首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolution of air-breathing organs (ABOs) is associated not only with hypoxic environments but also with activity. This investigation examines the effects of hypoxia and exercise on the partitioning of aquatic and aerial oxygen uptake in the Pacific tarpon. The two-species cosmopolitan genus Megalops is unique among teleosts in using swim bladder ABOs in the pelagic marine environment. Small fish (58-620 g) were swum at two sustainable speeds in a circulating flume respirometer in which dissolved oxygen was controlled. For fish swimming at 0.11 m s(-1) in normoxia (Po2 = 21 kPa), there was practically no air breathing, and gill oxygen uptake was 1.53 mL kg(-0.67) min(-1). Air breathing occurred at 0.5 breaths min(-1) in hypoxia (8 kPa) at this speed, when the gills and ABOs accounted for 0.71 and 0.57 mL kg(-0.67) min(-1), respectively. At 0.22 m s(-1) in normoxia, breathing occurred at 0.1 breaths min(-1), and gill and ABO oxygen uptake were 2.08 and 0.08 mL kg(-0.67) min(-1), respectively. In hypoxia and 0.22 m s(-1), breathing increased to 0.6 breaths min(-1), and gill and ABO oxygen uptake were 1.39 and 1.28 mL kg(-0.67) min(-1), respectively. Aquatic hypoxia was therefore the primary stimulus for air breathing under the limited conditions of this study, but exercise augmented oxygen uptake by the ABOs, particularly in hypoxic water.  相似文献   

2.
Rhinelepis strigosa did not surface for air breathing in normoxic or moderate hypoxic water. This species initiated air breathing when the P io2 in the water reached 22 ± 1 mmHg. Once begun, the air-breathing frequency increased with decreasing P io2. Aquatic oxygen consumption was 21·0 ± 1·9ml O2 kg−1h−1 in normoxic water, and was almost constant during progressive hypoxia until the P io2 reached 23·9 mmHg, considered the critical oxygen tension (Pco2). Gill ventilation increased until close to the P co2 (7·9-fold) as a consequence of a greater increase in ventilatory volume than in breathing frequency. Gill oxygen extraction was 42 ± 5% and decreased with hypoxia, but under severe hypoxia returned to values characteristic of normoxic. The critical threshold for air breathing was coincident with the Pco2 during aquatic respiration. This suggests that the air-breathing response is evoked by the aquatic oxygen tension at which the respiratory mechanisms fail to compensate for environmental hypoxia, and the gill O2 uptake becomes insufficient to meet O2 requirements.  相似文献   

3.
Pacific tarpon (Megalops cyprinoides) use a modified gas bladder as an air-breathing organ (ABO). We examined changes in cardiac output (V(b)) associated with increases in air-breathing that accompany exercise and aquatic hypoxia. Juvenile (0.49 kg) and adult (1.21 kg) tarpon were allowed to recover in a swim flume at 27 degrees C after being instrumented with a Doppler flow probe around the ventral aorta to monitor V(b) and with a fibre-optic oxygen sensor in the ABO to monitor air-breathing frequency. Under normoxic conditions and in both juveniles and adults, routine air-breathing frequency was 0.03 breaths min(-1) and V(b) was about 15 mL min(-1) kg(-1). Normoxic exercise (swimming at about 1.1 body lengths s(-1)) increased air-breathing frequency by 8-fold in both groups (reaching 0.23 breaths min(-1)) and increased V(b) by 3-fold for juveniles and 2-fold for adults. Hypoxic exposure (2 kPa O2) at rest increased air-breathing frequency 19-fold (to around 0.53 breaths min(-1)) in both groups, and while V(b) again increased 3-fold in resting juvenile fish, V(b) was unchanged in resting adult fish. Exercise in hypoxia increased air-breathing frequency 35-fold (to 0.95 breaths min(-1)) in comparison with resting normoxic fish. While juvenile fish increased V(b) nearly 2-fold with exercise in hypoxia, adult fish maintained the same V(b) irrespective of exercise state and became agitated in comparison. These results imply that air-breathing during exercise and hypoxia can benefit oxygen delivery, but to differing degrees in juvenile and adult tarpon. We discuss this difference in the context of myocardial oxygen supply.  相似文献   

4.
The bimodally respiring catfish Clarias macrocephalus Günther responded to a toxic extract of Croton tiglium (Euphorbiaceae) seeds by increased air breathing under both normoxic (8.1 ± 0.4 mgO2 l−1) and hypoxic (0.7 ± 0.1 mgO2l−1) conditions. Fish in hypoxia survived longer than those in normoxia when surface access was provided. When air breathing was prevented, survival time in toxin was greatly reduced at both levels of dissolved oxygen, and fish in normoxia survived longer than those in hypoxia. Non-toxin controls without surface access survived in normoxia but in hypoxia died at the same time as the fish in toxin. These results suggest that air breathing increases the resistance offish to toxins by permitting a decrease in the rate of gill ventilation and hence the rate at which toxins are absorbed.  相似文献   

5.
A method for quickly assessing the relative proportion of compact myocardium in the ventricle of teleosts is introduced and used in juvenile Pacific tarpon Megalops cyprinoides , a member of the only air-breathing elopomorph teleost genus. The proportion of compact myocardium increased with body mass, reaching up to 60% of the ventricular mass. The finding for tarpon was a surprising discovery since recent literature has suggested that air breathing evolved primarily as means of supplying oxygen to the fish heart during activity. The present data, which represent the first quantitative assessment of the compact myocardium for any air-breathing fish, suggest that myocardial oxygen supply in the tarpon is supplemented by the coronary circulation associated with compact myocardium during exercise, while air breathing is important during aquatic hypoxia. Compact myocardium was also measured as a point of reference in an extant representative from a more ancient fish lineage than the elopomorphs, the water-breathing spiny dogfish Squalus acanthias and found to be only 9% of ventricular mass. In conclusion, the presence of a coronary circulation in extant elasmobranchs may mean that the coronary circulation evolved well before air breathing in fishes and, for tarpon at least, the coronary oxygen supply to the ventricular myocardium has not necessarily been superseded by air breathing.  相似文献   

6.
This paper quantifies the relationship between respiratory allocation (air vs. water) and the standard rate of metabolism (SMR) in the primitive air-breathing lungfish, Protopterus aethiopicus. Simultaneous measurements of oxygen consumed from both air and water were made to determine the SMR at ecologically relevant aquatic oxygen levels for juveniles 2 to 221 g. Total metabolic rate was positively correlated with body mass with a scaling exponent of 0.78. Aerial oxygen consumption averaged 98% (range=94% to 100%) of total respiratory allocation under low aquatic oxygen levels. Measurements of oxygen consumption made across a gradient of dissolved oxygen from normoxia to anoxia showed that P. aethiopicus maintains its SMR despite a change in respiratory allocation between water and air.  相似文献   

7.
In their natural habitat, brown-striped frog (Limnodynastes peronii) larvae periodically swim rapidly from the bottom of their ponds to the water surface and then immediately dive to the bottom again. This behaviour is presumably related to air-breathing. We examined the behavioural and metabolic responses to aquatic hypoxia in L. pernoii larvae. Gas filled lungs were found in all free-swimming larval stages of L. peronii, but air-breathing occurred infrequently in normoxic water. The frequency of air-breathing at 30°C increased rapidly in hypoxic water when oxygen partial pressure (Po2) fell below 10 kPa. Only a slight increase was observed at similar oxygen partial pressures at 20°C. The critical oxygen tension at 30°C was about 7kPa, below which, aquatic breathing larvae become metabolic oxygen conformers. In natural habitats where surfacing behaviour was observed, temperatures during summer months frequently exceed 25°C and some ponds become extremely hypoxic (po2 < 3.0 kPa); therefore air-breathing appears to be the only way in which these larvae can maintain a fully aerobic metabolism.  相似文献   

8.
Anuran amphibians are known to exhibit an intermittent pattern of pulmonary ventilation and to exhibit an increased ventilatory response to hypoxia and hypercarbia. However, only a few species have been studied to date. The aquatic frog Pipa carvalhoi inhabits lakes, ponds and marshes that are rich in nutrients but low in O(2). There are no studies of the respiratory pattern of this species and its ventilation during hypoxia or hypercarbia. Accordingly, the aim of the present study was to characterize the breathing pattern and the ventilatory response to aquatic and aerial hypoxia and hypercarbia in this species. With this purpose, pulmonary ventilation (V(I)) was directly measured by the pneumotachograph method during normocapnic normoxia to determine the basal respiratory pattern and during aerial and aquatic hypercarbia (5% CO(2)) and hypoxia (5% O(2)). Our data demonstrate that P. carvalhoi exhibits a periodic breathing pattern composed of single events (single breaths) of pulmonary ventilation separated by periods of apnea. The animals had an enhanced V(I) during aerial hypoxia, but not during aquatic hypoxia. This increase was strictly the result of an increase in the breathing frequency. A pronounced increase in V(I) was observed if the animals were simultaneously exposed to aerial and aquatic hypercarbia, whereas small or no ventilatory responses were observed during separately administered aerial or aquatic hypercarbia. P. carvalhoi primarily inhabits an aquatic environment. Nevertheless, it does not respond to low O(2) levels in water, although it does so in air. The observed ventilatory responses to hypercarbia may indicate that this species is similar to other anurans in possessing central chemoreceptors.  相似文献   

9.
The Pacific tarpon is an elopomorph teleost fish with an air-breathing organ (ABO) derived from a physostomous gas bladder. Oxygen partial pressure (PO2) in the ABO was measured on juveniles (238 g) with fiber-optic sensors during exposure to selected aquatic PO2 and swimming speeds. At slow speed (0.65 BL s−1), progressive aquatic hypoxia triggered the first breath at a mean PO2 of 8.3 kPa. Below this, opercular movements declined sharply and visibly ceased in most fish below 6 kPa. At aquatic PO2 of 6.1 kPa and swimming slowly, mean air-breathing frequency was 0.73 min−1, ABO PO2 was 10.9 kPa, breath volume was 23.8 ml kg−1, rate of oxygen uptake from the ABO was 1.19 ml kg−1 min−1, and oxygen uptake per breath was 2.32 ml kg−1. At the fastest experimental speed (2.4 BL s−1) at 6.1 kPa, ABO oxygen uptake increased to about 1.90 ml kg−1 min−1, through a variable combination of breathing frequency and oxygen uptake per breath. In normoxic water, tarpon rarely breathed air and apparently closed down ABO perfusion, indicated by a drop in ABO oxygen uptake rate to about 1% of that in hypoxic water. This occurred at a wide range of ABO PO2 (1.7–26.4 kPa), suggesting that oxygen level in the ABO was not regulated by intrinsic receptors.  相似文献   

10.
Air-breathing fish of the Anabantoidei group meet their metabolic requirements for oxygen through both aerial and aquatic gas exchange. Siamese fighting fish Betta splendens are anabantoids that frequently engage in aggressive male–male interactions which cause significant increases in metabolic rate and oxygen requirements. These interactions involve opercular flaring behaviour that is thought to limit aquatic oxygen uptake, and combines with the increase in metabolic rate to cause an increase in air-breathing behaviour. Air-breathing events interrupt display behaviour and increase risk of predation, raising the question of how Siamese fighting fish manage their oxygen requirements during agonistic encounters. Using open-flow respirometry, we measured rate of oxygen consumption in displaying fish to determine if males increase oxygen uptake per breath to minimise visits to the surface, or increase their reliance on aquatic oxygen uptake. We found that the increased oxygen requirements of Siamese fighting fish during display behaviour were met by increased oxygen uptake from the air with no significant changes in aquatic oxygen uptake. The increased aerial oxygen uptake was achieved almost entirely by an increase in air-breathing frequency. We conclude that limitations imposed by the reduced gill surface area of air-breathing fish restrict the ability of Siamese fighting fish to increase aquatic uptake, and limitations of the air-breathing organ of anabantoids largely restrict their capacity to increase oxygen uptake per breath. The resulting need to increase surfacing frequency during metabolically demanding agonistic encounters has presumably contributed to the evolution of the stereotyped surfacing behaviour seen during male–male interactions, during which one of the fish will lead the other to the surface, and each will take a breath of air.  相似文献   

11.
We present the first data on the effect of hypoxia on the specific dynamic action (SDA) in a teleost fish. Juvenile cod (Gadus morhua) were fed meals of 2.5% and 5% of their wet body mass (BM) in normoxia (19.8 kPa Po(2)) and 5% BM in hypoxia (6.3 kPa Po(2)). Reduced O(2) availability depressed the postprandial peaks of oxygen consumption, and to compensate for this, the total SDA duration lasted 212.0+/-20 h in hypoxia, compared with 95.1+/-25 h in normoxia. The percentage of energy associated with the meal digestion and assimilation (SDA coefficient) was equivalent between the different feeding rations but higher for fish exposed to hypoxia. Comparing peak oxygen consumption during the SDA course with maximum metabolic rates showed that food rations of 2.5% and 5% BM reduced the scope for activity by 40% and 55%, while ingestion of 5% BM in hypoxia occupied 69% of the aerobic scope, leaving little energy for other activities.  相似文献   

12.
Lungfishes (Dipnoi) occupy an evolutionary transition between water and air breathing and possess well-developed lungs and reduced gills. The South American species, Lepidosiren paradoxa, is an obligate air-breather and has the lowest aquatic respiration of the three extant genera. To study the relative importance, location and modality of reflexogenic sites sensitive to oxygen in the generation of cardio-respiratory responses, we measured ventilatory responses to changes in ambient oxygen and to reductions in blood oxygen content. Animals were exposed to aquatic and aerial hypoxia, both separately and in combination. While aerial hypoxia elicited brisk ventilatory responses, aquatic hypoxia had no effect, indicating a primary role for internal rather than branchial receptors. Reducing haematocrit and blood oxygen content by approximately 50% did not affect ventilation during normoxia, showing that the specific modality of the internal oxygen sensitive chemoreceptors is blood PO(2) per se and not oxygen concentration. In light of previous studies, it appears that the heart rate responses and the changes in pulmonary ventilation during oxygen shortage are similar in lungfish and tetrapods. Furthermore, the modality of the oxygen receptors controlling these responses is similar to tetrapods. Because the cardio-respiratory responses and the modality of the oxygen receptors differ from typical water-breathing teleosts, it appears that many of the changes in the mechanisms exerting reflex control over cardio-respiratory functions occurred at an early stage in vertebrate evolution.  相似文献   

13.
Swimming in a flume at reduced water pO2 resulted in muscle and blood lactate levels in Pacific tarpon Megalops cyprinoides that were significantly higher when fish did not have access to air. Blood glucose and haematological variables were unchanged throughout the regimes of exercise at two swimming speeds and hypoxia. Strenuous exercise with bouts of burst swimming, however, resulted in both high blood lactate and glucose, and perturbed haematological status with elevated haemoglobin and reduced mean cell-haemoglobin concentration. Post-exercise recovery was achieved through aquatic breathing rather than by air breathing. The air-breathing organ in Pacific tarpon therefore prolonged aerobic activity, but gill breathing was used to repay oxygen debt.  相似文献   

14.
Inspiratory load compensation is impaired in patients with obstructive sleep apnea (OSA), a condition characterized by hypoxia during sleep. We sought to compare the effects of sustained hypoxia on ventilation during inspiratory resistive loading in OSA patients and matched controls. Ten OSA patients and 10 controls received 30 min of isocapnic hypoxia (arterial oxygen saturation 80%) and normoxia in random order. Following the gas period, subjects were administered six incremental 2-min inspiratory resistive loads while breathing room air. Ventilation was measured throughout the loading period. In both patients and controls, there was a significant increase in inspiratory time with increasing load (P = 0.006 and 0.003, respectively), accompanied by a significant fall in peak inspiratory flow (P = 0.006 and P < 0.001, respectively). The result was a significant fall in minute ventilation in both groups with increasing load (P = 0.003 and P < 0.001, respectively). There was no difference between the two groups for these parameters. The only difference between the two groups was a transient increase in tidal volume in controls (P = 0.02) but not in OSA patients (P = 0.57) during loading. Following hypoxia, there was a significant increase in minute ventilation during loading in both groups (P < 0.001). These results suggest that ventilation during incremental resistive loading is preserved in OSA patients and that it appears relatively impervious to the effects of hypoxia.  相似文献   

15.
Summary Heart, ventilation and oxygen consumption rates ofLeiopotherapon unicolor were studied at temperatures ranging from 5 to 35°C, and during progressive hypoxia from 100% to 5% oxygen saturation. Biopotentials recorded from the water surrounding the fish corresponded to ventilation movements, and are thought to originate from the ventilatory musculature. Cardio-respiratory responses to temperature and dissolved oxygen follow the typical teleost pattern, with bradycardia, increased ventilation rate and reduced oxygen consumption occurring during hypoxia. However, ventilation rate did not increase at 15°C and below. Ventilation rate showed a slower response to increasing temperature (normoxic Q10=1.39) than heart rate and oxygen consumption (normoxic Q10=2.85 and 2.38).L. unicolor is unable to survive prolonged hypoxia by utilising anaerobic metabolism, but has a large gill surface area which presumably facilitates oxygen uptake in hypoxic environments. Periodic ventilation during normoxia in restingL. unicolor may improve ventilation efficiency by increasing the oxygen diffusion gradient across the gills.Abbreviations EBG electrobranchiogram - ECG electrocardiogram  相似文献   

16.
Among vertebrates, turtles are able to tolerate exceptionally low oxygen tensions. We have investigated the compensatory mechanisms that regulate respiration and blood oxygen transport in snapping turtles during short exposure to hypoxia. Snapping turtles started to hyperventilate when oxygen levels dropped below 10% O(2). Total ventilation increased 1.75-fold, essentially related to an increase in respiration frequency. During normoxia, respiration occurred in bouts of four to five breaths, whereas at 5% O(2), the ventilation pattern was more regular with breathing bouts consisting of a single breath. The increase in the heart rate between breaths during hypoxia suggests that a high pulmonary blood flow may be maintained during non-ventilatory periods to improve arterial blood oxygenation. After 4 days of hypoxia at 5% O(2), hematocrit, hemoglobin concentration and multiplicity and intraerythrocytic organic phosphate concentration remained unaltered. Accordingly, oxygen binding curves at constant P(CO(2)) showed no changes in oxygen affinity and cooperativity. However, blood pH increased significantly from 7.50+/-0.05 under normoxia to 7.72+/-0.03 under hypoxia. The respiratory alkalosis will produce a pronounced in vivo left-shift of the blood oxygen dissociation curve due to the large Bohr effect and this is shown to be critical for arterial oxygen saturation.  相似文献   

17.
Previous research has shown that hypoxia-acclimated Atlantic cod (Gadus morhua) have significantly reduced cardiac function but can consume more oxygen for a given cardiac output (Q). However, it is not known (1) which physiological changes permit a greater "oxygen pulse" (oxygen consumed per mL of blood pumped) in hypoxia-acclimated individuals or (2) whether chronic exposure to low-oxygen conditions improves the hypoxia tolerance of cod. Thus, we exposed normoxia- and hypoxia-acclimated (> 6 wk at a water oxygen partial pressure [P(w)O(2)] ~8-9 kPa) cod to a graded normoxia challenge until loss of equilibrium occurred while recording the following cardiorespiratory variables: oxygen consumption (MO(2)), ventilatory rate, cardiac function (Q, heart rate f(H), and stroke volume S(V)), ventral aortic blood pressure (P(VA)), venous oxygen partial pressure (P(v)O(2)) and oxygen content (C(v)O(2)), plasma catecholamines, and blood hemoglobin ([Hb]) and hematocrit (Hct). In addition, we performed in vitro hemoglobin oxygen binding curves to examine whether hypoxia acclimation influences hemoglobin functional properties. Numerous physiological adjustments occurred in vivo during the > 6 wk of hypoxia acclimation: that is, increased f(H), decreased S(V) and Q, elevated [Hb], enhanced tissue oxygen extraction (by 10% at a P(w)O(2) of 20 kPa), and a more robust stress response as evidenced by circulating catecholamine levels that were two to eight times higher when fish were acutely exposed to severe hypoxia. In contrast, chronic hypoxia had no significant effect on the affinity of hemoglobin for oxygen, on in vitro hemoglobin oxygen carrying capacity, or on the cod's hypoxia tolerance (H(crit); the P(w)O(2) at which the fish lost equilibrium, which was 4.3 ± 0.2 and 4.8 ± 0.3 kPa in normoxia- and hypoxia-acclimated fish, respectively). These data suggest that while chronic hypoxia results in numerous physiological adjustments, these changes do not improve the cod's capacity to tolerate low-oxygen conditions.  相似文献   

18.
Compromisation of food intake when confronted with diets deficient in essential amino acids is a common response of fish and other animals, but the underlying physiological factors are poorly understood. We hypothesize that oxygen consumption of fish is a possible physiological factor constraining food intake. To verify, we assessed the food intake and oxygen consumption of rainbow trout fed to satiation with diets which differed in essential amino acid (methionine and lysine) compositions: a balanced vs. an imbalanced amino acid diet. Both diets were tested at two water oxygen levels: hypoxia vs. normoxia. Trout consumed 29% less food under hypoxia compared to normoxia (p<0.001). Under both hypoxia and normoxia trout significantly reduced food intake by 11% and 16% respectively when fed the imbalanced compared to the balanced amino acid diet. Oxygen consumption of the trout per unit body mass remained identical for both diet groups not only under hypoxia but also under normoxia (p>0.05). This difference in food intake between diets under normoxia together with the identical oxygen consumption supports the hypothesis that food intake in fish can be constrained by a set-point value of oxygen consumption, as seen here on a six-week time scale.  相似文献   

19.
The effect of acute hypoxia and CO2 inhalation on leg blood flow (LBF), on leg vascular resistance (LVR) and on oxygen supply to and oxygen consumption in the exercising leg was studied in nine healthy male subjects during moderate one-leg exercise. Each subject exercised for 20 min on a cycle ergometer in four different conditions: normoxia, normoxia + 2% CO2, hypoxia corresponding to an altitude of 4000 m above sea level, and hypoxia + 1.2% CO2. Gas exchange, heart rate (HR), arterial blood pressure, and LBF were measured, and arterial and venous blood samples were analysed for PCO2, PO2, oxygen saturation, haematocrit and haemoglobin concentration. Systemic oxygen consumption was 1.83 l.min-1 (1.48-2.59) and was not affected by hypoxia or CO2 inhalation in hypoxia. HR was unaffected by CO2, but increased from 136 beat.min-1 (111-141) in normoxia to 155 (139-169) in hypoxia. LBF was 6.5 l.min-1 (5.4-7.6) in normoxia and increased significantly in hypoxia to 8.4 (5.9-10.1). LVR decreased significantly from 2.23 kPa.l-1.min (1.89-2.99) in normoxia to 1.89 (1.53-2.52) in hypoxia. The increase in LBF from normoxia to hypoxia correlated significantly with the decrease in LVR. When CO2 was added in hypoxia a significant correlation was also found between the decrease in LBF and the increase in LVR. In normoxia, the addition of CO2 caused a significant increase in mean blood pressure. Oxygen consumption in the exercising leg (leg VO2) in normoxia was 0.97 l.min-1 (0.72-1.10), and was unaffected by hypoxia and CO2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Though air-breathing has probably evolved mainly as a response to hypoxia, it may provide an important oxygen supplement when metabolism is elevated, as for example during swimming. Due to the increased travelling distance involved when an air-breathing fish swims to and from the surface, and the increased drag when the surface is breached, it can be proposed that air-breathing results in a rise in the apparent cost of transport. In order to investigate this hypothesis, it is necessary to use a fish that is able to swim equally well with and without access to air. The striped catfish Pangasianodon hypophthalmus has been shown to have a sufficiently high capacity for aquatic oxygen uptake in normoxia, to allow for such a comparison. Here, we measured the partitioning of oxygen uptake ( $ \dot{M}{\text{O}}_{2} $ ) during swimming and recovery, and calculated the apparent cost of transport with and without access to air, under normoxic conditions. Aerial $ \dot{M}{\text{O}}_{2} $ constituted 25–40 % of the total $ \dot{M}{\text{O}}_{2} $ during swimming and less than 15 % during recovery. The net cost of transport was 25 % lower in fish that did not air-breathe compared to fish that did, showing that the cost of surfacing can be substantial. This is the first study to measure partitioning in an air-breathing fish during swimming at velocities close to the critical swimming speed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号