首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Venomous snakes have various types of phospholipase A(2) inhibitory proteins (PLIs) in their circulatory system to protect them from attack by their own phospholipase A(2)s (PLA(2)s). Here we show the first evidence for the existence of circulating PLI against secretory PLA(2)s (sPLA(2)s) in mammals. In mouse serum, we detected specific binding activities of group IB and X sPLA(2)s, which was in contrast with the absence of binding activities in serum prepared from mice deficient in PLA(2) receptor (PLA(2)R), a type I transmembrane glycoprotein related to the C-type animal lectin family. Western blot analysis after partial purification with group IB sPLA(2) affinity column confirmed the identity of serum sPLA(2)-binding protein as a soluble form of PLA(2)R (sPLA(2)R) that retained all of the extracellular domains of the membrane-bound receptor. Both purified sPLA(2)R and the recombinant soluble receptor having all of the extracellular portions blocked the biological functions of group X sPLA(2), including its potent enzymatic activity and its binding to the membrane-bound receptor. Protease inhibitor tests with PLA(2)R-overexpressing Chinese hamster ovary cells suggested that sPLA(2)R is produced by cleavage of the membrane-bound receptor by metalloproteinases. Thus, sPLA(2)R is the first example of circulating PLI that acts as an endogenous inhibitor for enzymatic activities and receptor-mediated functions of sPLA(2)s in mice.  相似文献   

2.
Several snake venom secreted phospholipases A2 (sPLA2s) including OS2 exert a variety of pharmacological effects ranging from central neurotoxicity to anti-HIV activity by mechanisms that are not yet fully understood. To conclusively address the role of enzymatic activity and map the key structural elements of OS2 responsible for its pharmacological properties, we have prepared single point OS2 mutants at the catalytic site and large chimeras between OS2 and OS1, a homologous but nontoxic sPLA2. Most importantly, we found that the enzymatic activity of the active site mutant H48Q is 500-fold lower than that of the wild-type protein, while central neurotoxicity is only 16-fold lower, providing convincing evidence that catalytic activity is at most a minor factor that determines central neurotoxicity. The chimera approach has identified the N-terminal region (residues 1-22) of OS2, but not the central one (residues 58-89), as crucial for both enzymatic activity and pharmacological effects. The C-terminal region of OS2 (residues 102-119) was found to be critical for enzymatic activity, but not for central neurotoxicity and anti-HIV activity, allowing us to further dissociate enzymatic activity and pharmacological effects. Finally, direct binding studies with the C-terminal chimera, which poorly binds to phospholipids while it is still neurotoxic, led to the identification of a subset of brain N-type receptors which may be directly involved in central neurotoxicity.  相似文献   

3.
The antioxidant activity of flavonoids may involve their ability to complex body iron in non-redox-active forms. In this study, it was found that the catechol flavonoids rutin and quercetin are able to suppress redox-active labile plasma iron (LPI) in both buffered solution and in iron-overloaded sera. Both flavonoids are effective in loading the metal into the iron-transport protein transferrin. Iron derivatives of quercetin and rutin are able to permeate cell membranes, however, only free quercetin is able to gain access to the cytosol and decrease intracellular labile iron pools. These results suggest that the antioxidant activity of quercetin may be dependent on its ability to shuttle labile iron from cell compartments followed by its transfer to transferrin.  相似文献   

4.
Some ingredients from herbal medicine can significantly affect the activity of CYP2D6, thus leading to serious interactions between herbs and drugs. Quercetin and hyperoside are active ingredients widely found in vegetables, fruits, and herbal medicines. Quercetin and hyperoside have many biological activities. In this work, the characteristic bindings of CYP2D6 with quercetin/hyperoside are revealed by multi-spectroscopy analysis, molecular docking, and molecular dynamics simulations. The fluorescence of CYP2D6 is statically quenched by quercetin and hyperoside. The binding constant (Ka) values of CYP2D6–quercetin/hyperoside range from 104 L mol−1, which indicates that these two flavonoids bind moderately to CYP2D6. Meanwhile, quercetin has a stronger quenching ability to CYP2D6 than that of hyperoside. The secondary structure of CYP2D6 is obviously changed by binding with quercetin/hyperoside. The docking results reveal that the quercetin/hyperoside enters the active site of CYP2D6 near heme and binds to CYP2D6 by hydrogen bonds and van der Waals forces. The molecular dynamics simulation results indicate that the binding of quercetin/hyperoside can stabilize the two complexes, enhance the flexibility of CYP2D6 backbone atoms, and make a more unfolded and looser structure of CYP2D6.  相似文献   

5.
Alpha-lipoic acid (ALA) and its reduced form dihydrolipoic acid (DHLA) are powerful antioxidants both in hydrophilic and lipophylic environments with diverse pharmacological properties including anti-inflammatory activity. The mechanism of anti-inflammatory activity of ALA and DHALA is not known. The present study describes the interaction of ALA and DHALA with pro-inflammatory secretory PLA(2) enzymes from inflammatory fluids and snake venoms. In vitro enzymatic inhibition of sPLA(2) from Vipera russellii, Naja naja and partially purified sPLA(2) enzymes from human ascitic fluid (HAF), human pleural fluid (HPF) and normal human serum (HS) by ALA and DHLA was studied using (14)C-oleate labeled Escherichia coli as the substrate. Biophysical interaction of ALA with sPLA(2) was studied by fluorescent spectral analysis and circular dichroism studies. In vivo anti-inflammatory activity was checked using sPLA(2) induced mouse paw edema model. ALA but not DHLA inhibited purified sPLA(2) enzymes from V. russellii, N. naja and partially purified HAF, HPF and HS in a dose dependent manner. This data indicated that ALA is critical for inhibition. IC(50) value calculated for these enzymes ranges from 0.75 to 3.0 microM. The inhibition is independent of calcium and substrate concentration. Inflammatory sPLA(2) enzymes are more sensitive to inhibition by ALA than snake venom sPLA(2) enzymes. ALA quenched the fluorescence intensity of sPLA(2) enzyme in a dose dependent manner. Apparent shift in the far UV-CD spectra of sPLA(2) with ALA indicated change in its alpha-helical confirmation and these results suggest its direct interaction with the enzyme. ALA inhibits the sPLA(2) induced mouse paw edema in a dose dependent manner and confirms the sPLA(2) inhibitory activity in vivo also. These data suggest that ALA may act as an endogenous regulator of sPLA(2) enzyme activity and suppress inflammatory reactions.  相似文献   

6.
Several natural flavonoids have been demonstrated to perform some beneficial biological activities, however, higher-effective concentrations and poor-absorptive efficacy in body of flavonoids blocked their practical applications. In the present study, we provided evidences to demonstrate that flavonoids rutin, quercetin, and its acetylated product quercetin pentaacetate were able to be used with nitric oxide synthase (NOS) inhibitors (N-nitro-L-arginine (NLA) or N-nitro-L-arginine methyl ester (L-NAME)) in treatment of lipopolysaccharide (LPS) induced nitric oxide (NO) and prostaglandin E2 (PGE2) productions, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) gene expressions in a mouse macrophage cell line (RAW 264.7). The results showed that rutin, quercetin, and quercetin pentaacetate-inhibited LPS-induced NO production in a concentration-dependent manner without obvious cytotoxic effect on cells by MTT assay using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide as an indicator. Decrease of NO production by flavonoids was consistent with the inhibition on LPS-induced iNOS gene expression by western blotting. However, these compounds were unable to block iNOS enzyme activity by direct and indirect measurement on iNOS enzyme activity. Quercetin pentaacetate showed the obvious inhibition on LPS-induced PGE2 production and COX-2 gene expression and the inhibition was not result of suppression on COX-2 enzyme activity. Previous study demonstrated that decrease of NO production by L-arginine analogs effectively stimulated LPS-induced iNOS gene expression, and proposed that stimulatory effects on iNOS protein by NOS inhibitors might be harmful in treating sepsis. In this study, NLA or L-NAME treatment stimulated significantly on LPS-induced iNOS (but not COX-2) protein in RAW 264.7 cells which was inhibited by these three compounds. Quercetin pentaacetate, but not quercetin and rutin, showed the strong inhibitory activity on PGE2 production and COX-2 protein expression in NLA/LPS or L-NAME/LPS co-treated RAW 264.7 cells. These results indicated that combinatorial treatment of L-arginine analogs and flavonoid derivates, such as quercetin pentaacetate, effectively inhibited LPS-induced NO and PGE2 productions, at the same time, inhibited enhanced expressions of iNOS and COX-2 genes.  相似文献   

7.
A bactericidal homodimeric phospholipases A2 from Bungarus fasciatus venom   总被引:2,自引:0,他引:2  
Xu C  Ma D  Yu H  Li Z  Liang J  Lin G  Zhang Y  Lai R 《Peptides》2007,28(5):969-973
Group IIA secretory phospholipases A(2) (sPLA(2)-II) is generally known to display potent gram-positive bactericidal activity, while group IA sPLA(2) (sPLA(2)-I) reportedly is not. In this work, a novel sPLA(2)-I named BFPA was identified from Bungarus fasciatus venom, and its antimicrobial activity was studied as well. The amino acid sequence of the venomous protein precursor was 145-amino acid in length, and contained a predicted 27-amino acid signal peptide and a 118-amino acid mature protein. Unlike the well-known sPLA(2)-Is, which have 14 half-cysteines forming 7 intramolecular disulfide bridges, BFPA possesses 15 half-cysteines. The additional cysteine might contribute to the formation of an intermolecular disulfide bridge of the homodimeric protein. In the biological activities assays, BFPA displayed the activities of anticoagulation and bactericidal against Escherichia coli and Staphylococcus aureus. This study is the first report about gram-positive bactericidal activity of sPLA(2)-I.  相似文献   

8.
Secreted phospholipases A(2) (sPLA(2)) are enzymes released in plasma and extracellular fluids during inflammatory diseases. Because human group IB and X sPLA(2)s are expressed in the lung, we examined their effects on primary human lung macrophages (HLM). Both sPLA(2)s induced TNF-alpha and IL-6 release in a concentration-dependent manner by increasing their mRNA expression. This effect was independent of their enzymatic activity because 1) the capacity of sPLA(2)s to mobilize arachidonic acid from HLM was unrelated to their ability to induce cytokine production; and 2) two catalytically inactive isoforms of group IB sPLA(2) (bromophenacyl bromide-inactivated human sPLA(2) and the H48Q mutant of the porcine sPLA(2)) were as effective as the catalytically active sPLA(2)s in inducing cytokine production. HLM expressed the M-type receptor for sPLA(2)s at both mRNA and protein levels, as determined by RT-PCR, immunoblotting, immunoprecipitation, and flow cytometry. Me-indoxam, which decreases sPLA(2) activity as well as binding to the M-type receptor, suppressed sPLA(2)-induced cytokine production. Incubation of HLM with the sPLA(2)s was associated with phosphorylation of ERK1/2, and a specific inhibitor of this pathway, PD98059, significantly reduced the production of IL-6 elicited by sPLA(2)s. In conclusion, two distinct sPLA(2)s produced in the human lung stimulate cytokine production by HLM via a mechanism that is independent of their enzymatic activity and involves activation of the ERK1/2 pathway. HLM express the M-type receptor, but its involvement in eliciting cytokine production deserves further investigation.  相似文献   

9.
Flavonoids are the major functional components of many herbal and insect preparations and demonstrate varied pharmacological functions including antibacterial activity. Here by enzymatic assay and crystal structure analysis, we studied the inhibition of three flavonoids (quercetin, apigenin, and (S)-sakuranetin) against the beta-hydroxyacyl-acyl carrier protein dehydratase from Helicobacter pylori (HpFabZ). These three flavonoids are all competitive inhibitors against HpFabZ by either binding to the entrance of substrate tunnel B (binding model A) or plugging into the tunnel C near the catalytic residues (binding model B) mainly by hydrophobic interaction and hydrogen-bond pattern. Surrounded by hydrophobic residues of HpFabZ at both positions of models A and B, the methoxy group at C-7 of (S)-sakuranetin seems to play an important role for the inhibitor's binding to HpFabZ, partly responsible for the higher inhibitory activity of (S)-sakuranetin than those of quercetin and apigenin against HpFabZ (IC(50) in microM: (S)-sakuranetin, 2.0 +/- 0.1; quercetin: 39.3 +/- 2.7; apigenin, 11.0 +/- 2.5). Our work is expected to supply useful information for understanding the potential antibacterial mechanism of flavonoids.  相似文献   

10.
ATP-binding cassette transporter A1 (ABCA1) plays a crucial role in exporting cholesterol from macrophages, a function relevant to its involvement in the prevention of atherosclerosis. Quercetin, one of flavonoids, has been described to reduce atherosclerotic lesion formation. This study is aimed to investigate the effect of quercetin on regulation of ABCA1 expression and to explore its underlying mechanisms in macrophages. The results show that quercetin markedly enhanced cholesterol efflux from macrophages in a concentration-dependent manner, which was associated with an increase in ABCA1 mRNA and protein expression. Remarkably, quercetin is able to stimulate the phosphorylation of p38 by up to 234-fold at 6 h via an activation of the transforming growth factor β-activated kinase 1 (TAK1) and mitogen-activated kinase kinase 3/6 (MKK3/6). Inhibition of p38 with a pharmacological inhibitor or small hairpin RNA (shRNA) suppressed the stimulatory effects of quercetin on ABCA1 expression and cholesterol efflux. Moreover, knockdown of p38 reduced quercetin-enhanced ABCA1 promoter activity and the binding of specificity protein 1 (Sp1) and liver X receptor α (LXRα) to the ABCA1 promoter using chromatin immunoprecipitation assays. These findings provide evidence that p38 signaling is essential for the regulation of quercetin-induced ABCA1 expression and cholesterol efflux in macrophages.  相似文献   

11.
12.
13.
A large group of flavonoids found in fruits and vegetables have been suggested to elicit health benefits due mainly to their anti-oxidative and anti-inflammatory properties. Recent studies with immune cells have demonstrated inhibition of these inflammatory responses through down-regulation of the pro-inflammatory pathway involving NF-κB and up-regulation of the anti-oxidative pathway involving Nrf2. In the present study, the murine BV-2 microglial cells were used to compare anti-inflammatory activity of quercetin and cyanidin, two flavonoids differing by their alpha, beta keto carbonyl group. Quercetin was 10 folds more potent than cyanidin in inhibition of lipopolysaccharide (LPS)-induced NO production as well as stimulation of Nrf2-induced heme-oxygenase-1 (HO-1) protein expression. In addition, quercetin demonstrated enhanced ability to stimulate HO-1 protein expression when cells were treated with LPS. In an attempt to unveil mechanism(s) for quercetin to enhance Nrf2/HO-1 activity under endotoxic stress, results pointed to an increase in phospho-p38MAPK expression upon addition of quercetin to LPS. In addition, pharmacological inhibitors for phospho-p38MAPK and MEK1/2 for ERK1/2 further showed that these MAPKs target different sites of the Nrf2 pathway that regulates HO-1 expression. However, inhibition of LPS-induced NO by quercetin was not fully reversed by TinPPIX, a specific inhibitor for HO-1 activity. Taken together, results suggest an important role of quercetin to regulate inflammatory responses in microglial cells and its ability to upregulate HO-1 against endotoxic stress through involvement of MAPKs.  相似文献   

14.
Group X secretory phospholipase A(2) (sPLA(2)-X) possesses several structural features characteristic of both group IB and IIA sPLA(2)s (sPLA(2)-IB and -IIA) and is postulated to be involved in inflammatory responses owing to its restricted expression in the spleen and thymus. Here, we report the purification of human recombinant COOH-terminal His-tagged sPLA(2)-X, the preparation of its antibody, and the purification of native sPLA(2)-X. The affinity-purified sPLA(2)-X protein migrated as various molecular species of 13-18 kDa on SDS-polyacrylamide gels, and N-glycosidase F treatment caused shifts to the 13- and 14-kDa bands. NH(2)-terminal amino acid sequencing analysis revealed that the 13-kDa form is a putative mature sPLA(2)-X and the 14-kDa protein possesses a propeptide of 11 amino acid residues attached at the NH(2) termini of the mature protein. Separation with reverse-phase high performance liquid chromatography revealed that N-linked carbohydrates are not required for the enzymatic activity and pro-sPLA(2)-X has a relatively weak potency compared with the mature protein. The mature sPLA(2)-X induced the release of arachidonic acid from phosphatidylcholine more efficiently than other human sPLA(2) groups (IB, IIA, IID, and V) and elicited a prompt and marked release of arachidonic acid from human monocytic THP-1 cells compared with sPLA(2)-IB and -IIA with concomitant production of prostaglandin E(2). A prominent release of arachidonic acid was also observed in sPLA(2)-X-treated human U937 and HL60 cells. Immunohistochemical analysis of human lung preparations revealed its expression in alveolar epithelial cells. These results indicate that human sPLA(2)-X is a unique N-glycosylated sPLA(2) that releases arachidonic acid from human myeloid leukemia cells more efficiently than sPLA(2)-IB and -IIA.  相似文献   

15.
槲皮素(quercetin,Que),是一种天然的黄酮类化合物,具有多种生物活性[1],但是Que水溶性差,口服时胃肠难以吸收[2].因此,为进一步开发和利用Que,人工合成水溶性Que——槲桷皮素硫酸酯(sodiumquercetinsulfate...  相似文献   

16.
[目的]微生物β-葡萄糖苷酶法水解银杏黄酮苷具有重要意义,不过目前这方面的研究极少。因此,本文目的是筛选到水解银杏黄酮苷的酶活高的微生物β-葡萄糖苷酶,并分析其底物选择性机制。[方法]以银杏叶提取物作为唯一碳源富集培养,从贵州传统发酵豆豉中筛选产对银杏黄酮苷水解酶活高的β-葡萄糖苷酶的菌株,并对该菌株进行鉴定。然后比较此β-葡萄糖苷酶对不同底物的选择性,同时测定此酶水解银杏黄酮苷反应的米氏常数Km及最大反应速率Vmax。最后,对不同的底物进行分子对接,分析其底物特异性机制。[结果]结果表明,筛选到的菌株GUXN01所产β-葡萄糖苷酶水解银杏黄酮苷的酶活最高,被鉴定为枯草芽孢杆菌。此β-葡糖糖苷酶对β构型的糖类以及苷类等具有广泛的底物特异性和不同的选择性,尤其对银杏黄酮苷具有很好的亲和性。分子对接研究表明枯草芽孢杆菌β-葡萄糖苷酶对银杏黄酮苷和其他糖苷类具有不同亲和性和选择性的原因主要是酶结构和底物分子结构的相互作用力的差异导致的。[结论]这些发现为GUXN01所产的β-葡萄糖苷酶应用于水解银杏黄酮苷类生产相应苷元奠定了良好的基础。  相似文献   

17.
18.
In vitro enzymatic activity highly depends on the reaction medium. One of the most important parameters is the buffer used to keep the pH stable. The buffering compound prevents a severe pH-change and therefore a possible denaturation of the enzyme. However buffer agents can also have negative effects on the enzymatic activity, such as competitive substrate inhibition. We assess this effect with a computational approach based on a protein-ligand docking method and the HYDE scoring function. Our method predicts competitive binding of the buffer compound to the active site of the enzyme. Using data from literature and new experimental data, the procedure is evaluated on nine different enzymatic reactions. The method predicts buffer-enzyme interactions and is able to score these interactions with the correct trend of enzymatic activities. Using the new method, possible buffers can be selected or discarded prior to laboratory experiments.  相似文献   

19.
Inhibition of the Tryparedoxin peroxidase interaction has been becomes a new therapeutic strategy in leishmaniasis. Docking analysis was carried out to study the effects of quercetin and taxifolin on Tryparedoxin Peroxidase (TryP). Tryparedoxin peroxidase of Trypanosomatidae functions as antioxidants through their Peroxidase and peroxynitrite reductase activities. The 3D models of Tryparedoxin Peroxidase of Leishmania braziliensis (L. braziliensis TryP) was modeled using the template Tryparedoxin Peroxidase I from Leishmania Major (L. Major TryPI) (PDB ID: 3TUE). Further, we evaluated for TryP inhibitory activity of flavonoids such as quercetin and taxifolin using in silico docking studies. Docking results showed the binding energies of - 11.8601and -8.0851 for that quercetin and taxifolin respectively. Flavonoids contributed better L. braziliensis TryP inhibitory activity because of its structural parameters. Thus, from our in silico studies we identify that quercetin and taxifolin posses anti-leishmanial acitivities mediated through TryP inhibition mechanism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号