首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increased lipid peroxidation is shown to be an early event of Alzheimer's disease (AD). However, it is not clear whether and how increased lipid peroxidation might lead to amyloidogenesis, a hallmark of AD. Glutathione peroxidase 4 (Gpx4) is an essential antioxidant defense enzyme that protects an organism against lipid peroxidation. Gpx4+/- mice show increased lipid peroxidation in brain, as evidenced by their elevated levels of 4-hydroxy-2-nonenal. To understand the role of lipid peroxidation in amyloidogenesis, we studied secretase activities in Gpx4+/- mice as a function of age. Both young (6 months) and middle-aged (17-20 months) Gpx4+/- mice had higher levels of beta-secretase activity than their age-matched wildtype controls, and the increased beta-secretase activity in Gpx4+/- mice was a result of up-regulation of beta-site amyloid precursor protein cleavage enzyme 1 (BACE1) expression at the protein level. The high level of BACE1 protein led to increased endogenous beta-amyloid (Abeta)(1-40) in middle-aged Gpx4+/- mice. We further studied amyloidogenesis in APPGpx4+/- mice. Our data indicate that APPGpx4+/- mice had significantly increased amyloid plaque burdens and increased Abeta(1-40) and Abeta(1-42) levels compared with APPGpx4+/+ mice. Therefore, our results indicate that increased lipid peroxidation leads to increased amyloidogenesis through up-regulation of BACE1 expression in vivo, a mechanism that may be important in pathogenesis of AD at early stages.  相似文献   

2.
The amyloid precursor protein (APP) and presenilin-1 (PS-1) are not only of importance for the normal functioning of the various neurons, but also play central roles in the pathogenesis of Alzheimer’s disease (AD). Through the use of immunohistochemical and Western blot techniques, the bidirectional axonal transport of these proteins has been demonstrated in the sciatic nerve of adult rat. Double-ligation of the sciatic nerve for 6, 12 or 24 h was observed to cause a progressive accumulation of the 45 kDa presenilin-1 holoprotein and APPs with molecular masses of 116 and 94 kDa on both sites of the ligature. It is concluded that the functions of presenilin-1 and APPs are not restricted to the neuronal perikarya: they may carry information in both directions, from the cell body to the axon terminals and vice versa.  相似文献   

3.
Calsyntenins Mediate TGN Exit of APP in a Kinesin-1-Dependent Manner   总被引:1,自引:0,他引:1  
Kinesin motors are required for the export of membranous cargo from the trans-Golgi network (TGN), yet information about how kinesins are recruited to forming transport intermediates is sparse. Here we show that the Kinesin-1 docking protein calsyntenin-1 localizes to the TGN in vivo and directly and specifically recruits Kinesin-1 to Golgi/TGN membranes as well as to dynamic post-Golgi carriers. Overexpression of various calsyntenin chimeras and kinesin light chain 1 (KLC1) at high levels caused the formation of aberrant membrane stacks at the endoplasmic reticulum (ER) or the Golgi, disrupted overall Golgi structure and blocked exit of calsyntenin from the TGN. Intriguingly, this blockade of calsyntenin exit strongly and selectively impeded TGN exit of amyloid precursor protein (APP). Using live cell microscopy we found that calsyntenins exit the TGN in Kinesin-1-decorated tubular structures which may serve as carriers for calsyntenin-1-mediated post-TGN transport of APP. Abrogation of this pathway via virus-mediated knockdown of calsyntenin-1 expression in primary cultured neurons caused a marked elevation of APP C-terminal fragments. Together, these results indicate a role for calsyntenin-1 in Kinesin-1-dependent TGN exit and post-Golgi transport of APP-containing organelles and further suggest that distinct intracellular routes may exhibit different capacities for proteolytic processing of APP.  相似文献   

4.
Alpha- and beta-synuclein are closely related proteins, the first of which is associated with deposits formed in neurodegenerative conditions such as Parkinson's disease while the second appears to have no relationship to any such disorders. The aggregation behavior of alpha- and beta-synuclein as well as a series of chimeric variants were compared by exploring the structural transitions that occur in the presence of a widely used lipid mimetic, sodium dodecyl sulfate (SDS). We found that the aggregation rates of all these protein variants are significantly enhanced by low concentrations of SDS. In particular, we inserted the 11-residue sequence of mainly hydrophobic residues from the non-amyloid-beta-component (NAC) region of alpha-synuclein into beta-synuclein and show that the fibril formation rate of this chimeric protein is only weakly altered from that of beta-synuclein. These intrinsic propensities to aggregate are rationalized to a very high degree of accuracy by analysis of the sequences in terms of their associated physicochemical properties. The results begin to reveal that the differences in behavior are primarily associated with a delicate balance between the positions of a range of charged and hydrophobic residues rather than the commonly assumed presence or absence of the highly aggregation-prone region of the NAC region of alpha-synuclein. This conclusion provides new insights into the role of alpha-synuclein in disease and into the factors that regulate the balance between solubility and aggregation of a natively unfolded protein.  相似文献   

5.
The involvement of beta-secretase (BACE1; beta-site APP-cleaving enzyme) in producing the beta-amyloid component of plaques found in the brains of Alzheimer's patients, has fueled a major research effort to characterize this protease. Here, we describe work toward understanding the substrate specificity of BACE1 that began by considering the natural APP substrate and its Swedish mutant, APPSw, and proceeded on to include oxidized insulin B chain and ubiquitin substrates. From these findings, and the study of additional synthetic peptides, we determined that a decapeptide derived from APP in which the P3-P2' sequence, ...VKM--DA..., was replaced by ...ISY--EV... (-- = beta site of cleavage), yielded a substrate that was cleaved by BACE1 seven times faster than the corresponding APPSw peptide, SEVNL--DAEFR. The expanded peptide, GLTNIKTEEISEISY--EVEFRWKK, was cleaved an additional seven times faster than its decapeptide counterpart (boldface), and provides a substrate allowing assay of BACE1 at picomolar concentrations. Several APP mutants reflecting these beta-site amino acid changes were prepared as the basis for cellular assays. The APPISYEV mutant proved to be a cellular substrate that was superior to APPSw. The assay based on APPISYEV is highly specific for measuring BACE1 activity in cells; its homolog, BACE2, barely cleaved APPISYEV at the beta-site. Insertion of the optimized ISY--EV motif at either the beta-site (Asp1) or beta'-site (Glu11) directs the rate of cellular processing of APP at these two accessible sites. Thus, we have identified optimal BACE1 substrates that will be useful to elucidate the cellular enzymatic actions of BACE1, and for design of inhibitors that might be of therapeutic benefit in Alzheimer's disease.  相似文献   

6.
7.
The combined effect of prostaglandin F2alpha (PGF2alpha) and cAMP on glucose transport in 3T3-L1 adipocytes was examined. In cells pretreated with PGF2alpha and 8-bromo cAMP for 8 h, a synergy between these two agents on glucose uptake was found. Insulin-stimulated glucose transport, on the other hand, was only slightly affected. The synergistic effect of these two agents was suppressed in the presence of cycloheximide and actinomycin D. In concord, immunoblot and Northern blot analyses revealed that GLUT1 protein and mRNA levels were both increased in cells pretreated with both PGF2alpha and 8-bromo cAMP, greater than the additive effect of each agent alone. The synergistic action of PGF2alpha with 8-bromo cAMP to enhance glucose transport was inhibited by GF109203X, a selective protein kinase C (PKC) inhibitor. In addition, in cells depleted of diacylglycerol-sensitive PKC by prolonged treatment with 4beta-phorbol 12beta-myristate 13alpha-acetate, a PKC activator, the synergistic effects of PGF2alpha and 8-bromo cAMP on glucose transport and GLUT1 mRNA accumulation were both abolished. Taken together, these results indicate that PGF2alpha may act with cAMP in a synergistic way to increase glucose transport, probably through enhanced GLUT1 expression by a PKC-dependent mechanism.  相似文献   

8.
Wang X  Minasov G  Shoichet BK 《Proteins》2002,47(1):86-96
The class A beta-lactamase TEM-1 is a key bacterial resistance enzyme against beta-lactam antibiotics, but little is known about the energetic bases for complementarity between TEM-1 and its inhibitors. Most inhibitors form a covalent adduct with the catalytic Ser70, making the measurement of equilibrium constants, and hence interaction energies, technically difficult. This study evaluates noncovalent interactions within covalent complexes by examining the differential stability of TEM-1 and its inhibitor adducts. The thermal denaturation of TEM-1 follows a two-state, reversible model with a melting temperature (T(m)) of 51.6C and a van't Hoff enthalpy of unfolding (DeltaH(VH)) of 146.2 kcal/mol at pH 7.0. The stability of the enzyme changes on forming an inhibitor adduct. As expected, some inhibitors stabilize TEM-1; transition-state analogues increase the T(m) by up to 3.7C (1.7 kcal/mol). Surprisingly, all beta-lactam covalent acyl--enzyme complexes tested destabilize TEM-1 significantly relative to the apo-enzyme. For instance, the clinically used inhibitor clavulanic acid and the beta-lactamase-resistant beta-lactams moxalactam and imipenem destabilize TEM-1 by over 2.6C (1.2 kcal/mol) in their covalent adducts. Based on the structure of the TEM-1/imipenem complex (Maveyraud et al., J Am Chem Soc 1998;120:9748--52), destabilization by moxalactam and imipenem is thought to be caused by a steric clash between the side-chain of Asn132 and the 6(7)-alpha group of these beta-lactams. To test this hypothesis, the mutant enzyme N132A was made. In contrast with wild-type, the covalent complexes between N132A and both imipenem and moxalactam stabilize the enzyme, consistent with the hypothesis. To investigate the structural bases of this dramatic change in stability, the structure of N132A/imipenem was determined by X-ray crystallography. In the complex with N132A, imipenem adopts a very different conformation from that observed in the wild-type complex, and the putative destabilizing interaction with residue 132 is relieved. Studies of several enzymes suggest that beta-lactams, and covalent inhibitors in general, can have either net favorable or net unfavorable noncovalent interaction energies within the covalent complex. In the case of TEM-1, such unfavorable interactions convert substrate analogues into very effective inhibitors.  相似文献   

9.
The synthesis of galactoglycerolipids, which are prevalent in photosynthetic membranes, involves enzymes at the endoplasmic reticulum (ER) and the chloroplast envelope membranes. Genetic analysis of trigalactosyldiacylglycerol (TGD) proteins in Arabidopsis has demonstrated their role in polar lipid transfer from the ER to the chloroplast. The TGD1, 2, and 3 proteins resemble components of a bacterial-type ATP-binding cassette (ABC) transporter, with TGD1 representing the permease, TGD2 the substrate binding protein, and TGD3 the ATPase. However, the function of the TGD4 protein in this process is less clear and its location in plant cells remains to be firmly determined. The predicted C-terminal β-barrel structure of TGD4 is weakly similar to proteins of the outer cell membrane of Gram-negative bacteria. Here, we show that, like TGD2, the TGD4 protein when fused to DsRED specifically binds phosphatidic acid (PtdOH). As previously shown for tgd1 mutants, tgd4 mutants have elevated PtdOH content, probably in extraplastidic membranes. Using highly purified and specific antibodies to probe different cell fractions, we demonstrated that the TGD4 protein was present in the outer envelope membrane of chloroplasts, where it appeared to be deeply buried within the membrane except for the N-terminus, which was found to be exposed to the cytosol. It is proposed that TGD4 is either directly involved in the transfer of polar lipids, possibly PtdOH, from the ER to the outer chloroplast envelope membrane or in the transfer of PtdOH through the outer envelope membrane.  相似文献   

10.
Dasgupta B  Pal L  Basu G  Chakrabarti P 《Proteins》2004,55(2):305-315
Like the beta-turns, which are characterized by a limiting distance between residues two positions apart (i, i+3), a distance criterion (involving residues at positions i and i+4) is used here to identify alpha-turns from a database of known protein structures. At least 15 classes of alpha-turns have been enumerated based on the location in the phi,psi space of the three central residues (i+1 to i+3)-one of the major being the class AAA, where the residues occupy the conventional helical backbone torsion angles. However, moving towards the C-terminal end of the turn, there is a shift in the phi,psi angles towards more negative phi, such that the electrostatic repulsion between two consecutive carbonyl oxygen atoms is reduced. Except for the last position (i+4), there is not much similarity in residue composition at different positions of hydrogen and non-hydrogen bonded AAA turns. The presence or absence of Pro at i+1 position of alpha- and beta-turns has a bearing on whether the turn is hydrogen-bonded or without a hydrogen bond. In the tertiary structure, alpha-turns are more likely to be found in beta-hairpin loops. The residue composition at the beginning of the hydrogen bonded AAA alpha-turn has similarity with type I beta-turn and N-terminal positions of helices, but the last position matches with the C-terminal capping position of helices, suggesting that the existence of a "helix cap signal" at i+4 position prevents alpha-turns from growing into helices. Our results also provide new insights into alpha-helix nucleation and folding.  相似文献   

11.
12.
Banks WA  Terrell B  Farr SA  Robinson SM  Nonaka N  Morley JE 《Peptides》2002,23(12):2223-2226
Vaccinations against amyloid β protein (AβP) reduce amyloid deposition and reverse learning and memory deficits in mouse models of Alzheimer’s disease. This has raised the question of whether circulating antibodies, normally restricted by the blood–brain barrier (BBB), can enter the brain [Nat. Med. 7 (2001) 369–372]. Here, we show that antibody directed against AβP does cross the BBB at a very low rate. Entry is by way of the extracellular pathways with about 0.11% of an intravenous (i.v.) dose entering the brain by 1 h. Clearance of antibody from brain increasingly dominates over time, but antibody is still detectable in brain 72 h after i.v. injection. Uptake and clearance is not altered in mice overexpressing AβP. This ability to enter and exit the brain even in the presence of increased brain ligand supports the use of antibody in the treatment of Alzheimer’s and other diseases of the brain.  相似文献   

13.
Amyloid deposition is a common feature of Alzheimer's disease and type 2 diabetes related to beta-amyloid peptides (betaA) and human amylin (hA), respectively. Both betaA and hA form aggregates and fibrils and kill cultured cells. To investigate whether betaA and hA display peptide-specific toxicity on cultured islet beta-cells, we examined the effects of (1-40)betaA and (25-35)betaA peptides on hA-mediated cell death and [(125)I-Tyr(37)]hA precipitation. Synthetic hA aggregated in solution and evoked both conformation- and sequence-dependent cell death. While neither (1-40)betaA nor (25-35)betaA was toxic to islet beta-cells, they suppressed hA-evoked cell death in a concentration-dependent and saturable manner. Only (1-40)betaA, but not (25-35)betaA, showed trophic effects on cultured islet beta-cells and inhibited the precipitation of [(125)I]hA caused by hA. These results suggest that (25-35)betaA does not interfere with hA-mediated fibril formation. Suppression of hA-evoked death of cultured pancreatic islet beta-cells by the betaA peptides is likely to occur through a competing interaction at these cells.  相似文献   

14.
The restriction endonuclease (REase) R. HphI is a Type IIS enzyme that recognizes the asymmetric target DNA sequence 5'-GGTGA-3' and in the presence of Mg(2+) hydrolyzes phosphodiester bonds in both strands of the DNA at a distance of 8 nucleotides towards the 3' side of the target, producing a 1 nucleotide 3'-staggered cut in an unspecified sequence at this position. REases are typically ORFans that exhibit little similarity to each other and to any proteins in the database. However, bioinformatics analyses revealed that R.HphI is a member of a relatively big sequence family with a conserved C-terminal domain and a variable N-terminal domain. We predict that the C-terminal domains of proteins from this family correspond to the nuclease domain of the HNH superfamily rather than to the most common PD-(D/E)XK superfamily of nucleases. We constructed a three-dimensional model of the R.HphI catalytic domain and validated our predictions by site-directed mutagenesis and studies of DNA-binding and catalytic activities of the mutant proteins. We also analyzed the genomic neighborhood of R.HphI homologs and found that putative nucleases accompanied by a DNA methyltransferase (i.e. predicted REases) do not form a single group on a phylogenetic tree, but are dispersed among free-standing putative nucleases. This suggests that nucleases from the HNH superfamily were independently recruited to become REases in the context of RM systems multiple times in the evolution and that members of the HNH superfamily may be much more frequent among the so far unassigned REase sequences than previously thought.  相似文献   

15.
Previous studies showed that prostaglandin F2alpha (PGF2alpha) stimulated fibroblast growth factor-2 (FGF-2) and fibroblast growth factor receptor 2 (FGFR2) cytosolic and nuclear accumulation, however, the endocytic pathway has not been elucidated. This study demonstrates that although PGF2alpha increased the formation of clathrin-coated structures in Py1a rat osteoblasts, they were not involved in FGF-2 and FGFR2 trafficking. PGF2alpha increased binding of FGF-2 and FGFR2 and co-localization of reactive sites in addition to nuclear translocation at the nuclear pore complex level. FGF-2 and FGFR2 were in close spatial correlation with importin beta, further supporting nuclear import of the FGF-2/FGFR2 complex. Immunogold and immunofluorescence techniques as well as Western blotting demonstrated increased importin beta protein labeling in response to PGF2alpha. Similar to PGF2alpha, phorbol 12-myristate 13-acetate (PMA) also increased importin beta protein. These data strongly suggest that prostaglandins may regulate osteoblast metabolism via FGF-2/FGFR2/importin beta nuclear trafficking.  相似文献   

16.
Koh E  Kim T 《Proteins》2005,61(3):559-569
The purpose of this article is to present arguments based on experimental data that the beta-sheet structures in proteins are the result of the tendency to minimize surface areas. Thus, we propose the model that all beta-sheet structures are almost minimal surfaces, namely, their mean curvatures are nearly zero. To support this model, we chose 1740 disjoint beta-sheets with less than 10 strands from the all beta-protein class in a nonredundant 40% Structural Classification of Proteins (SCOP) database and applied the least-squares method to fit the minimal surface catenoid (and in some rare cases, the plane) to the beta-sheet structures. The fitting errors were extremely small: The error of 1729 beta-sheets with catenoid minimal surface is 0.90 +/- 0.55 A and the error of the remaining 11 flat sheets with the plane is 0.64 +/- 0.46 A. The fact that the commonly used models for some beta-sheet surfaces (i.e., the hyperboloid and strophoid) have very small mean curvatures (< 0.05) supports our model. Moreover, we showed that this model also includes the isotropically stressed configuration model proposed by Salemme, in which the intrastrand tendency of the individual chains to twist or coil is in equilibrium with the tendency of the interstrand hydrogen bonding to resist twisting of the sheet as a whole. As an application we used our model to quantify the two principal independent modes in the flexibility of beta-sheets, that is, the bending parameter of beta-sheets and the inclined angle of beta-strands in a sheet.  相似文献   

17.
18.
19.
Since our original demonstration of the metabolism of 1alpha,25(OH)2D3 into 1alpha,25(OH)2-3-epi-D3 in human keratinocytes, there have been several reports indicating that epimerization of the 3 hydroxyl group of vitamin D compounds is a common metabolic process. Recent studies reported the metabolism of 25OHD3 and 24(R),25(OH)2D3 into their respective C-3 epimers, indicating that the presence of 1alpha hydroxyl group is not necessary for the 3-epimerization of vitamin D compounds. To determine whether the presence of a 25 hydroxyl group is required for 3-epimerization of vitamin D compounds, we investigated the metabolism of 1alphaOHD3, a non-25 hydroxylated vitamin D compound, in rat osteosarcoma cells (ROS 17/2.8). We noted metabolism of 1alphaOHD3 into a less polar metabolite which was unequivocally identified as 1alphaOH-3-epi-D3 using the techniques of HPLC, GC/MS, and 1H-NMR analysis. We also identified 1alphaOH-3-epi-D3 as a circulating metabolite in rats treated with pharmacological concentrations of 1alphaOHD3. Thus, these results indicated that the presence of a 25 hydroxyl group is not required for 3-epimerization of vitamin D compounds. Furthermore, the results from the same studies also provided evidence to indicate that 1alphaOH-3-epi-D3, like 1alphaOHD3, is hydroxylated at C-25. We then evaluated the biological activities of 1alphaOH-3-epi-D3. Treatment of normal rats every other day for 7 days with 2.5 nmol/kg of 1alphaOH-3-epi-D3 did not raise serum calcium, while the same dose of 1alphaOHD3 increased serum calcium by 3.39 +/- 0.52 mg/dl. Interestingly, in the same rats which received 1alphaOH-3-epi-D3 we also noted a reduction in circulating PTH levels by 65 +/- 7%. This ability of 1alphaOH-3-epi-D3 to suppress PTH levels in normal rats without altering serum calcium was further tested in rats with reduced renal function. The results indicated that the ED50 of 1alphaOH-3-epi-D3 for suppression of PTH was only slightly higher than that of 1alpha,25(OH)2D3, but that the threshold dose of the development of hypercalcemia (total serum Ca > 10.5 mg/dl) was nearly 80 times higher. These findings indicate that 1alphaOH-3-epi-D3 is a highly selective vitamin D analog with tremendous potential for treatment of secondary hyperparathyroidism in chronic renal failure patients.  相似文献   

20.
It has previously been shown that nicotine-evoked dopamine release from rat striatal synaptosomes and nicotine-evoked norepinephrine release from hippocampal synaptosomes are mediated by distinct nicotinic acetylcholine receptor (nAChR) subtypes. In the present study, the functional association of these nicotinic receptors with specific subtypes of voltage-gated calcium channels was examined. Cd(2+) (200 microM), as well as omega-conotoxin MVIIC (5 microM), blocks approximately 85% of nicotine-evoked dopamine release from striatal synaptosomes, indicating a major involvement of calcium channels. Furthermore, the toxin-susceptibility suggests that these calcium channels contain alpha(1A) and/or alpha(1B) subunits. Inhibition of nicotine-evoked dopamine release by conotoxins alpha-MII and omega-GVIA is additive and indicates that presynaptic alpha3beta2 nAChRs are functionally coupled to alpha(1A), but not alpha(1B), calcium channel subtypes. Conversely, insensitivity to alpha-AuIB and sensitivity to omega-MVIIC indicate that non-alpha3beta2/alpha3beta4-containing nAChRs are functionally coupled to alpha(1B)-containing calcium channels. In contrast, Cd(2+) blocks only 65% of nicotine-evoked norepinephrine release from hippocampal synaptosomes, indicating that a substantial fraction of this release occurs through mechanisms not involving calcium channels. This Cd(2+)-insensitive component of release is blocked by alpha-AuIB and therefore appears to be triggered by Ca(2+) flowing directly through the channels of presynaptic alpha3beta4 nAChRs. Thus, these data indicate that different presynaptic termini can have distinctive functional associations of specific nAChRs and voltage-gated calcium channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号