首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The availability of a human lymphoma cell line deficient in adenosine deaminase, adenosine kinase and methylthioadenosine phosphorylase enabled us to compare the effects of nucleoside transport inhibitors on the excretion of endogenously generated adenosine, deoxyadenosine and 5'-methylthioadenosine. The nucleoside transport inhibitors nitrobenzylthioinosine and dipyridamole blocked the efflux of adenosine, but not deoxyadenosine or 5'-methylthioadenosine. The inhibitors also prevented the uptake of exogenous adenosine, but not deoxyadenosine or 5'-methylthioadenosine, by human lymphoblasts. The results show (i) that the transport inhibitors modify adenine nucleoside efflux and influx similarly, and (ii) that the effects of the compounds on the excretion and uptake of these three physiologically important adenine nucleosides are distinctly different.  相似文献   

2.
5'-Nucleotidase, adenosine phosphorylase, adenosine deaminase and purine nucleoside phosphorylase, four enzymes involved in the utilization of exogenous compounds in Bacillus cereus, were measured in extracts of this organism grown in different conditions. It was found that adenosine deaminase is inducible by addition of adenine derivatives to the growth medium, and purine, nucleoside phosphorylase by metabolizable purine and pyrimidine ribonucleosides. Adenosine deaminase is repressed by inosine, while both enzymes are repressed by glucose. Evidence is presented that during growth of B. cereus in the presence of AMP, the concerted action of 5'-nucleotidase and adenosine phosphorylase, two constitutive enzymes, leads to formation of adenine, and thereby to induction of adenosine deaminase. The ionsine formed would then cause induction of the purine nucleoside phosphorylase and repression of the deaminase. Taken together with our previous findings showing that purine nucleoside phosphorylase of B. cereus acts as a translocase of the ribose moiety of inosine inside the cell (Mura, U., Sgarrella, F. and Ipata, P.L. (1978) J. Biol Chem. 253, 7905-7909), our results provide a clear picture of the molecular events leading to the utilization of the sugar moiety of exogenous AMP, adenosine and inosine as an energy source.  相似文献   

3.
5′-Nucleotidase, adenosine phosphorylase, adenosine deaminase and purine nucleoside phosphorylase, four enzymes involved in the utilization of exogenous purine compounds in Bacillus cereus, were measured in extracts of this organism grown in different conditions. It was found that adenosine deaminase is inducible by addition of adenine derivatives to the growth medium, and purine nucleoside phosphorylase by metabolizable purine and pyrimidine ribonucleosides. Adenosine deaminase is repressed by inosine, while both enzymes are repressed by glucose. Evidence is presented at during growth of B. cereus in the presence of AMP, the concerted action of 5′-nucleotidase and adenosine phosphorylase, two constitutive enzymes, leads to formation of adenine, and thereby to induction of adenosine deaminase. The ionsine formed would then cause induction of the purine nucleoside phosphorylase and repression of the deaminase. Taken together with our previous findings showing that purine nucleoside phosphorylase of B cereus acts as a translocase of the ribose moiety of ionsine inside the cell (Mura, U., Sgarrella, F. and Ipata, P.L. (1978) J. Biol. Chem. 253, 7905–7909), our results provide a clear picture of the molecular events leading to the utilization of the sugar moiety of exogenous AMP, adenosine and inosine as an energy source.  相似文献   

4.
The activities of purine-metabolizing enzymes, 5'-nucleotidase, adenosine deaminase, and purine nucleoside phosphorylase in microdissected rat nephron segments were measured. The specific activity of 5'-nucleotidase was highest in the proximal tubules and the cortical collecting duct, but low in the glomerulus. In contrast, the highest activity of adenosine deaminase was found in the glomerulus. The distribution pattern of purine nucleoside phosphorylase was similar to that of adenosine deaminase. These results suggest that various nephron segments can form adenosine and that the glomerulus exhibits highest capacities to metabolize this nucleoside.  相似文献   

5.
In soluble rat brain fraction, the specific activities of purine nucleoside phosphorylase, guanine deaminase, 5'Nucleotidase and adenosine deaminase, decrease in their mentioned order. A kinetic parameter comparison between these enzymes shows that 5'Nucleotidase with AMP has the lowest KM and the greatest Vmax values, while purine nucleoside phosphorylase has its lowest KM and its greatest Vmax values with guanosine and with inosine, respectively. The enzymes activity is not modified by the metabolic intermediates differently from their own reaction products which behave as competitive inhibitors.  相似文献   

6.
The intraerythrocytic human malaria parasite, Plasmodium falciparum, requires a source of hypoxanthine for nucleic acid synthesis and energy metabolism. Adenosine has been implicated as a major source for intraerythrocytic hypoxanthine production via deamination and phosphorolysis, utilizing adenosine deaminase and purine nucleoside phosphorylase, respectively. To study the expression and characteristics of human malaria purine nucleoside phosphorylase, P. falciparum was successfully cultured in purine nucleoside phosphorylase-deficient human erythrocytes to an 8% parasitemia level. Purine nucleoside phosphorylase activity was undetectable in the uninfected enzyme-deficient host red cells but after parasite infection rose to 1.5% of normal erythrocyte levels. The parasite purine nucleoside phosphorylase was not cross-reactive with antibody against human enzyme, exhibited a calculated native molecular weight of 147,000, and showed a single major electrophoretic form of pI 5.4 and substrate specificity for inosine, guanosine and deoxyguanosine but not xanthosine or adenosine. The Km values for substrates, inosine and guanosine, were 4-fold lower than that for the human erythrocyte enzyme. In these studies we have identified two novel potent inhibitors of both human erythrocyte and parasite purine nucleoside phosphorylase, 8-amino-5'-deoxy-5'-chloroguanosine and 8-amino-9-benzylguanine. These enzyme inhibitors may have some antimalarial potential by limiting hypoxanthine production in the parasite-infected erythrocyte.  相似文献   

7.
Abstract

Adenosine derivatives lacking a 5′-hydroxyl group seldom act as alternative substrates of adenosine deaminases from calf intestine and other mammalian sources. A deaminase from Aspergillus oryzae deaminated adenosine 5′-thioether derivatives cleanly and more efficiently than alkyl nitrites. The inosine derivatives were very poor alternative substrates and weak inhibitors of purine nucleoside phosphorylase.  相似文献   

8.
Purine-requiring mutants of Salmonella typhimurium LT2 containing additional mutations in either adenosine deaminase or purine nucleoside phosphorylase have been constructed. From studies of the ability of these mutants to utilize different purine compounds as the sole source of purines, the following conclusions may be drawn. (i) S. typhimurium does not contain physiologically significant amounts of adenine deaminase and adenosine kinase activities. (ii) The presence of inosine and guanosine kinase activities in vivo was established, although the former activity appears to be of minor significance for inosine metabolism. (iii) The utilization of exogenous purine deoxyribonucleosides is entirely dependent on a functional purine nucleoside phosphorylase. (iv) The pathway by which exogenous adenine is converted to guanine nucleotides in the presence of histidine requires a functional purine nucleoside phosphorylase. Evidence is presented that this pathway involves the conversion of adenine to adenosine, followed by deamination to inosine and subsequent phosphorolysis to hypoxanthine. Hypoxanthine is then converted to inosine monophosphate by inosine monophosphate pyrophosphorylase. The rate-limiting step in this pathway is the synthesis of adenosine from adenine due to lack of endogenous ribose-l-phosphate.  相似文献   

9.
Plasmodium falciparum is unable to synthesize purine bases and relies upon purine salvage and purine recycling to meet its purine needs. We report that purines formed as products of polyamine synthesis are recycled in a novel pathway in which 5'-methylthioinosine is generated by adenosine deaminase. The action of P. falciparum purine nucleoside phosphorylase is a convergent step of purine salvage, converting both 5'-methylthioinosine and inosine to hypoxanthine. We used accelerator mass spectrometry to verify that 5'-methylthioinosine is an active nucleic acid precursor in P. falciparum. Prior studies have shown that inhibitors of purine salvage enzymes kill malaria, but potent malaria-specific inhibitors of these enzymes have not been described previously. 5'-Methylthio-immucillin-H, a transition state analogue inhibitor that is selective for malarial relative to human purine nucleoside phosphorylase, kills P. falciparum in culture. Immucillins are currently in clinical trials for other indications and may also have application as anti-malarials.  相似文献   

10.
Adenosine, through activation of membrane-bound receptors, has been reported to have neuroprotective properties during strokes or seizures. The role of astrocytes in regulating brain interstitial adenosine levels has not been clearly defined. We have determined the nucleoside transporters present in rat C6 glioma cells. RT-PCR analysis, (3)H-nucleoside uptake experiments, and [(3)H]nitrobenzylthioinosine ([(3)H]NBMPR) binding assays indicated that the primary functional nucleoside transporter in C6 cells was rENT2, an equilibrative nucleoside transporter (ENT) that is relatively insensitive to inhibition by NBMPR. [(3)H]Formycin B, a poorly metabolized nucleoside analogue, was used to investigate nucleoside release processes, and rENT2 transporters mediated [(3)H]formycin B release from these cells. Adenosine release was investigated by first loading cells with [(3)H]adenine to label adenine nucleotide pools. Tritium release was initiated by inhibiting glycolytic and oxidative ATP generation and thus depleting ATP levels. Our results indicate that during ATP-depleting conditions, AMP catabolism progressed via the reactions AMP --> IMP --> inosine --> hypoxanthine, which accounted for >90% of the evoked tritium release. It was surprising that adenosine was not released during ATP-depleting conditions unless AMP deaminase and adenosine deaminase were inhibited. Inosine release was enhanced by inhibition of purine nucleoside phosphorylase; ENT2 transporters mediated the release of adenosine or inosine. However, inhibition of AMP deaminase/adenosine deaminase or purine nucleoside phosphorylase during ATP depletion produced release of adenosine or inosine, respectively, via the rENT2 transporter. This indicates that C6 glioma cells possess primarily rENT2 nucleoside transporters that function in adenosine uptake but that intracellular metabolism prevents the release of adenosine from these cells even during ATP-depleting conditions.  相似文献   

11.
From Escherichia coli B, mutants were prepared that lacked the enzymes adenosine deaminase, cytidine deaminase, and purine nucleoside phosphorylase. In each case, the mutant lacked enzyme activity for both ribonucleoside and deoxyribonucleoside. Mutants lacking purine nucleoside phosphorylase lost the capacity to cleave the nucleosides of adenine, guanine, and hypoxanthine.  相似文献   

12.
Deficiency of either one of the subsequent purine catabolic enzymes adenosine deaminase or purine nucleoside phosphorylase results in immunodeficiency disease in humans. However, the mechanism by which impairment of purine metabolism may cause immunodeficiency is unclear. In the present work we have studied the catabolism of purine ribonucleotides and deoxyribonucleotides in T lymphocytes to better understand the role of purine nucleoside phosphorylase and adenosine deaminase in the immune function. It was found that purine deoxyribonucleotides are degraded via catabolic pathways distinctly different from those used for purine ribonucleotide degradation. Thus both adenine and guanine ribonucleotides are deaminated to IMP whereas purine deoxyribonucleotides are exclusively dephosphorylated to the corresponding deoxyribonucleosides. These findings may explain the relatively higher degradation rates of purine deoxyribonucleotides in mammalian cells as compared to purine ribonucleotides. The catabolism of purine nucleotides is tightly linked to the active purine nucleoside cycles which consist of the phosphorolysis of purine nucleosides and deoxyribonucleosides to their corresponding bases, their salvage to monophosphates and back to the corresponding ribonucleosides. The above observations also imply that a possible role of the purine nucleoside cycles is to convert purine deoxyribonucleotides into their corresponding ribonucleotide derivatives. Deficiencies of purine nucleoside phosphorylase or of adenosine deaminase activities, enzymes which participate or lead to the purine nucleoside cycles, thus result in a selective impaired deoxyribonucleotide catabolism and immunodeficiency.  相似文献   

13.
New enantiomeric isonucleoside analogues related to natural oxetanocin have been synthesized from D-glucosamine and D-glucose. The structures of the target compounds were confirmed by NMR, HRMS, UV, single crystal X-ray, and optical rotation data. Stability studies with respect to purine nucleoside phosphorylase and adenosine deaminase show that these compounds are not substrates. Antiviral results are discussed.  相似文献   

14.
New enantiomeric isonucleoside analogues related to natural oxetanocin have been synthesized from D-glucosamine and D-glucose. The structures of the target compounds were confirmed by NMR, HRMS, UV, single crystal X-ray, and optical rotation data. Stability studies with respect to purine nucleoside phosphorylase and adenosine deaminase show that these compounds are not substrates. Antiviral results are discussed.  相似文献   

15.
Abstract: Previous studies showed that in cultured chick ciliary ganglion neurons and CNS glia, adenosine can be synthesized by hydrolysis of 5'-AMP and that the accumulation of the adenosine degradative products inosine and hypoxanthine was significantly greater in glial than in neuronal cultures. Furthermore, previous immunochemical and histochemical studies in brain showed that adenosine deaminase and nucleoside phosphorylase are localized in endothelial and glial cells but are absent in neurons; however, adenosine deaminase may be found in a few neurons in discrete brain regions. These results suggested that adenosine degradative pathways may be more active in glia. Thus, we have determined if there is a differential distribution of adenosine deaminase, nucleoside phosphorylase, and xanthlne oxidase enzyme fluxes in glia, comparing primary cultures of central and ciliary ganglion neurons and glial cells from chick embryos. Hypoxanthine-guanine phosphoribosyltransferase and production of adenosine by S-adenosylhomocysteine hydrolase activity were also examined. Our results show that there is a distinct profile of purine metabolizing enzymes for glia and neurons in culture. Both cell types have an S-adenosylhomocysteine hydrolase, but it was more active in neurons than in glia. In contrast, in glia the enzymatic activities of xanthine oxidase (443 ± 61 pmol/min/107 cells), nucleoside phosphorylase (187 ± B pmol/min/107 cells), and adenosine deaminase (233 ± 32 pmol/min/107 cells) were more active at least 100, 20, and five times, respectively, than in ciliary ganglion neurons and 100, 100, and nine times, respectively, than in central neurons.  相似文献   

16.
Mobilization of the ribose moiety of purine nucleosides as well as of the amino group of adenine may be realized in Bacillus cereus by the concerted action of three enzymes: adenosine phosphorylase, adenosine deaminase, and purine nucleoside phosphorylase. In this pathway, ribose-1-phosphate and inorganic phosphate act catalytically, being continuously regenerated by purine nucleoside phosphorylase and adenosine phosphorylase, respectively. As a result of such a metabolic pathway, adenine is quantitatively converted into hypoxanthine, thus overcoming the lack of adenase in B. cereus.  相似文献   

17.
Utilization of 2,6-diaminopurine by Salmonella typhimurium   总被引:2,自引:0,他引:2       下载免费PDF全文
The pathway for the utilization of 2,6-diaminopurine (DAP) as an exogenous purine source in Salmonella typhimurium was examined. In strains able to use DAP as a purine source, mutant derivatives lacking either purine nucleoside phosphorylase or adenosine deaminase activity lost the ability to do so. The implied pathway of DAP utilization was via its conversion to DAP ribonucleoside by purine nucleoside phosphorylase, followed by deamination to guanosine by adenosine deaminase. Guanosine can then enter the established purine salvage pathways. In the course of defining this pathway, purine auxotrophs able to utilize DAP as sole purine source were isolated and partially characterized. These mutants fell into several classes, including (i) strains that only required an exogenous source of guanine nucleotides (e.g., guaA and guaB strains); (ii) strains that had a purF genetic lesion (i.e., were defective in alpha-5-phosphoribosyl 1-pyrophosphate amidotransferase activity); and (iii) strains that had constitutive levels of purine nucleoside phosphorylase. Selection among purine auxotrophs blocked in the de novo synthesis of inosine 5'-monophosphate, for efficient growth on DAP as sole source of purine nucleotides, readily yielded mutants which were defective in the regulation of their deoxyribonucleoside-catabolizing enzymes (e.g., deoR mutants).  相似文献   

18.
The exact route of metabolism of 5′-isobutylthioadenosine is controversial. Using human cell lines deficient in methylthioadenosine phosphorylase, purine-nucleoside phosphorylase, or adenosine deaminase, we have ascertained the relative roles of the three enzymes in isobutylthioadenosine metabolism. The results showed that viable human cells progressively converted isobutylthioadenosine to 5′-isobutylthioinosine via sequential metabolism by methylthioadenosine phosphorylase and purine nucleoside phosphorylase acting in opposite directions, rather than through direct deamination. An identical pathway converted 5′-methylthioadenosine to 5′-methylthioinosine.  相似文献   

19.
To elucidate potential toxic properties of S-adenosylhomocysteine and 5′-methylthioadenosine, we have examined the inhibitory properties of these compounds upon enzymes involved with adenosine metabolism. S-Adenosylhomocysteine, but not S-adenosylmethionine, was a noncompetitive inhibitor of adenosine kinase with Ki values ranging from 100 to 400 μm. Methylthioadenosine competitively inhibited adenosine kinase with variable adenosine below 1 μm with a Ki of 120 μm, increased adenosine kinase activity when the adenosine concentration exceeded 2 μm, and did not appear to be a substrate for adenosine kinase. Methylthioadenosine inactivated S-adenosylhomocysteine hydrolase from erythrocytes, B-lymphoblasts, and T-lymphoblasts with Ki values ranging from 65 to 117 μm and “k2” from 0.30 to 0.55 min?1. Adenosine deaminase was not inhibited by 5′-methylthioadenosine up to 1000 μm. To clarify how 5′-methylthioadenosine might accumulate, 5′-methylthioadenosine phosphorylase was evaluated. This enzyme was not blocked by up to 500 μm adenosine, deoxyadenosine, S-adenosylhomocysteine, or S-adenosylmethionine and was not decreased in erythrocytes from patients with adenosine deaminase deficiency, purine nucleoside phosphorylase deficiency, or hypogammaglobulinemia. These observations suggest that the inhibitory properties of 5′-methylthioadenosine upon adenosine kinase and S-adenosylhomocysteine hydrolase may contribute to the toxicity of the exogenously added compound. The toxicity resulting from S-adenosylhomocysteine accumulation intracellularly may be related to adenosine kinase inhibition in addition to disruption of transmethylation reactions.  相似文献   

20.
T P West 《Microbios》1988,56(226):27-36
Pyrimidine metabolism in Pseudomonas fluorescens biotype F, and its ability to grow in liquid culture on pyrimidines and related compounds was investigated. It was found that uracil, uridine, cytosine, cytidine, deoxycytidine, dihydrouracil, dihydrothymine, beta-alanine or beta-aminoisobutyric acid could be utilized by this pseudomonad as a sole nitrogen source. Only uridine, cytidine, beta-alanine, beta-aminoisobutyric acid or ribose were capable of supporting its growth as a sole source of carbon. In solid medium, the pyrimidine analogue 5-fluorouracil or 5-fluorouridine could prevent P. fluorescens biotype F growth at a low concentration while a 20-fold higher concentration of 5-fluorocytosine, 5-fluorodeoxyuridine or 6-azauracil was necessary to block its growth. The pyrimidine salvage enzymes cytosine deaminase, nucleoside hydrolase, uridine phosphorylase, thymidine phosphorylase and cytidine deaminase were assayed. Only cytosine deaminase and nucleoside hydrolase activities could be detected under the assay conditions used. The effect of growth conditions on cytosine deaminase and nucleoside hydrolase levels in the micro-organism was explored. Cytosine deaminase activity was shown to increase if glycerol was substituted for glucose as the sole carbon source or if asparagine replaced (NH4)2SO4 as the sole nitrogen source in each respective medium. In contrast, nucleoside hydrolase activity remained virtually unchanged whether the carbon source in the medium was glucose or glycerol. A decrease in nucleoside hydrolase activity was witnessed when asparagine was present in the medium instead of (NH4)2SO4 as the sole source of nitrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号