首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein phosphorylation is a key regulatory mechanism of cellular signalling processes. The analysis of phosphorylated proteins and the characterisation of phosphorylation sites under different biological conditions are some of the most challenging tasks in current proteomics research. Reduction of the sample complexity is one major step for the analysis of low-abundance kinase substrates, which can be achieved by various subcellular fractionation techniques. One strategy is the enrichment of phosphorylated proteins or peptides by immunoprecipitation or chromatography, e.g. immobilised metal affinity chromatography, prior to analysis. 2-DE gels are powerful tools for the analysis of phosphoproteins when combined with new multiplexing techniques like DIGE, phosphospecific stains, autoradiography or immunoblotting. In addition, several gel-free methods combining chromatography with highly sensitive MS have been successfully applied for the analysis of complex phosphoproteomes. Recently developed approaches like KESTREL or 'chemical genetics' and also protein microarrays offer new possibilities for the identification of specific kinase targets. This review summarises various strategies for the analyses of phosphoproteins with a special focus on the identification of novel kinase substrates.  相似文献   

2.
The Ser/Thr protein kinases fall into three major subgroups, pro-directed, basophilic, and acidophilic, on the basis of the types of substrate sequences that they preferred. Despite many phosphoproteomics efforts that have been taken for global profiling of phosphopeptides, methodologies focusing on analyzing a particular type of kinase substrates have seldom been reported. Selective enrichment of phosphopeptides from basophilic kinase substrates is difficult because basophilic motifs are cleaved by trypsin during digestion. In this study, we develop a negative enrichment strategy to enhance the identification of basophilic kinase substrates. This method is based on an observation that high pH strong anion exchange (SAX) chromatography can separate tryptic phosphopeptides according to the number of acidic amino acidic residues that they have. Thus, SAX was applied to deplete acidic phosphopeptides from the phosphopeptide mixture, which improved the coverage for the detection of basophilic kinase substrates. The SAX depletion approach was further combined with online SCX-RP separation for large-scale analysis of mouse liver phosphoproteome, which resulted in the identification of 6944 phosphorylated sites. It was found that motifs associated with basophilic kinases prevail for these identified phosphorylated sites.  相似文献   

3.
Regulation of all cellular processes requires dynamic regulation of protein phosphorylation. We have developed an unbiased system to globally quantify the phosphorylation index for substrates of a specific kinase by independently quantifying phosphorylated and total substrate molecules in a reverse in-gel kinase assay. Non-phosphorylated substrate molecules are first quantified in the presence and absence of a specific stimulus. Total substrate molecules are then measured after complete chemical dephosphorylation, and a ratio of phosphorylated to total substrate is derived. To demonstrate the utility of this approach, we profiled and quantified changes in phosphorylation index for Protein Kinase CK2 substrates that respond to a small-molecule inhibitor. A broad range of inhibitor-induced changes in phosphorylation was observed in cultured cells. Differences among substrates in the kinetics of phosphorylation change were also revealed. Comparison of CK2 inhibitor-induced changes in phosphorylation in cultured cells and in mouse peripheral blood lymphocytes in vivo revealed distinct kinetic and depth-of-response profiles. This technology provides a new approach to facilitate functional analyses of kinase-specific phosphorylation events. This strategy can be used to dissect the role of phosphorylation in cellular events, to facilitate kinase inhibitor target validation studies, and to inform in vivo analyses of kinase inhibitor drug efficacy.  相似文献   

4.
Here we report a simple and useful method to detect endogenous substrates of protein kinases. When crude tissue extracts were resolved by liquid-phase isoelectric focusing (MicroRotofor) and the separated protein fractions were phosphorylated by protein kinases such as Ca2+/calmodulin-dependent protein kinase I or cAMP-dependent protein kinase, various proteins in the different fractions were efficiently phosphorylated. Since a higher number of substrates could significantly be detected using the resolved fractions by MicroRotofor as compared to direct analysis of the original tissue extracts, our present method will be applicable to the screening of endogenous substrates for various protein kinases.  相似文献   

5.
6.
The hexapeptides AcSer-Glu-Glu-Glu-Val-Glu and Ser-Glu-Glu-Glu-Glu-Glu, reminiscent of the sites phosphorylated by type-2 casein kinase TS in troponin T and glycogen synthase, respectively, have been synthesized and tested as phosphorylatable substrates for casein kinase TS as well as for other protein kinases. Both peptides are readily phosphorylated by casein kinase TS but not, to any detectable extent, by either cAMP-dependent protein kinase or phosphorylase kinase. Phosphorylation by type-1 casein kinase S was almost negligible. On the other hand the hexapeptide Ser-Glu-Glu-Glu-Ala-Ala is phosphorylated much more slowly and the hexapeptide Ser-Glu-Glu-Ala-Ala-Ala is almost unaffected by casein kinase TS. While the Vmax values of casein kinase TS with the acidic hexapeptides are comparable to those obtained with the corresponding protein substrates, the apparent Km values for the peptides are about two orders of magnitude higher than those for the protein substrates. The heptapeptide Arg-Ser-Glu-Glu-Glu-Val-Glu is a very poor substrate of casein kinase TS in comparison with the corresponding hexapeptide lacking the N-terminal Arg; it is, however, a competitive inhibitor toward the protein substrates, exhibiting a Ki similar to those of Ser-Glu-Glu-Glu-Glu-Glu and (Glu)5 which, in turn, are one order of magnitude higher than that of (Glu)10. It is concluded that the minimum structural requirement of type-2 casein kinases consists of a phosphorylatable residue followed by an acidic cluster, whose length is critical for the binding to the enzyme. Additional residues on the N-terminal side are not required, but their nature can influence the transphosphorylation reaction considerably.  相似文献   

7.
The purified Ca2+- and calmodulin-dependent protein kinase from rat brain, which has a M.W. of 120,000 by gel filtration analysis, showed a broad substrate specificity. In addition to myosin light chain from chicken gizzard, the enzyme phosphorylated myelin basic protein, casein and two endogenous substrates in a Ca2+- and calmodulin-dependent manner. In contrast, chicken gizzard myosin light chain kinase exclusively phosphorylated myosin light chain.  相似文献   

8.
The effect of self-phosphorylation on the protein-tyrosine kinase activity of the epidermal growth factor receptor has been investigated using immunoaffinity-purified protein. Enzyme was first incubated for various times with excess ATP to phosphorylate it to differing extents; the ability of the enzyme to phosphorylate exogenous peptide substrates was then measured as a function of its self-phosphorylation state. Increasing self-phosphorylation to 1.3-1.8 mol of phosphate mol-1 of epidermal growth factor receptor enhanced protein-tyrosine kinase activity 2-3-fold. Comparison of the kinetics of protein-tyrosine kinase activity at different ATP concentrations revealed significant differences between unphosphorylated and phosphorylated enzyme. At low levels of ATP, a double reciprocal plot of the protein-tyrosine kinase activity of the unphosphorylated enzyme was hyperbolic, suggesting that ATP may act as an activator of the enzyme. At higher ATP concentrations, where greater levels of self-phosphorylation occurred during the reaction, the kinetics appeared linear and similar to those of the phosphorylated enzyme. Dose-response studies using three different peptide substrates (angiotensin II, gastrin, and a synthetic peptide corresponding to the self-phosphorylation site in p60v-src) showed that exogenous substrates inhibit receptor self-phosphorylation. In each case, half-maximal inhibition was observed at a peptide concentration approximately equal to the substrate's Km. A kinetic analysis comparing peptide phosphorylation using unphosphorylated and prephosphorylated enzyme indicated that the self-phosphorylation site can act as a competitive inhibitor (alternate substrate) versus peptide substrates. These results suggest that self-phosphorylation of the epidermal growth factor receptor removes a competitive constraint so that exogenous substrates can be more readily phosphorylated.  相似文献   

9.
PknH Ser/Thr protein kinase of Mycobacterium tuberculosis controls the expression of a variety of cell wall related enzymes and regulates the in vivo growth in mice. Therefore, we predicted that the PknH kinase could phosphorylate several substrates controlling different metabolic and physiological pathways. Using a bioinformatic approach, we identified 40 potential substrates. Two substrates were shown to be phosphorylated by recombinant PknH kinase in vitro. Point mutation studies verified that substrates are phosphorylated at the in silico-predicted sites. Kinetic studies revealed a similar relative-phosphorylation rate (V(max)) of PknH towards two new substrates and the only previously known substrate, EmbR. Unlike the EmbR protein, the Rv0681 and DacB1 proteins do not contain an FHA domain and are possible participants of new signaling pathways mediated by the PknH kinase in M. tuberculosis.  相似文献   

10.
This article describes novel data analysis of fluorescence lifetime-based protein kinase assays to identify and correct for compound interference in several practical cases. This ability, together with inherent advantages of fluorescence lifetime technology (FLT) as a homogeneous, antibody-free format independent of sample concentration, volume, excitation intensity, and geometry, makes fluorescence lifetime a practical alternative to the established “gold standards” of radiometric and mobility shift (Caliper) assays. The analysis is based on a photochemical model that sets constraints on the values of fluorescence lifetimes in the time responses of the assay. The addition of an exponential component with free floating lifetime to the constrained model, in which the lifetimes are constants predetermined from control measurements and the preexponential coefficients are “floating” parameters, allows the relative concentration of phosphorylated and nonphosphorylated substrates to be calculated even in the presence of compound fluorescence. The method is exemplified using both simulated data and experimental results measured from mixtures of dye-labeled phosphorylated and nonphosphorylated kinase substrates. A change of the fluorescence lifetime is achieved by the phosphorylated substrate-specific interaction with a bifunctional ligand, where one binding site interacts with the phosphate group and the other interacts with the dye.  相似文献   

11.
The ataxia telangiectasia mutated (ATM) gene encodes a serine/threonine protein kinase that plays a critical role in genomic surveillance and development. Here, we use a peptide library approach to define the in vitro substrate specificity of ATM kinase activity. The peptide library analysis identified an optimal sequence with a central core motif of LSQE that is preferentially phosphorylated by ATM. The contributions of the amino acids surrounding serine in the LSQE motif were assessed by utilizing specific peptide libraries or individual peptide substrates. All amino acids comprising the LSQE sequence were critical for maximum peptide substrate suitability for ATM. The DNA-dependent protein kinase (DNA-PK), a Ser/Thr kinase related to ATM and important in DNA repair, was compared with ATM in terms of peptide substrate selectivity. DNA-PK was found to be unique in its preference of neighboring amino acids to the phosphorylated serine. Peptide library analyses defined a preferred amino acid motif for ATM that permits clear distinctions between ATM and DNA-PK kinase activity. Data base searches using the library-derived ATM sequence identified previously characterized substrates of ATM, as well as novel candidate substrate targets that may function downstream in ATM-directed signaling pathways.  相似文献   

12.
In addition to acetyl-CoA carboxylase and HMG-CoA reductase, the AMP-activated protein kinase phosphorylates glycogen synthase, phosphorylase kinase, hormone-sensitive lipase and casein. A number of other substrates for the cyclic AMP-dependent protein kinase, e.g., L-pyruvate kinase and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, are not phosphorylated at significant rates. Examination of the sites phosphorylated on acetyl-CoA carboxylase, hormone-sensitive lipase, glycogen synthase and phosphorylase kinase suggests a consensus recognition sequence in which the serine residue phosphorylated by the AMP-activated protein kinase has a hydrophobic residue on the N-terminal side (i.e., at -1) and at least one arginine residue at -2, -3 or -4. Substrates for cyclic AMP-dependent protein kinase which lack the hydrophobic residue at -1 are not substrates for the AMP-activated protein kinase.  相似文献   

13.
Four ubiquitin-peptide extensions prepared as cloned products in E. coli were tested as casein kinase II substrates. Two extensions containing the sequence Ser-Glu-Glu-Glu-Glu-Glu were readily phosphorylated by partially purified rabbit reticulocyte casein kinase II. The other two fusion proteins, which lack a consensus phosphorylation site for casein kinase II, did not serve as substrates under identical reaction conditions. Native ubiquitin was not phosphorylated by reticulocyte casein kinase II, nor have we observed its phosphorylation in crude extracts from HeLa cells, mouse liver, or Xenopus eggs. Ubiquitin's apparent lack of phosphorylatable residues coupled with its remarkable heat stability and rapid migration on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels make the protein an attractive carrier for carboxyl-terminal peptides containing specific phosphorylation sites. Such ubiquitin extension proteins should prove valuable as protein kinase substrates.  相似文献   

14.
Little is known about the important cellular substrates for protein kinase C and their potential roles in mediating protein kinase C-dependent processes. We evaluated the protein kinase C phosphorylation sites in a major cellular substrate for the kinase, a protein of apparent Mr 80,000 in bovine and 60,000 in chicken tissues; we have recently determined the primary sequences of these proteins and tentatively named them the myristoylated alanine-rich C kinase substrates. The proteins were purified to apparent homogeneity from bovine and chicken brains, phosphorylated with protein kinase C, digested with trypsin, and the phosphopeptides purified and sequenced. Four distinct phosphopeptides were identified from both the bovine and chicken proteins. Two of the phosphorylated serines were contained in the repeated motif FSFKK, one in the sequence LSGF, and one in the sequence SFK. All four sites were contained within a basic domain of 25 amino acids which was identical in the chicken and bovine proteins. All of the sites phosphorylated in the cell-free system appeared to be phosphorylated in intact cells; an additional site may have been present in the proteins from intact cells. The identity of the phosphorylation site domains from two proteins of overall 65% amino acid sequence identity suggests a potential role for this domain in the physiological function of the myristoylated alanine-rich C kinase substrate proteins.  相似文献   

15.
Class-I phosphoinositide 3-kinases (PI 3-kinases) are dual specificity enzymes that possess both lipid and protein kinase activity. While the best characterized property of this protein kinase is as an autokinase activity, there have also been reports it can phosphorylate exogenous substrates including peptides, IRS-1 and PDE-3B. The identification of two novel potential protein substrates of PI 3-kinase is described here. By employing in vitro kinase assays using recombinant proteins as the substrates, it is shown that the translational regulator 4EBP1 becomes phosphorylated by the p110alpha and p110gamma isoforms of class-I PI 3-kinases. The lipid kinase activity of both these isoforms is increased by allosteric binding of H-Ras or betagamma subunits of heterotrimeric G proteins, but we find this is not the case for the protein kinase activity. Surprisingly though, a site on H-Ras is phosphorylated by p110alpha and p110gamma. This raises the possibility that these proteins could serve as physiological substrates for the protein kinase activity of PI 3-kinase and suggests this activity operates in a physiological context by phosphorylating substrates other than the PI 3-kinase itself. This may be particularly important in regulating the interaction of Ras with PI 3-kinase.  相似文献   

16.
The abilities of insulin and EGF stimulated protein kinases to phosphorylate a series of exogenous substrates were compared using wheat germ lectin purified preparations of solubilized rat liver membranes. Three different kinds of substrates were found: substrates phosphorylated primarily by insulin stimulated kinase, substrates phosphorylated primarily by EGF stimulated kinase and substrates phosphorylated by both kinases to a similar extent. These results indicate that the insulin and the EGF receptor kinase have different, but overlapping, substrate specificities. In vivo, phosphorylation of cellular proteins by various hormone receptor kinases may be part of the signal transmission process for actions of the hormones. Different substrate specificities of kinases of different hormone receptors may therefore represent an important mechanism to preserve the specificity of the hormonal signal at the post receptor level.  相似文献   

17.
Death-associated protein kinase (DAPk) is a Ser/Thr kinase whose activity is necessary for different cell death phenotypes. Although its contribution to cell death is well established, only a handful of direct substrates have been identified; these do not fully account for the multiple cellular effects of DAPk. To identify such substrates on a large scale, we developed an in vitro, unbiased, proteomics-based assay to search for novel DAPk substrates. Biochemical fractionation and mass spectrometric analysis were used to purify and identify several potential substrates from HeLa cell lysate. Here we report the identification of two such candidate substrates, the ribosomal protein L5 and MCM3, a replication licensing factor. Although L5 proved to be a weak substrate, MCM3 was efficiently and specifically phosphorylated by DAPk on a unique site, Ser160. Significantly DAPk phosphorylated this site in vivo upon overexpression in 293T cells. Activation of endogenous DAPk by increasing intracellular Ca2+ also led to increased phosphorylation of MCM3. Importantly short hairpin RNA-mediated knockdown of endogenous DAPk blocked both basal phosphorylation and Ca2+-induced phosphorylation, indicating that DAPk is both necessary and sufficient for MCM3 Ser160 phosphorylation in vivo. Identification of MCM3 as an in vivo DAPk substrate indicates the usefulness of this approach for identification of physiologically relevant substrates that may shed light on novel functions of the kinase.  相似文献   

18.
Careful regulation of the Wnt-Beta-catenin signaling pathway is critical to many aspects of development and cancer. Casein kinase Iepsilon is a Wnt-activated positive regulator of this pathway. Members of the Dishevelled family have been identified as key substrates of casein kinase I (CKI). However, the specific sites phosphorylated in vivo by CKI and their relative importance in the physiologic regulation of these proteins in the canonical Wnt-beta-catenin signaling pathway remain unclear. To address this question, recombinant mouse Dishevelled (mDvl-1) was phosphorylated by CKIin vitro and phosphorylation sites were identified by MS. CKI phosphorylation of mDvl-1 at two highly conserved residues, serines 139 and 142, was observed by MS and confirmed by phosphopeptide mapping of in vivo phosphorylated protein. Phosphorylation of these sites is dependent on casein kinase I epsilon activity in vivo. Phenotypic analysis of mutant mDvl-1 indicates that phosphorylation of these sites stimulates the Dvl-activated beta-catenin-dependent Wnt signaling pathway in both cell culture and in Xenopus development. Casein kinase I epsilon is a Wnt-regulated kinase, and regulated phosphorylation of Dvl allows fine tuning of the Wnt-beta-catenin signaling pathway.  相似文献   

19.
Summary The possibility that spectrin and band-3 protein are phosphorylated by the same membrane-bound protein kinase was investigated by adding casein to unsealed erythrocyte ghosts and examining competition of the three proteins for phosphorylation. The extent of spectrin and band-3 protein phosphorylation was reduced by up to approximately 55%. This indicated that casein was competing with these endogenous substrates for phosphorylation and was most probably phosphorylated by the same protein kinase(s). Furthermore, the extent of inhibition of the phosphorylation of the two endogenous substrates was indistinguishable over the range of casein concentrations tested (0.1 to 5mg/ml). This indicates that spectrin and band-3 protein may be phosphorylated by the same protein kinase. In contrast, casein was found to have no effect on the cAMP-dependent phosphorylation of band 4.5. This result indicates that casein only competes with the endogenous proteins phosphorylated by the cAMP-independent protein kinase(s).The extent of reduction of endogenous substrate phosphorylation in the presence of casein was found to be constant over incubation periods of 1 to 15 min, indicating that this reduction was not due to consumption of ATP.Since the spectrin and band-3 protein phosphorylations were specifically and identically reduced by casein and these reductions were not due to the ATP consumption or to a general alteration of the membrane, we conclude that the two substrates are likely phosphorylated by one kinase which also phosphorylates casein.  相似文献   

20.
All dividing cells entering the M phase of the cell cycle undergo the transient activation of an M-phase-specific histone H1 kinase which was recently shown to be constituted of at least two subunits, p34cdc2 and cyclincdc13. The DNA-binding high-mobility-group (HMG) proteins 1, 2, 14, 17, I, Y and an HMG-like protein, P1, were investigated as potential substrates of H1 kinase. Among these HMG proteins, P1 and HMG I and Y are excellent substrates of the M-phase-specific kinase obtained from both meiotic starfish oocytes and mitotic sea urchin eggs. Anticyclin immunoprecipitates, extracts purified on specific p34cdc2-binding p13suc1-Sepharose and affinity-purified H1 kinase display strong HMG I, Y and P1 phosphorylating activities, demonstrating that the p34cdc2/cyclincdc13 complex is the active kinase phosphorylating these HMG proteins. HMG I and P1 phosphorylation is competitively inhibited by a peptide mimicking the consensus phosphorylation sequence of H1 kinase. HMG I, Y and P1 all possess the consensus sequence for phosphorylation by the p34cdc2/cyclincdc13 kinase (Ser/Thr-Pro-Xaa-Lys/Arg). HMG I is phosphorylated in vivo at M phase on the same sites phosphorylated in vitro by H1 kinase. P1 is phosphorylated by H1 kinase on sites different from the sites of phosphorylation by casein kinase II. The three thermolytic phosphopeptides of P1 phosphorylated in vitro by purified H1 kinase are all present in thermolytic peptide maps of P1 phosphorylated in vivo in proliferating HeLa cells. These phosphopeptides are absent in nonproliferating cells. These results demonstrate that the DNA-binding proteins HMG I, Y and P1 are natural substrates for the M-phase-specific protein kinase. The phosphorylation of these proteins by p34cdc2/cyclincdc13 may represent a crucial event in the intense chromatin condensation occurring as cells transit from the G2 to the M phase of the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号