the differential stability of TEM-1 and its inhibitor adducts. The thermal denaturation of TEM-1 follows a two-state, reversible model with a melting temperature (T(m)) of 51.6C and a van't Hoff enthalpy of unfolding (DeltaH(VH)) of 146.2 kcal/mol at pH 7.0. The stability of the enzyme changes on forming an inhibitor adduct. As expected, some inhibitors stabilize TEM-1; transition-state analogues increase the T(m) by up to 3.7C (1.7 kcal/mol). Surprisingly, all beta-lactam covalent acyl--enzyme complexes tested destabilize TEM-1 significantly relative to the apo-enzyme. For instance, the clinically used inhibitor clavulanic acid and the beta-lactamase-resistant beta-lactams moxalactam and imipenem destabilize TEM-1 by over 2.6C (1.2 kcal/mol) in their covalent adducts. Based on the structure of the TEM-1/imipenem complex (Maveyraud et al., J Am Chem Soc 1998;120:9748--52), destabilization by moxalactam and imipenem is thought to be caused by a steric clash between the side-chain of Asn132 and the 6(7)-alpha group of these beta-lactams. To test this hypothesis, the mutant enzyme N132A was made. In contrast with wild-type, the covalent complexes between N132A and both imipenem and moxalactam stabilize the enzyme, consistent with the hypothesis. To investigate the structural bases of this dramatic change in stability, the structure of N132A/imipenem was determined by X-ray crystallography. In the complex with N132A, imipenem adopts a very different conformation from that observed in the wild-type complex, and the putative destabilizing interaction with residue 132 is relieved. Studies of several enzymes suggest that beta-lactams, and covalent inhibitors in general, can have either net favorable or net unfavorable noncovalent interaction energies within the covalent complex. In the case of TEM-1, such unfavorable interactions convert substrate analogues into very effective inhibitors. 相似文献
13.
Ariyama Y Shimizu H Satoh T Tsuchiya T Okada S Oyadomari S Mori M Mori M 《Obesity (Silver Spring, Md.)》2007,15(7):1647-1656
14.
Chung IM Ali M Ahmad A Chun SC Kim JT Sultana S Kim JS Min SK Seo BR 《Phytochemical analysis : PCA》2007,18(2):133-145
Two new compounds, 14-methyl stigmast-9(11)-en-3alpha-ol-3beta-D-glucopyranoside (1) and cholest-11-en-3beta, 6beta, 7alpha, 22beta-tetraol-24-one-3beta-palmitoleate (2), along with the known compound beta-sitosteryl-3beta-D-glucopyranosyl-6'-linoleiate (3), were isolated from the methanolic extract of rice (Oryza sativa) hulls. The structures of the two new compounds were elucidated using one- and two-dimensional NMR in combination with IR, EI/MS, FAB/MS, HR-EI/MS and HR-FAB/MS. In bioassays with blue-green algae, Microcystis aeruginosa UTEX 2388 and duckweed, Lemna paucicostata Hegelm 381, the efficacy of bioactivity of the two new compounds linearly increased as the concentration increased from 0.3 to 300 IgM. Compared with momilactone A, compounds 1 and 2 showed similar and higher inhibitory activities against the growth of M. aeruginosa at a concentration of 300 microM. However, compound 2 was similar to momilactone A in inhibiting L. paucicostata growth at a concentration of 300 microM. As a result, compound 2 appears to have a strong potential for the environmentally friendly control of weed and algae that are harmful to water-logged rice. 相似文献
15.
Bastian Dislich Alessio Colombo Ulrike Zeitschel Joachim W Ellwart Elisabeth Kremmer Steffen Roßner Stefan F Lichtenthaler 《The EMBO journal》2010,29(17):3020-3032
The amyloid precursor protein (APP) undergoes constitutive shedding by a protease activity called α‐secretase. This is considered an important mechanism preventing the generation of the Alzheimer's disease amyloid‐β peptide (Aβ). α‐Secretase appears to be a metalloprotease of the ADAM family, but its identity remains to be established. Using a novel α‐secretase‐cleavage site‐specific antibody, we found that RNAi‐mediated knockdown of ADAM10, but surprisingly not of ADAM9 or 17, completely suppressed APP α‐secretase cleavage in different cell lines and in primary murine neurons. Other proteases were not able to compensate for this loss of α‐cleavage. This finding was further confirmed by mass‐spectrometric detection of APP‐cleavage fragments. Surprisingly, in different cell lines, the reduction of α‐secretase cleavage was not paralleled by a corresponding increase in the Aβ‐generating β‐secretase cleavage, revealing that both proteases do not always compete for APP as a substrate. Instead, our data suggest a novel pathway for APP processing, in which ADAM10 can partially compete with γ‐secretase for the cleavage of a C‐terminal APP fragment generated by β‐secretase. We conclude that ADAM10 is the physiologically relevant, constitutive α‐secretase of APP. 相似文献
16.
The purpose of this article is to present arguments based on experimental data that the beta-sheet structures in proteins are the result of the tendency to minimize surface areas. Thus, we propose the model that all beta-sheet structures are almost minimal surfaces, namely, their mean curvatures are nearly zero. To support this model, we chose 1740 disjoint beta-sheets with less than 10 strands from the all beta-protein class in a nonredundant 40% Structural Classification of Proteins (SCOP) database and applied the least-squares method to fit the minimal surface catenoid (and in some rare cases, the plane) to the beta-sheet structures. The fitting errors were extremely small: The error of 1729 beta-sheets with catenoid minimal surface is 0.90 +/- 0.55 A and the error of the remaining 11 flat sheets with the plane is 0.64 +/- 0.46 A. The fact that the commonly used models for some beta-sheet surfaces (i.e., the hyperboloid and strophoid) have very small mean curvatures (< 0.05) supports our model. Moreover, we showed that this model also includes the isotropically stressed configuration model proposed by Salemme, in which the intrastrand tendency of the individual chains to twist or coil is in equilibrium with the tendency of the interstrand hydrogen bonding to resist twisting of the sheet as a whole. As an application we used our model to quantify the two principal independent modes in the flexibility of beta-sheets, that is, the bending parameter of beta-sheets and the inclined angle of beta-strands in a sheet. 相似文献
17.
Over the past 30 years, the beneficial therapeutic effects of selected low energy, time varying electromagnetic fields (EMF) have been documented with increasing frequency to treat therapeutically resistant problems of the musculoskeletal system. However, the underlying mechanisms at a cellular level are still not completely understood. In this study, the effects of extremely low frequency pulsed electromagnetic fields (ELF-PEMF) on osteoclastogenesis, cultured from murine bone marrow cells and stimulated by 1,25(OH)(2)D(3), were examined. Primary bone marrow cells were cultured from mature Wistar rats and exposed to ELF-PEMF stimulation daily for 7 days with different intensities of induced electric field (4.8, 8.7, and 12.2 micro V/cm rms) and stimulation times (0.5, 2, and 8 h/day). Recruitment and authentication of osteoclast-like cells were evaluated, respectively, by determining multinuclear, tartrate resistant acid phosphatase (TRAP) positive cells on day 8 of culture and by the pit formation assay. During the experiments, cytokines such as tumor necrosis factor-alpha (TNF-alpha), interleukin 1-beta (IL-1beta), and prostaglandin-E(2) (PGE(2)) were assayed using the enzyme linked immunosorbent assay (ELISA). These findings suggest that ELF-PEMF can both enhance (approximately 50%) and suppress (approximately 27%) the formation of osteoclast-like cells in bone marrow culture, depending on the induced electric field intensity. In addition, consistent correlations were observed between TNF-alpha, IL-1beta, and osteoclast-like cell number after exposure to different induced electric field intensities of ELF-PEMF. This in vitro study could be considered as groundwork for in vivo ELF-PEMF clinical applications on some osteoclast-associated bone diseases. 相似文献
18.
As a candidate for active vitamin D analogs that have selective effects on bone, 1alpha,25-dihydroxy-2beta-(3-hydroxypropoxy)vitamin D3 (ED-71) has been synthesized and is currently under clinical trials. In ovariectomized rat model for osteoporosis, ED-71 caused an increase bone mass at the lumbar vertebra to a greater extent than 1alpha-hydroxyvitamin D3 (alfacalcidol), while enhancing calcium absorption and decreasing serum parathyroid hormone levels to the same degree as alfacalcidol. ED-71 lowered the biochemical and histological parameters of bone resorption more potently than alfacalcidol, while maintaining bone formation markers.An early phase II clinical trial was conducted with 109 primary osteoporotic patients. The results indicate that oral daily administration of ED-71 (0.25, 0.5, 0.75, and 1.0 microgram) for 6 months increased lumbar bone mineral density in a dose-dependent manner without causing hypercalcemia and hypercalciuria. ED-71 also exhibited a dose-dependent suppression of urinary deoxypyridinoline with no significant reduction in serum osteocalcin. These results demonstrate that ED-71 has preferential effects on bone with diminished effects on intestinal calcium absorption. ED-71 offers potentially a new modality of therapy for osteoporosis with selective effects on bone. 相似文献
19.
Zajdel RW Denz CR Lee S Dube S Ehler E Perriard E Perriard JC Dube DK 《Journal of cellular biochemistry》2003,89(3):427-439
20.
Kametani F 《FEBS letters》2004,570(1-3):73-76
Abeta is the major component of amyloid in the brain in Alzheimer's disease and is derived from Alzheimer amyloid precursor protein (APP) by sequential proteolytic cleavage involving alpha-, beta- and gamma-secretase. Recently, gamma-secretase was shown to cleave near the cytoplasmic membrane boundary of APP (called the epsilon-cleavage), as well as in the middle of the membrane domain (gamma-cleavage). However, the precise relationship between gamma- and epsilon-cleavage is still unknown. In this paper, I analyzed Abeta-related peptides using immunoprecipitation and liquid chromatography ion trap mass spectrometer and found some long Abeta-related peptides, starting at Abeta residues 16Lys-23Asp and ending at 43Thr-52Leu, in the culture media of COS-1 cells and in human brain extract. These results indicated that longer Abeta-related peptides cleaved at epsilon-cleavage site were secreted under normal conditions and were dependent on the alpha-secretase cleavage products. 相似文献