首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The ScFTR1 gene encodes an iron permease in Saccharomyces cerevisiae. Its homologues, FgFtr1 and FgFtr2, were identified from filamentous pathogenic plant fungus, Fusarium graminearum. Homologies between the deduced amino acid sequences of ScFtr1p and FgFtr1 and FgFtr2 were 56 and 54%, respectively, and both had REXXE sequences, which form the conserved amino acid sequence of ScFtr1p. FgFtr1 expression increased under iron depletion, and although FgFtr2 mRNA was not detected in the wild-type strain, it was detected in the deltafgftr1 strain in the iron-depleted condition. When the FgFtr1 and FgFtr2 were deleted, the amount of growth was found not to be different from the wild-type in iron-depleted media. However, the mRNA of FgSid, a homologue of the SIDA of Aspergillus fumigatus, was dramatically increased in the deltafgftr1/deltafgftr2 strain and in an iron-depleted condition. FgFtr1 and FgFtr2 genes act as functional complements when they are introduced into the S. cerevisiae deltaScftr1 strain. The deltaScftr1 strain, which contains either the FgFtr1 or FgFtr2, grew well in iron-depleted media. Moreover, specific alteration of the REXXE consensus sequence of FgFtr1 and FgFtr2 did not allow for sustained growth of the deltaScftr1 strain on iron-depleted medium. The iron uptake activity was recovered when FgFtr1 and FgFtr2 genes were introduced into the deltaScftr1 strain. Though the Fet3p in S. cerevisiae was found on the intracellular vesicle in the deltaScftr1 strain, Fet3p was found on the plasma membrane when FgFtr1 or FgFtr2 was introduced into the deltaftr1 strain. An infection test was carried out with deletion strains; however, no change in the ability of these strains to cause disease was observed. These results suggest that FgFtr1 and FgFtr2 may function as iron permeases in the reductive iron uptake pathway and that they do not play major roles in the pathogenicity of F. graminearum.  相似文献   

2.
Rhizopus oryzae is the most common cause of mucormycosis, an angioinvasive fungal infection that causes more then 50% mortality rate despite first‐line therapy. Clinical and animal model data clearly demonstrate that the presence of elevated available serum iron predisposes the host to mucormycosis. The high affinity iron permease gene (FTR1) is required for R. oryzae iron transport in iron‐depleted environments. Here we demonstrate that FTR1 is required for full virulence of R. oryzae in mice. We show that FTR1 is expressed during infection in diabetic ketoacidosis (DKA) mice. In addition, we disrupted FTR1 by double cross‐over homologous recombination, but multinucleated R. oryzae could not be forced to segregate to a homokaryotic null allele. Nevertheless, a reduction of the relative copy number of FTR1 and inhibition of FTR1 expression by RNAi compromised the ability of R. oryzae to acquire iron in vitro and reduced its virulence in DKA mice. Importantly, passive immunization with anti‐Ftr1p immune sera protected DKA mice from infection with R. oryzae. Thus, FTR1 is a virulence factor for R. oryzae, and anti‐Ftr1p passive immunotherapy deserves further evaluation as a strategy to improve outcomes of deadly mucormycosis.  相似文献   

3.
This report investigated FgSit1, which encodes a putative ferrichrome transporter of Fusarium graminearum. The identity of the deduced amino acid sequence of FgSit1 with the amino acid sequence of ScArn1p, an FC-Fe(3+) transporter of Saccharomyces cerevisiae, was 51%; both the growth defect related to the Deltafet3Deltaarn1-4 strain of S. cerevisiae in an iron-depleted condition and the FC-Fe(3+) uptake activity were recovered upon the introduction of FgSit1 into the Deltafet3Deltaarn1-4 strain. Although ScArn1p was found in the late endosomal compartment in S. cerevisiae, FgSit1 was found on the plasma membrane in S. cerevisiae; when FgSit1 was expressed exogenously in S. cerevisiae, it showed greater FC-Fe(3+) uptake activity than did ScArn1p. Additionally, in F. graminearum FC-Fe(3+) uptake activity in the Deltafgsit1 strain was found to be one-fourth that of the wild-type. However, Fe(3+) uptake activity in the Deltafgsit1 strain was 5-fold higher than that of wild-type; the gene expression of FgFtr1, a putative iron transporter, was induced by the deletion of FgSit1, but was not induced by the deletion of FgSit2. Taken together, these results strongly suggest that FgSit1 encodes a putative FC-Fe(3+) transporter that mediates FC-Fe(3+) uptake using a different mechanism than ScArn1p and plays an important role in the regulation of cellular iron availability in F. graminearum.  相似文献   

4.
5.
The cDNA encoding a putative xylose reductase (xyrA) from Aspergillus oryzae was cloned and coexpressed in the yeast Saccharomyces cerevisiae with A. oryzae xylitol dehydrogenase cDNA (xdhA). XyrA exhibited NADPH-dependent xylose reductase activity. The S. cerevisiae strain, overexpressing the xyrA, xdhA, endogenous XKS1, and TAL1 genes, grew on xylose as sole carbon source, and produced ethanol.  相似文献   

6.
FgFtr1 and FgFtr2 are putative iron permeases, and FgFet1 and FgFet2 are putative ferroxidases of Fusarium graminearum. They have high homologies with iron permease ScFtr1 and ferroxidase ScFet3 of Saccharomyces cerevisiae at the amino acid level. The genes encoding iron permease and ferroxidase were localized to the same chromosome in the manner of FgFtr1/FgFet1 and FgFtr2/FgFet2. The GFP (green fluorescent protein)-fused versions of FgFtr1 and FgFtr2 showed normal functions when compared with FgFtr1 and FgFtr2 in an S. cerevisiae system, and the cellular localizations of FgFtr1 and FgFtr2 in S. cerevisiae depended on the expression of their putative ferroxidase partners FgFet1 and FgFet2 respectively. Although FgFtr1 was found on the plasma membrane when FgFet1 and FgFtr1 were co-transformed in S. cerevisiae, most of the FgFtr1 was found in the endoplasmic reticulum compartment when co-expressed with FgFet2. Furthermore, FgFtr2 was found on the vacuolar membrane when FgFet2 was co-expressed. From the two-hybrid analysis, we confirmed the interaction of FgFtr1 and FgFet1, and the same result was found between FgFtr2 and FgFet2. Iron-uptake activity also depended on the existence of the respective partner. Finally, the FgFtr1 and FgFtr2 were found on the plasma and vacuolar membrane respectively, in F. graminearum. Taken together, these results strongly suggest that FgFtr1 and FgFtr2 from F. graminearum encode the iron permeases of the plasma membrane and vacuolar membrane respectively, and require their specific ferroxidases to carry out normal function. Furthermore, the present study suggests that the reductive iron-uptake system is conserved from yeast to filamentous fungi.  相似文献   

7.
8.
High-affinity iron uptake by yeast cells appears to require the presence of a complex formed on the plasma membrane by the multicopper oxidase Fet3 and the permease Ftr1 which work together to allow iron to enter safely inside the cell. The Pichia pastoris ferroxidase Fet3 has been cloned and it has been found to display high sequence similarity to other yeast multicopper oxidases, including all the predicted ligands for the catalytic copper atoms and for the iron substrate. P. pastoris appears to possess a high-affinity iron uptake system similar to that of S. cerevisiae, as far as regulation of expression is concerned. However, the P. pastoris high-affinity iron uptake system presents a K(m) value for iron almost ten times higher than that of S. cerevisiae, possibly to control iron fluxes over a wider range of concentrations of this metal, in order to avoid toxic iron overloading.  相似文献   

9.
Effects of iron and desferrioxamine on Rhizopus infection   总被引:1,自引:0,他引:1  
To investigate the association among iron, desferrioxamine, and a Rhizopus infection, the influence of iron and/or desferrioxamine on experimental mucormycosis in mice was examined. All mice pretreated with iron, desferrioxamine, or a combination of iron and desferrioxamine died within 5 days after the inoculation of R. oryzae. In the mice fungal lesions were observed in the brain which resembled human cerebral mucormycosis. By contrast, the mortality in the control mice with R. oryzae was 20% through the 3-week experimental period. Therefore, it was demonstrated that iron as well as desferrioxamine administration markedly promotes the growth of R. oryzae. The increased susceptibility to R. oryzae was considered to be due to increased serum iron in the animals pretreated with iron only; however, pretreatment with desferrioxamine did not affect the amount of serum ion. Thus, the data suggest that desferrioxamine acts as a siderophore to R. oryzae and exerts an adverse effect on mucormycosis. This study has shown that the presence of iron and desferrioxamine enhances the virulence and pathogenicity of R. oryzae by serving as a growth factor.  相似文献   

10.
11.
Screening of a cDNA library constructed under alkaline pH mediated growth of Aspergillus oryzae implicated a vacuolar H+-ATPase gene (vmaA) as a putative candidate involved in alkaline pH adaptation. A. oryzae vmaA genomic DNA extended to 2072 bp including three introns and encoded a protein of 605 amino acids. VmaAp was homologous to Vma-1p from Neurospora crassa (71%), Vma1p from Saccharomyces cerevisiae (69%) and ATP6A2 from human (49%). The vmaA cDNA complemented S. cerevisiae V-ATPase disrupted strain (Deltavma1) was viable at alkaline pH 8.0 and in the presence of CaCl(2) (100 mM). Northern analysis revealed an enhanced expression of vmaA during growth of A. oryzae in alkaline medium (pH 10.0). The A. oryzae vmaA disruptant exhibited abnormally shrunken vacuoles and hyphal walls at pH 8.5 and a growth defect at pH 10.0, implicating an alkaline pH stress responsive role for vmaA in A. oryzae.  相似文献   

12.
13.
As with many other fungi, including the budding yeast Saccharomyces cerevisiae, the dimorphic fungus Candida albicans encodes the novel translation factor, elongation factor 3 (EF-3). Using a rapid affinity chromatography protocol, EF-3 was purified to homogeneity from C. albicans and shown to have an apparent molecular mass of 128 kDa. A polyclonal antibody raised against C. albicans EF-3 also showed cross-reactivity with EF-3 from S. cerevisiae. Similarly, the S. cerevisiae TEF3 gene (encoding EF-3) showed cross-hybridization with genomic DNA from C. albicans in Southern hybridization analysis, demonstrating the existence of a single gene closely related to TEF3 in the C. albicans genome. This gene was cloned by using a 0.7 kb polymerase chain reaction-amplified DNA fragment to screen to C. albicans gene library. DNA sequence analysis of 200 bp of the cloned fragment demonstrated an open reading frame showing 51% predicted amino acid identity between the putative C. albicans EF-3 gene and its S. cerevisiae counterpart over the encoded 65-amino-acid stretch. That the cloned C. albicans sequence did indeed encode EF-3 was confirmed by demonstrating its ability to rescue an otherwise non-viable S. cerevisiae tef3:HIS3 null mutant. Thus EF-3 from C. albicans shows both structural and functional similarity to EF-3 from S. cerevisiae.  相似文献   

14.
High affinity iron uptake in fungi is supported by a plasma membrane protein complex that includes a multicopper ferroxidase enzyme and a ferric iron permease. In Saccharomyces cerevisiae, this complex is composed of the ferroxidase Fet3p and the permease Ftr1p. Fe(II) serves as substrate for Fe-uptake by being substrate for Fet3p; the resulting Fet3p-produced Fe(III) is then transported across the membrane via Ftr1p. A model of metabolite channeling of this Fe(III) is tested here by first constructing and kinetically characterizing in Fe-uptake two Fet3p-Ftr1p chimeras in which the multicopper oxidase/ferroxidase domain of Fet3p has been fused to the Ftr1p iron permease. Although the bifunctional chimeras are as kinetically efficient in Fe-uptake as is the wild type two-component system, they lack the adaptability and fidelity in Fe-uptake of the wild type. Specifically, Fe-uptake through the Fet3p, Ftr1p complex is insensitive to a potential Fe(III) trapping agent - citrate - whereas Fe-uptake via the chimeric proteins is competitively inhibited by this Fe(III) chelator. This inhibition does not appear to be due to scavenging Fet3p-produced Fe(III) that is in equilibrium with bulk solvent but could be due to leakiness to citrate found in the bifunctional but not the two-component system. The data are consistent with a channeling model of Fe-trafficking in the Fet3p, Ftr1p complex and suggest that in this system, Fet3p serves as a redox sieve that presents Fe(III) specifically for permeation through Ftr1p.  相似文献   

15.
16.
Dialysis patients with chronic renal failure receiving deferoxamine for treating iron overload are uniquely predisposed for mucormycosis, which is most often caused by Rhizopus oryzae. Although the deferoxamine siderophore is not secreted by Mucorales, previous studies established that Rhizopus species utilize iron from ferrioxamine (iron-rich form of deferoxamine). Here we determined that the CBS domain proteins of Fob1 and Fob2 act as receptors on the cell surface of R. oryzae during iron uptake from ferrioxamine. Fob1 and Fob2 cell surface expression was induced in the presence of ferrioxamine and bound radiolabeled ferrioxamine. A R. oryzae strain with targeted reduced Fob1/Fob2 expression was impaired for iron uptake, germinating, and growing on medium with ferrioxamine as the sole source of iron. This strain also exhibited reduced virulence in a deferoxamine-treated, but not the diabetic ketoacidotic (DKA), mouse model of mucormycosis. The mechanism by which R. oryzae obtains iron from ferrioxamine involves the reductase/permease uptake system since the growth on ferrioxamine supplemented medium is associated with elevated reductase activity and the use of the ferrous chelator bathophenanthroline disulfonate abrogates iron uptake and growth on medium supplemented with ferrioxamine as a sole source of iron. Finally, R. oryzae mutants with reduced copies of the high affinity iron permease (FTR1) or with decreased FTR1 expression had an impaired iron uptake from ferrioxamine in vitro and reduced virulence in the deferoxamine-treated mouse model of mucormycosis. These two receptors appear to be conserved in Mucorales, and can be the subject of future novel therapy to maintain the use of deferoxamine for treating iron-overload.  相似文献   

17.
18.
Based on the sequence information for the omega3-desaturase genes (from Brassica napus and Caenorhabditis elegans), which are involved in the desaturation of linoleic acid (Delta9, Delta12-18 : 2) to alpha-linolenic acid (Delta9, Delta12, Delta15-18 : 3), a cDNA was cloned from the filamentous fungal strain, Mortierella alpina 1S-4, which is used industrially to produce arachidonic acid. Homology analysis with protein databases revealed that the amino acid sequence showed 43.7% identity as the highest match with the microsomal omega6-desaturase (from Glycine max, soybean), whereas it exhibited 38.9% identity with the microsomal omega3-desaturase (from soybean). The evolutionary implications of these enzymes will be discussed. The cloned cDNA was confirmed to encode a Delta12-desaturase, which was involved in the desaturation of oleic acid (Delta9-18 : 1) to linoleic acid, by its expression in both the yeast Saccharomyces cerevisiae and the fungus Aspergillus oryzae. Analysis of the fatty acid composition of yeast and fungus transformants demonstrated that linoleic acid (which was not contained in the control strain of S. cerevisiae) was accumulated in the yeast transformant and that the fungal transformant contained a large amount of linoleic acid (71.9%). Genomic Southern blot analysis of the transformants with the Mortierella Delta12-desaturase gene as a probe confirmed integration of this gene into the genome of A. oryzae. The M. alpina 1S-4 Delta12-desaturase is the first example of a cloned nonplant Delta12-desaturase.  相似文献   

19.
20.
Kwok EY  Severance S  Kosman DJ 《Biochemistry》2006,45(20):6317-6327
In high-affinity iron uptake in the yeast Saccharomyces cerevisiae, Fe(II) is oxidized to Fe(III) by the multicopper oxidase, Fet3p, and the Fe(III) produced is transported into the cell via the iron permease, Ftr1p. These two proteins are likely part of a heterodimeric or higher order complex in the yeast plasma membrane. We provide kinetic evidence that the Fet3p-produced Fe(III) is trafficked to Ftr1p for permeation by a classic metabolite channeling mechanism. We examine the (59)Fe uptake kinetics for a number of complexes containing mutant forms of both Fet3p and Ftr1p and demonstrate that a residue in one protein interacts with one in the other protein along the iron trafficking pathway as would be expected in a channeling process. We show that, as a result of some of these mutations, iron trafficking becomes sensitive to an added Fe(III) chelator that inhibits uptake in a strictly competitive manner. This inhibition is not strongly dependent on the chelator strength, however, suggesting that Fe(III) dissociation from the iron uptake complex, if it occurs, is kinetically slow relative to iron permeation. Metabolite channeling is a common feature of multifunctional enzymes. We constructed the analogous ferroxidase, permease chimera and demonstrate that it supports iron uptake with a kinetic pattern consistent with a channeling mechanism. By analogy to the Fe(III) trafficking that leads to the mineralization of the ferritin core, we propose that ferric iron channeling is a conserved feature of iron homeostasis in aerobic organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号