首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of dopamine on dorsal root potentials were investigated during experiments on a segment of spinal cord isolated from 12- to 18-day-old rats. Applying dopamine to the brain was found to produce a slow, reversible, dose-dependent depolarization at primary afferent fiber terminals. This dopamine-induced depolarization was retained during complete blockade of synaptic transmission brought about by exchanging calcium ions in the perfusing fluid by magnesium or manganese ions. Minimum dopamine concentration required to produce this effect was 1·10–10–1·10–9 M. Peak amplitude of depolarization equaled 1.5 mV. Duration of this reaction ranged from 5.5 to 36.7 min, depending on the duration and concentration of dopamine application. Depolarizing response to dopamine differed considerably from GABA-induced dorsal root depolarization in amplitude and rate of rise. Haloperidol, a dopamine antagonist, reduced dopamine-induced dorsal root depolarization. Findings indicate that dopamine acts directly on the membrane of primary afferent fiber terminals, shifting membrane potential toward depolarization. This raises the possibility that dopaminergic brainstem-spinal pathways may exert an effect on sensory information transmission in segmental reflex arcs already traveling to the spinal cord.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 19, No. 6, pp. 741–748, November–December, 1987.  相似文献   

2.
The effects of 1·10–5–1·10–3 M dopamine on background and evoked interneuronal-activity was investigated during experiments on a spinal cord segment isolated from 11–18-day old infnat rats. Dopamine induced an increase in background firing activity rate in 52.5% and a reduced rate in 42.5% of the total sample of responding cells. Dopamine exerted a primarily inhibitory effect on interneuronal activity invoked by dorsal root stimulation, as witnessed by the reduced amplitude of the postsynaptic component of field potentials in the dorsal horn together with the fact that invoked activity was depressed in 66.7% of total interneurons responding to dopamine and facilitated in only 33.3% of these cells. All dopamine-induced effects were reversible and dose-dependent. Dopamine-induced effects disappeared after superfusing the brain with a solution containing 0–0.1 mM Ca2+ and 2 mM Mn2+, suggesting that this response is of transsynaptic origin. In other cells the excitatory or inhibitory action of dopamine also persisted in a medium blocking synaptic transmission; this would indicate the possibility of dopamine exerting depolarizing and hyperpolarizing effects on the interneuron membrane directly. Contrasting responses to dopamine in interneurons may be attributed to the presence of different types of dopamine receptors in the spinal cord.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 1, pp. 7–16, January–February, 1989.  相似文献   

3.
D J Jones 《Life sciences》1982,31(5):479-488
The stimulation of cyclic adenosine 3',5'-monophosphate (cyclic AMP) accumulation by the depolarizing agents K+, ouabain and veratridine, was studied in rat and guinea pig spinal cord tissue slices. Significantly increased accumulation of cyclic AMP was produced by each of the agents in a concentration-dependent manner. Veratridine and ouabain were equipotent (EC50 = 5 x 10(-5)M) and approximately 500 fold more potent than K+ (EC50 = 10(-2)M). Depolarizing agent-induced cyclic AMP accumulation in slices from guinea pig spinal cord was approximately double the response in rat spinal cord. Maximum stimulation occurred within 2.5 min of incubation with these agents and lasted for at least 30 min. Regional studies demonstrated that the maximal accumulation of cyclic AMP occurred to a greater degree in tissue slices from the dorsal section of spinal cord from both rat and guinea pig. Whereas the ouabain and veratridine stimulatory responses are completely dependent on extracellular Ca++, the K+ response is only partially dependent. Stimulation due to ouabain and veratridine is dependent, and K+ is independent, of release of neurohumoral substances such as norepinephrine or adenosine from spinal neurons. These experiments indicate the possible modulatory role of depolarization-linked events in regulating the spinal cord cyclic AMP system.  相似文献   

4.
The structure of connections between lumbar motoneurons was investigated in preparations of spinal cord isolated from young rats. This involved applying horseradish peroxidase to the ventral root and intracellular injection of the same enzyme into motoneurons. The possibility of dendro-dendritic, dendro-somatic, and somato-somatic contacts between motoneurons was shown up in light mocroscopy studies. Recurrent collaterals of motor axons were revealed and they are though to form contacts with dendrites and perikarya of the motoneurons. The findings obtained from morphological experiments are discussed in the light of data from electrophysiological analysis of motoneuronal postsynaptic potentials produced by ventral root stimulation.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 20, No. 3, pp. 340–350, May–June, 1988.  相似文献   

5.
Superfusion of isolated hemisected spinal cords of 9-13-day old rats with noradrenalin (NA) solution depolarized or hyperpolarized the motoneurons depending on the NA concentration. Both effects were the result of the direct action of NA on the motoneurons, for they were given in medium containing an excess of Mg and deficiency of Ca ions.a-Adrenoblockers depressed both the depolarizing and hyperpolarizing effects of NA. The depolarizing effect of dopamine on motoneurons was abolished in medium containing excess of Mg ions. Its direct hyperpolarizing action of motoneurons was suppressed by haloperidol but unchanged by phentolamine. The depolarizing effect of serotonin and its metabolites — mexamine, kynurenine, and 3-hydroxy-anthranilic acid — persisted in the presence of an excess of Mg and deficiency of Ca ions, but it was suppressed by deseryl (methysergide) and the benzyl analog of serotonin. The hyperpolarizing effect of serotonin at high concentrations (10–4–10–3 M), revealed in some experiments, was abolished in medium containing excess of magnesium ions in the presence of morphine.A. M. Gorkii Donetsk State Medical Institute. Translated from Neirofiziologiya, Vol. 12, No. 4, pp. 391–396, July–August, 1980.  相似文献   

6.
Dorsal root potentials before and after adding vasopressin or oxytocin to the perfusing fluid were investigated during experiments on one or two perfused spinal cord segments isolated from 12- to 16-day-old rats. It was found that both neuropeptides reversibly inhibited the amplitude of dorsal root potentials produced by stimulating the adjoining dorsal root. The effect was dependent on concentration and time of peptide action on the brain. Both vasopressin and oxytocin were found to produce slow, reversible, dose-dependent depolarization at primary afferent fiber terminals. Depolarization persists when trans-synaptic transmission has been completely blocked owing to substitution of calcium by manganese ions in the perfusing solution. Synaptic contacts are thought to exist between peptidergic hypothalamospinal fibers and dorsal root afferent fiber terminals. The functional significance of these connections is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 6, pp. 757–763, November–December, 1988.  相似文献   

7.
Hori N  Carp JS  Carpenter DO  Akaike N 《Life sciences》2002,72(4-5):389-396
Cervical spinal cord slices were prepared from adult rats. Intracellular recordings from motoneurons revealed that electrical stimulation of the ventralmost part of the dorsal funiculus (which contains primarily descending corticospinal axons) elicited EPSPs in 75% of the neurons. The latencies of these EPSPs tended to be shorter than those elicited by dorsal horn gray matter stimulation. Pairs of subthreshold dorsal funiculus stimuli were able to elicit action potentials in motoneurons. These data are consistent with previous morphological and electrophysiological studies indicating that cervical motoneurons receive both mono-and polysynaptic corticospinal inputs. In addition, motoneurons were markedly depolarized by iontophoretic application of AMPA or KA (7 out of 7 neurons), but only weakly depolarized by NMDA (1 out of 6 neurons). CNQX (but not AP-5) blocked EPSPs elicited by dorsal funiculus stimulation. Thus, corticospinal transmission to motoneurons is mediated primarily by non-NMDA glutamate receptors.  相似文献   

8.
Ventral roots of the newborn rat spinal cord were stimulated while recording intracellularly from motoneurons. In many cells, stimulation subthreshold for an antidromic action potential in the impaled cell produced a small, short-latency depolarization, which was unaffected by membrane polarization. This response (antidromic synaptic potential, a.s.p.) was also seen, in some cells, on stimulating the ventral root of an adjacent segment. Replacement of Ca2+ (2 mM) with Mn2+ (3 mM) or Mg2+ (10 mM) completely abolished orthodromic synaptic potentials, but the a.s.p. persisted. These results strongly suggest that the a.s.p. is produced by an electrical interaction between motoneurons.  相似文献   

9.
Karamyan  O. A.  Kozhanov  V. M.  Chmykhova  N. M. 《Neurophysiology》1988,20(2):186-191
Intracellular investigations into interaction between lumbar motoneurons were made during ventral root stimulation in spinal cord isolated from 9 to 14-day-old rats and horseradish peroxidase injection. It was found that electronic interaction is brought about by contacts between a moderate number of adjacent motoneurons and does not lead to generation of action potentials. A potential chemical (excitatory) as well as electronic interaction between motoneurons was discovered, probably occurring via recurrent motor axon collaterals. It was shown that the way in which one motoneuron is influenced by others may be a factor of its functional pattern.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 20, No. 2, pp. 243–250, March–April, 1988.  相似文献   

10.
The nature of synaptic interaction between two neighboring motoneurons in the isolated frog spinal cord was studied by parallel insertion of two separate micro-electrodes into the cells. In 82 of 89 motoneurons tested transmission through synapses between the motoneurons was electrical in nature, as shown by the absence or short duration of the latent period of elementary intermotoneuronal EPSPs, stability of their amplitude, and preservation of responses in Ca++-free solution containing 2 mM Mn++. Direct electrotonic interaction was demonstrated in both directions: artificial de- and hyperpolarization of one motoneuron led to corresponding shifts of membrane potential in the neighboring motoneuron. The time constant of rise and decay of this potential was appreciably greater than the time constant of the membrane of the two interconnected motoneurons. Blockade of the SD-component of the action potential in the "triggering" motoneuron led to a decrease in the elementary EPSP in the neighboring motoneuron. These facts suggest that electrotonic interaction takes place through dendro-dendritic junctions. Absence of rectification was demonstrated in electrical synapses between motoneurons. In four cases elementary EPSPs were chemical in nature, for they appeared 1.3–3.3 msec after the beginning of the action potential in the "triggering" motoneuron, and were blocked in Ca++-free solution containing Mn++; fluctuations of their amplitude approximated closely to a Poisson or binomial distribution. Such responses are evidently generated by synapses formed by recurrent axon collaterals of one motoneuron on the neighboring motoneurons. In three cases elementary intermotoneuronal EPSPs consisted of two components, the first electrical and the second chemical in nature. Morphological structures which may be responsible for generation of 2-component EPSPs are examined.Deceased.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 16, No. 5, pp. 619–630, September–October, 1984.  相似文献   

11.
The effect of penicillin on the membrane potential (MP) and synaptic activity of motoneurons in the isolated spinal cord of the river lamprey was investigated. In cells with a low initial MP (58.7±5.2 mV, n=28), penicillin (2.5 mmole·liter–1) caused a depolarization, and potentiated excitatory postsynaptic potentials (EPSPs) that were evoked by stimulating spinal tracts and dorsal roots. The EPSPs were potentiated by 80–220% relative to their initial amplitude. In motoneurons with a higher MP (72.0±5.7 mV, n=20), a depolarization did not develop, and the potentiation of EPSPs did not exceed 25–70%. The effects of penicillin were inhibited when antagonists of excitatory and inhibitory amino acids were added to the superfusate. The results obtained imply that the motoneuron membranes have two acceptor sites for penicillin.Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg Institute of Biological Research, Belgrade, Yugoslavia. Translated from Neirofiziologiya, Vol. 24, No. 2, pp. 151–160, March–April, 1992.  相似文献   

12.
The effects of dopamine on ventral root potential produced by a single supramaximal dorsal root stimulation of the dorsal root was investigated during experiments on isolated superfused spinal cord segments from 10–16-day old rats. A reciprocal dose-dependent inhibition of the mono- and polysynaptic components of reflex response was also observed. Minimum effective concentration was 1×10–8 M dopamine. Extent of reflex response increased in step with dopamine concentration, so that the amplitude of the monosynaptic component of ventral root potential was decreased by 20% and 87% of baseline level by the action of 10–4 and 10–3 M dopamine respectively on the cord. The amplitude of the polysynaptic component was thereby decreased by an average of 18% and 87%. Findings indicate that dopaminergic brainstem-spinal pathways contribute to the governing of impulse transmission in the segmental reflex arcs. Inhibition of dopaminergic synaptic transmission probably underlies the increase in latency already described in the literature, as well as the increase observed in the threshold of reflex motor response to nociceptive action following either stimulation of the dopaminergic brainstem structures or intravenous administration of dopamine agonists.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 5, pp. 616–621, September–October, 1986.  相似文献   

13.
By means of intracellular recording technique, studies have been made of the electrical activity of -motoneurons of the seventh lumbar segment in cats with chronic rhizotomy of the dorsal root fibers (L4-S2). Postsynaptic potentials of the reticular formation of the midbrain, medulla, and ventral columns of the spinal cord were compared with the reactions recorded from nonoperated animals; these potentials were evoked by stimulation of the motor cortex, red nucleus, and Deuters' nuclei. Deafferentiation did not cause statistically reliable variations in the amplitude of the descending monosynaptic E PSPs. Extrapyramidal short-latent disynaptic E PSPs and IPSPs remained also practically unchanged, while the responses of deafferented motoneurons to cortico-spinal impulses were considerably facilitated; this effect was retained in pyramidal cats. Deafferentation was not accompanied by variations in the dependence of the discharge frequency on the depolarizing current strength or by the variation in the threshold and input resistance of the motoneuron membranes. This suggests that intensification of the pyramidal synaptic action upon deafferented motoneurons was caused by the variation on the intermediate neuronal level.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 1, No. 1, pp. 35–46, July–August, 1969.  相似文献   

14.
Enrichment of spinal cord cell cultures with motoneurons   总被引:7,自引:2,他引:7  
Spinal cord cell cultures contain several types of neurons. Two methods are described for enriching such cultures with motoneurons (defined here simply as cholinergic cells that are capable of innervating muscle). In the first method, 7-day embryonic chick spinal cord neurons were separated according to size by 1 g velocity sedimentation. It is assumed that cholinergic motoneurons are among the largest cells present at this stage. The spinal cords were dissociated vigorously so that 95-98% of the cells in the initial suspension were isolated from one another. Cells in leading fractions (large cell fractions: LCFs) contain about seven times as much choline acetyltransferase (CAT) activity per unit cytoplasm as do cells in trailing fractions (small cell fractions: SCFs). Muscle cultures seeded with LCFs develop 10-70 times as much CAT as cultures seeded with SCFs and six times as much CAT as cultures seeded with control (unfractionated) spinal cord cells. More than 20% of the large neurons in LCF-muscle cultures innervate nearby myotubes. In the second method, neurons were gently dissociated from 4-day embryonic spinal cords and maintained in vitro. This approach is based on earlier observations that cholinergic neurons are among the first cells to withdraw form the mitotic cycle in the developing chick embryo (Hamburger, V. 1948. J. Comp. Neurol. 88:221-283; and Levi-Montalcini, R. 1950. J. Morphol. 86:253-283). 4-Day spinal cord-muscle cultures develop three times as much CAT as do 7-day spinal cord-muscle plates, prepared in the same (gentle) manner. More than 50% of the relatively large 4-day neurons innervate nearby myotubes. Thus, both methods are useful first steps toward the complete isolation of motoneurons. Both methods should facilitate study of the development of cholinergic neurons and of nerve-muscle synapse formation.  相似文献   

15.
The mean membrane potential (MP) of old rats did not differ significantly from that in young mature rats ((58.4 +/- +/-1,4 mV and 56.6 +/- 1.26 mV, respectively). At the same time the frequency of detection of motor neurons with the MP OF 70 mV and more fell by 18.6%, and with the MP of 50-59 mV -increased by 14.2% in the old, in comparison with the young animals. The direct excitability threshold in old rats decreased (3.0 +/- 3-10(-9) in young mature and 2.0 +/- 0.2-10(-9) a in old rats; P less than 0.02). The number of discharges per 50 msec of the neuron poliarization reached 4-5, constituting 80-100 pulse/min. When determined by the first two intervals the action potential frequency reached 125 pulse/sec, and in the young mature rats--over 300 pulse/sec. The duration of antidromic spikes was increased (1.02 +/- 0.09 msec in young mature animals and 1.65 +/- 0.14 msec in the old animals; P less than 0.001). The antidromic spikes of the neurons in old mature rats, as a rule, had no delayed depolarization.  相似文献   

16.
17.
Motoneuron death in the spinal nucleus of the bulbocavernosus (SNB) and the dorsolateral nucleus (DLN) of the lumbar spinal cord is androgen regulated. As a result, many more SNB and DLN motoneurons die in perinatal female rats than in males, whereas treatment of newborn females with androgen results in a permanent sparing of the motoneurons and their target muscles. We previously observed that a neurotrophic molecule, ciliary neurotrophic factor (CNTF), also arrests the death of SNB motoneurons and their target musculature, at least in the short term. The present study compares the short- and long-term consequences of perinatal CNTF treatment on motoneuron number in the SNB, the DLN, and the retrodorsolateral nucleus (RDLN), a motor pool in the lower lumbar cord that does not exhibit hormone-regulated cell death. Female pups were treated with CNTF or vehicle alone from embryonic day 22 through postnatal day 6 (P6). Motoneuron number in each nucleus was then determined immediately after treatment on P7, or 10 weeks later (P77). CNTF treatment significantly elevated motoneuron number in the SNB and DLN on P7; the volume of SNB target muscles on P7 was also greater in the CNTF-treated group. These effects were transient, however, as motoneuron number and ratings of muscle size were not different in CNTF- and vehicle-treated females on P77. Perinatal CNTF treatment did not alter cell number in the RDLN at either age. The finding that effects of CNTF on SNB and DLN motoneuron number are short lived contrasts with the permanent effects of early androgen treatment, and has implications for molecular models of the actions of androgen and neurotrophic factors on the developing spinal cord. © 1996 John Wiley & Sons, Inc.  相似文献   

18.
Structuro-functional correlations in the organization of connections between primary afferent fibers and motoneurons were investigated in the lumbar segments of spinal cord from 1–2-week-old rats. A single afferent fiber collateral was found to make contact with an individual motoneuron. There could be up to 10 boutons making contact. The n parameter of the binomial model was found to reflect numbers of contacts in the sensorimotor synapse. Analysis of sensorimotor EPSP by convolution of two binomial distributions revealed that neurotransmitter release sites differ in degree of probability (efficacy) of combined response to the arrival of nerve impulses.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry. Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 21, No. 4, pp. 522–529, July–August, 1989.  相似文献   

19.
Sciatic nerve lesion in newborn rats is known to cause degeneration of a large number of axotomized motoneurones and spinal ganglion cells. Some of the surviving motoneurones exhibit abnormal firing properties and the projection pattern of central terminals of sensory neurones is altered. We report here on long-term changes in spinal cord reflexes in adult rats following neonatal nerve crush. In acutely spinalized and anaesthetized adult rats 4-6 months old in which the sciatic nerve had been crushed on one side at birth, the tibial nerve, common peroneal nerve or sural nerve were stimulated on the reinnervated and control side and reflex responses were recorded from the L5 ventral spinal roots. Ventral root responses (VRRs) to tibial and peroneal nerve stimulation on the side of the nerve lesion were significantly smaller in amplitude representing only about 15% of the mean amplitude of VRRs on the control side. The calculated central delay of the first, presumably monosynaptic component of the VRR potential was 1.6 ms on the control side while the earliest VRR wave on the side of the nerve lesion appeared after a mean central latency of 4.0 ms that seems too long to be of monosynaptic origin. These results suggest that neonatal sciatic nerve injury markedly alters the physiological properties and synaptic connectivity in spinal cord neurones and causes a marked depression of spinal cord responses to peripheral nerve stimulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号