首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The purpose of this study was to test the hypothesis that endothelium-dependent dilation is impaired in soleus resistance arteries from hindlimb-unweighted (HLU) rats. Male Sprague-Dawley rats (300-350 g) were exposed to HLU (n = 14) or weight-bearing control (Con, n = 14) conditions for 14 days. After the 14-day treatment period, soleus first-order (1A) arterioles were isolated and cannulated with micropipettes to assess vasodilator responses to an endothelium-dependent dilator, ACh (10(-9)-10(-4) M), and an endothelium-independent dilator, sodium nitroprusside (SNP, 10(-9)-10(-4) M). Arterioles from HLU rats were smaller than Con arterioles (maximal passive diameter = 140 +/- 4 and 121 +/- 4 microm in Con and HLU, respectively) but developed similar spontaneous myogenic tone (43 +/- 3 and 45 +/- 3% in Con and HLU, respectively). Arteries from Con and HLU rats dilated in response to increasing doses of ACh, but dilation was impaired in arterioles from HLU rats (P = 0.03), as was maximal dilation to ACh (85 +/- 4 and 65 +/- 4% possible dilation in Con and HLU, respectively). Inhibition of nitric oxide (NO) synthase (NOS) with N(omega)-nitro-L-arginine (300 microM) reduced ACh dilation by approximately 40% in arterioles from Con rats and eliminated dilation in arterioles from HLU rats. The cyclooxygenase inhibitor indomethacin (50 microM) did not significantly alter dilation to ACh in either group. Treatment with N(omega)-nitro-L-arginine + indomethacin eliminated all ACh dilation in Con and HLU rats. Dilation to sodium nitroprusside was not different between groups (P = 0.98). To determine whether HLU decreased expression of endothelial cell NOS (ecNOS), mRNA and protein levels were measured in single arterioles with RT-PCR and immunoblot analysis. The ecNOS mRNA and protein expression was significantly lower in arterioles from HLU rats than in Con arterioles (20 and 65%, respectively). Collectively, these data indicate that HLU impairs ACh dilation in soleus 1A arterioles, in part because of alterations in the NO pathway.  相似文献   

2.
The purpose of this study was to test the hypothesis that endothelium-dependent dilation (flow-induced dilation and ACh-induced dilation) in rat soleus muscle arterioles is impaired by hindlimb unweighting (HLU). Male Sprague-Dawley rats (approximately 300 g) were exposed to HLU or weight-bearing control (Con) conditions for 14 days. Soleus first-order (1A) and second-order (2A) arterioles were isolated, cannulated, and exposed to step increases in luminal flow at constant pressure. Flow-induced dilation was not impaired by HLU in 1A or 2A arterioles. The cyclooxygenase inhibitor indomethacin (Indo; 50 microM) did not alter flow-induced dilation in 1As or 2As. Inhibition of nitric oxide synthase (NOS) with N(omega)-nitro-L-arginine (L-NNA; 300 microM) reduced flow-induced dilation by 65-70% in Con and HLU 1As. In contrast, L-NNA abolished flow-induced dilation in 2As from Con rats but had no effect in HLU 2As. Combined treatment with L-NNA + Indo reduced tone in 1As and 2As from Con rats, but flow-induced dilation in the presence of L-NNA + Indo was not different from responses without inhibitors in either Con or HLU 1As or 2As. HLU also did not impair ACh-induced dilation (10(-9)-10(-4) M) in soleus 2As. L-NNA reduced ACh-induced dilation by approximately 40% in Con 2As but abolished dilation in HLU 2As. Indo did not alter ACh-induced dilation in Con or HLU 2As, whereas combined treatment with L-NNA + Indo abolished ACh-induced dilation in 2As from both groups. We conclude that flow-induced dilation (1As and 2As) was preserved after 2 wk HLU, but HLU decreased the contribution of NOS in mediating flow-induced dilation and increased the contribution of a NOS- and cyclooxygenase-independent mechanism (possibly endothelium-derived hyperpolarizing factor). In soleus 2As, ACh-induced dilation was preserved after 2-wk HLU but the contribution of NOS in mediating ACh-induced dilation was increased.  相似文献   

3.
Iida H  Iida M  Takenaka M  Fujiwara H  Dohi S 《Life sciences》2006,78(12):1310-1316
Our aim was to test for smoking-induced endothelial dysfunction in rat cerebral vessels, then to evaluate the effect of valsartan [angiotensin II type I (AT1)-receptor blocker] on that impairment. In pentobarbital-anesthetized, mechanically ventilated Sprague-Dawley rats, we used a cranial window preparation to measure changes in pial vessel diameters following topical applications of acetylcholine (Ach) (before and after smoking or intravenous nicotine infusion; n = 6 in each group), and adenosine (n = 6 for before and after smoking). Then, after intravenous valsartan pretreatment we reexamined the pial vasodilator response to topical Ach (before and after cigarette smoking). Under control conditions, cerebral arterioles were dilated by 6.9 +/- 4.2% and 13.6 +/- 4.8% by topical Ach (10(-6) M and 10(-5) M, respectively) and by 6.4 +/- 2.5% and 12.2 +/- 3.1% by topical adenosine (10(-5) M and 10(-4) M, respectively). One hour after a 1-min inhalation of mainstream smoke (1-mg nicotine cigarette), 10(-5) M Ach constricted cerebral arterioles (-4.4 +/- 4.1%), while 10(-4) M adenosine dilated them by 13.4 +/- 3.4%. One hour after a 1-min nicotine infusion (0.05 mg), 10(-5) M Ach dilated cerebral arterioles by 9.9 +/- 2.4%. Thus, vasodilator response to topical Ach was impaired after smoking, whereas that to adenosine was unaffected. However, the vasodilator response to Ach was unaffected by intravenous nicotine. Valsartan prevented smoking from impairing Ach-induced vasodilation. In conclusion, acute single-cigarette smoking causes a dysfunction of endothelium-dependent, but not endothelium-independent, vasodilation of rat cerebral vessels in vivo, and the effect was not mimicked by intravenous nicotine. AT1-receptor blockade prevented the above smoking-induced impairment of endothelium-dependent vasodilation.  相似文献   

4.
We tested the hypothesis that hindlimb unweighting (HLU) and the associated reduction in soleus muscle blood flow causes decreased expression of endothelial cell nitric oxide synthase (ecNOS) mRNA and protein and attenuated endothelium-dependent vasodilator responses in rat soleus feed arteries (SFA). Male Sprague-Dawley rats were exposed to HLU (n = 12) or cage control (Con; n = 12) conditions for 14 days. At the end of this period, SFA were isolated, removed, and cannulated with two glass micropipettes for examination of vasodilator responses or frozen for analysis of ecNOS mRNA and protein expression. RT-PCR of RNA from single SFA was used to measure ecNOS mRNA, and immunoblots on single SFAs were used to measure ecNOS protein content. Results revealed that both ecNOS mRNA and ecNOS protein expression were lower in SFA from HLU rats. Dilation to increased intraluminal flow was attenuated in SFA from HLU rats (Con: 88 +/- 8% vs. HLU: 53 +/- 8%) as was maximal vasodilation to acetylcholine (10(-9)-10(-4) M; Con: 88 +/- 5% vs. HLU: 73 +/- 5%). Sensitivity to the endothelium-independent vasodilator sodium nitroprusside (10(-10)-10(-4) M) was enhanced by HLU (EC(50): Con: 4.46 x 10(-7) M vs. HLU: 5.00 x 10(-8) M). Collectively, these data indicate that the chronic reduction in soleus blood flow associated with the reduced physical activity during HLU results in reduced expression of ecNOS mRNA and protein in SFA and attenuated endothelium-dependent vasodilation.  相似文献   

5.
Closed circuit television microscopy was used to quantitate in vivo responses of small vessels in the rat cremaster muscle to topically applied serotonin. Sprague-Dawley rats were anesthetized with a combination of urethane (800 mg/kg) and alpha-chloralose (60 mg/kg). The cremaster muscle with intact circulation and innervation was suspended in a bath which had controlled pH, pCO2, and pO2. Microvascular diameters of first order arterioles and venules and fourth-order arterioles were measured from the television monitor while serotonin (10(-9)M-10(-4)M) was added to the bath. Fourth-order arterioles (3-11 micron diameter) dilated to a maximum of 267% of their control value with a serotonin concentration of 10(-6)M. Serotonin (10(-4)M) constricted first-order arterioles (78-121 micron) to 61% of their control value. The threshold concentration (10(-8)M) for a serotonin-induced dilation of fourth-order arterioles was 1000 fold less than the threshold concentration (10(-5)M) for serotonin-induced constriction of first-order arterioles. Serotonin (10(-8)M - 10(-4)M) did not alter the diameter of first-order venules (115-195 micron) from the control value. The dose-dependent constriction of first-order arterioles and dose-dependent dilation of fourth-order arterioles by serotonin appear to be independent of each other. In addition, the lack of constriction of first-order venules suggests a heterogenous distribution of serotonin receptors and that the predominate control mechanisms are different at different levels of the arteriolar and venous microcirculation of rat skeletal muscle.  相似文献   

6.
Exercise capacity and skeletal muscle blood flow during exercise are reduced with advancing age. This reduction in blood flow capacity may be related to increased reactivity of skeletal muscle resistance vessels to vasoconstrictor stimuli. The purpose of this study was to test the hypothesis that aging results in increased vasoconstrictor responses of skeletal muscle resistance arterioles. First-order (1A) arterioles (90-220 microm) from the gastrocnemius and soleus muscles of young (4 mo) and aged (24 mo) Fischer-344 rats were isolated, cannulated, and pressurized via hydrostatic reservoirs. Vasoconstriction in response to increases in norepinephrine (NE; 1 x 10(-9)-1 x 10(-4) M) and KCl (20-100 mM) concentrations and increases in intraluminal pressure (10-130 cmH(2)O) were evaluated in the absence of flow. Responses to NE and KCl were similar in both soleus and gastrocnemius muscle arterioles from young and aged rats. In contrast, active myogenic responses to changes in intraluminal pressure were diminished in soleus and gastrocnemius arterioles from aged rats. To assess whether alterations in the mechanical properties of resistance arterioles underlie altered myogenic responsiveness, passive diameter responses to pressure and mechanical stiffness were evaluated. There was no effect of age on the structural behavior (passive pressure-diameter relationship) or stiffness of arterioles from either the soleus or gastrocnemius muscles. These results suggest that aging does not result in a nonspecific decrease in vasoconstrictor responsiveness of skeletal muscle arterioles. Rather, aging-induced adaptations of vasoreactivity of resistance arterioles appear to be limited to mechanisms that are uniquely involved in the signaling of the myogenic response.  相似文献   

7.
Blood flow capacity in skeletal muscle declines with age. Reduced blood flow capacity may be related to decline in the maximal vasodilatory capacity of the resistance vasculature. This study tested the hypothesis that aging results in impaired vasodilatory capacity of first-order (1A) arterioles isolated from rat-hindlimb locomotory muscle: 1A arterioles (90-220 microm) from gastrocnemius and soleus muscles of young (4 mo) and aged (24 mo) Fischer-144 rats were isolated, cannulated, and pressurized via hydrostatic reservoirs. Vasodilatory responses to increasing concentrations of ACh (10(-9) to 10(-4) M), adenosine (ADO, 10(-10) to 10(-4) M), and sodium nitroprusside (SNP, 10(-10) to 10(-4) M) were evaluated at a constant intraluminal pressure of 60 cmH(2)O in the absence of flow. Flow-induced vasodilation was also evaluated in the absence of pressure changes. Responses to ADO and SNP were not altered by age. Endothelium-dependent vasodilation induced by flow was significantly reduced in arterioles from both gastrocnemius and soleus muscles. In contrast, endothelium-dependent vasodilation to ACh was reduced only in soleus muscle arterioles. These results indicate that aging impairs vasodilatory responses mediated through the endothelium of resistance arterioles from locomotory muscle, whereas smooth muscle vasodilatory responses remain intact with aging. Additionally, ACh-induced vasodilation was altered by age only in soleus muscle arterioles, suggesting that the mechanism of age-related endothelial impairment differs in arterioles from soleus and gastrocnemius muscles.  相似文献   

8.
In vivo responses of arterioles and venules to changes in bath calcium concentrations were observed in the cremaster muscle of male Sprague-Dawley rats. Small arterioles (2A, 3A) initially exposed to a solution containing calcium (2.55 mM) significantly dilated in response to a 0-calcium bath. Reexposure to calcium (greater than 0.65 mM) caused 2A and 3A arterioles to constrict to diameters similar to the initial control values. In contrast, large arterioles (1A) and all venules (1V, 2V, 3V) were unresponsive to exposure to a 0-calcium solution or to reexposure to calcium (0.65-5.10 mM). Treatment with mefenamic acid (10 micrograms/ml), a prostaglandin synthesis inhibitor, produced marked constriction of arterioles but not of venules, suggesting the involvement of endogenous vasodilator prostaglandins in the regulation of resting diameters of arterioles. In the presence of mefenamic acid, 1A arterioles dilated when exposed to a 0-calcium solution and constricted back to control diameters following reintroduction of calcium into the bath. These data demonstrate heterogeneity in the responsiveness of cremasteric microvessels to changes in extracellular calcium. The small arterioles were most responsive to calcium. The lack of response by the largest arterioles appears to be due to the dilator influences of endogenous prostaglandins.  相似文献   

9.
Flow-induced vasodilation is attenuated with old age in rat skeletal muscle arterioles. The purpose of this study was to determine whether diminished cyclooxygenase (COX) signaling contributes to the age-induced attenuation of flow-induced vasodilation in gastrocnemius muscle arterioles and to determine whether, and through which mechanism(s), exercise training restores this deficit in old rats. Fischer 344 rats (3 and 22 mo old) were assigned to a sedentary or exercise-trained group. First-order arterioles were isolated from the gastrocnemius muscles, cannulated, and pressurized to 70 cm H(2)O. Diameter changes were determined in response to graded increases in intraluminal flow in the presence and absence of nitric oxide synthase (NOS) inhibition [10(-5) M N(G)-nitro-L-arginine methyl ester (L-NAME)], COX inhibition (10(-5) M indomethacin), or combination NOS (10(-5) M L-NAME) plus COX (10(-5) M indomethacin) inhibition. Aging reduced flow-induced vasodilation in gastrocnemius muscle arterioles. Exercise training restored responsiveness to flow in arterioles of aged rats and enhanced flow-induced vasodilation in arterioles from young rats. L-NAME inhibition of flow-induced vasodilation was greater in arterioles from old rats compared with those from young rats and was increased after exercise training in arterioles from both young and old rats. Although the indomethacin-sensitive portion of flow-induced dilation was not altered by age or training, both COX-1 mRNA expression and PGI(2) production increased with training in arterioles from old rats. These data demonstrate that exercise training restores flow-induced vasodilation in gastrocnemius muscle arterioles from old rats and enhances flow-induced vasodilation in gastrocnemius muscle arterioles from young rats. In arterioles from both old and young rats, the exercise training-induced enhancement of flow-induced dilation occurs primarily through a NOS mechanism.  相似文献   

10.
The possibility of quantifying the total concentration of Ca2+-dependent Mg2+-ATPase of sarcoplasmic reticulum was investigated by measurement of the Ca2+-dependent steady-state phosphorylation from [gamma-32P]ATP and the Ca2+-dependent 3-O-methylfluorescein phosphatase (3-O-MFPase) activity in crude muscle homogenates. The Ca2+-dependent phosphorylation at 0 degree C (mean +/- S.E.) was 40.0 +/- 2.5 (n = 6) and 6.2 +/- 0.7 (n = 4) nmol/g wet wt. in rat extensor digitorum longus (EDL) and soleus muscle, respectively (P less than 0.001). The Ca2+-dependent 3-O-MFPase activity at 37 degrees C was 1424 +/- 238 (n = 6) and 335 +/- 56 (n = 4) nmol/min per g wet wt. in rat EDL and soleus muscle, respectively (P less than 0.01). The molecular activity calculated from these measurements amounted to 35 +/- 5 min-1 (n = 6) and 55 +/- 10 min-1 (n = 4) for EDL and soleus muscle respectively. These values were not different from the molecular activity calculated for purified Ca2+-ATPase (36 min-1). The Ca2+-dependent 32P incorporation in soleus muscle decreased in the order mice greater than rats greater than guinea pigs. In EDL muscles from hypothyroid rats at a 30% reduction of the Ca2+-dependent phosphorylation was observed. The Ca2+-dependent phosphorylation in vastus lateralis muscle from three human subjects amounted to 4.5 +/- 0.8 nmol/g wet wt. It is concluded that measurement of the Ca2+-dependent phosphorylation allows rapid and reproducible quantification of the concentration of Ca2+-dependent Mg2+-ATPase of sarcoplasmic reticulum. Since only 20-60 mg of tissue is required for the measurements, the method can also be used for biopsies obtained in clinical studies.  相似文献   

11.
The purpose of the present investigation was to establish an in vitro mammalian skeletal muscle model to study acute alterations in resting skeletal muscle cell volume. Isolated, whole muscles [soleus and extensor digitorum longus (EDL)] were dissected from Long-Evans rats and incubated for 60 min in Sigma medium 199 (1 g of resting tension, bubbled with 95% O(2)-5% O(2), 30 +/- 2 degrees C, and pH 7.4). Medium osmolality was altered to simulate hyposmotic (190 +/- 10 mmol/kg) or hyperosmotic conditions (400 +/- 10 mmol/kg), whereas an isosmotic condition (290 +/- 10 mmol/kg) served as a control. After incubation, relative water content of the muscle decreased with hyperosmotic and increased with hyposmotic condition in both muscle types (P < 0.05). The cross-sectional area of soleus type I and type II fibers increased (P < 0.05) in hyposmotic, whereas hyperosmotic exposure led to no detectable changes. The EDL type II fiber area decreased in the hyperosmotic condition and increased after hyposmotic exposure, whereas no change was observed in EDL type I fibers. Furthermore, exposure to the hyperosmotic condition in both muscle types resulted in decreased muscle ATP and phosphocreatine (P < 0.05) contents and increased creatine and lactate contents (P < 0.05) compared with control and hyposmotic conditions. This isolated skeletal muscle model proved viable and demonstrated that altering extracellular osmolality could cause acute alterations in muscle water content and resting muscle metabolism.  相似文献   

12.
This study tested the hypothesis that both structural and functional adaptations of arterioles occur within the skeletal muscle of rats aerobically trained for 8-10 wk with treadmill exercise. The training regimen used has been shown to elicit a 37% increase in plantaris citrate synthase activity but did not result in an elevation in citrate synthase activity in the spinotrapezius or gracilis muscles of rats used in this study. In the in vivo resting spinotrapezius muscle, arteriole diameters were similar in sedentary (SED) and trained (TR) rats. However, large- (1A) and intermediate- (2A) sized arterioles dilated proportionately more in TR than in SED rats during 1- to 8-Hz muscle contractions, even though the passive mechanical properties (circumference-passive wall tension relationships) were similar between groups. Vascular casts demonstrated a trend for an increase in the number of small (3A) arterioles and an approximately 20% increase in the passive diameter of 1A and 2A arterioles in the spinotrapezius muscle of TR rats. In contrast, in the gracilis muscle, arteriole diameters and density were identical in SED and TR rats, but the capillary-to-muscle fiber ratio was approximately 15% higher in TR rats. The results suggest that aerobic exercise training can greatly increase functional vasodilation and induce a slight increase in vascular density in skeletal muscle tissues, even if the oxidative capacity of these tissues is not increased by the training regimen.  相似文献   

13.
The concentration of NADH was determined a high-oxidative muscle (soleus) and a high-glycolytic muscle (extensor digitorum longus, EDL) from resting rats. The NADH content of freeze-clamped control muscles was 0.35 +/- 0.04 (mean +/- S.D.) and 0.31 +/- 0.04 mmol/kg dry wt. in EDL and soleus respectively, and increased to peak values of 0.58 +/- 0.05 (EDL) and 0.87 +/- 0.10 (soleus) after 10 min of NaCN treatment. The [lactate]/[pyruvate] ratio, which was not significantly changed in soleus and increased only slightly in EDL after NaCN incubation, shows that only minor changes occurred in the cytosolic NADH concentration. Provided that the major part of muscle NADH is located in the mitochondria it can be calculated that the mitochondrial NADH content in skeletal muscle at rest is about 36 (soleus) and 60% (EDL) of the anoxic value, respectively. These results are in contrast with previous studies with the surface-fluorescence technique, where mitochondrial NAD appeared to be almost completely reduced in resting skeletal muscle.  相似文献   

14.
I G Joshua 《Peptides》1991,12(1):37-41
The in vivo responsiveness of small arterioles and venules in the rat cremaster muscle to topical administration of neuropeptide Y was assessed using closed-circuit television microscopy. Male Sprague-Dawley rats were anesthetized with sodium pentobarbital (50 mg/kg) and the cremaster muscle was exposed to increasing bath concentrations of neuropeptide Y (10(-10)-10(-7) M). Neuropeptide Y produced dose-dependent constrictions in first (90 +/- 8 microns), second (50 +/- 6 microns) and third (21 +/- 4 microns) order arterioles. Arteriolar reactivity to the peptide was inversely related to vessel diameters. Venules were relatively unresponsive to neuropeptide Y. Exposure to the alpha-adrenergic receptor antagonist, phentolamine (10(-6) M), failed to modify the arteriolar constrictor responses to neuropeptide Y, while pretreatment with the sympathetic neuronal blocking agent, guanethidine (10(-5) M), produced a small, but significant, reduction in sensitivity. These data suggest that neuropeptide Y causes constriction of arterioles of skeletal muscle, primarily by acting directly on vascular smooth muscle to induce contraction, and not via release of endogenous norepinephrine.  相似文献   

15.
The effects of estradiol on neuropeptide Y (NPY) neurotransmission in skeletal muscle resistance vessels have not been described. The purpose of this study was to determine the effects of long-term estradiol supplementation on NPY overflow, degradation, and vasoconstriction in gastrocnemius first-order arterioles of adult female rats. Female rats (4 mo; n = 34) were ovariectomized (OVX) with a subset (n = 17) receiving an estradiol pellet (OVE; 17β-estradiol, 4 μg/day). After conclusion of the treatment phase (8 wk), arterioles were excised, placed in a physiological saline solution (PSS) bath, and cannulated with micropipettes connected to albumin reservoirs. NPY-mediated vasoconstriction via a Y(1)-agonist [Leu31Pro34]NPY decreased vessel diameter 44.54 ± 3.95% compared with baseline; however, there were no group differences in EC(50) (OVE: -8.75 ± 0.18; OVX: -8.63 ± 0.10 log M [Leu31Pro34]NPY) or slope (OVE: -1.11 ± 0.25; OVX: -1.65 ± 0.34% baseline/log M [Leu31Pro34]NPY). NPY did not potentiate norepinephrine-mediated vasoconstriction. NPY overflow experienced a slight increase following field stimulation and significantly increased (P < 0.05) over control conditions in the presence of a DPPIV inhibitor (diprotin A). Estradiol status did not affect DPPIV activity. These data suggest that NPY can induce a moderate decrease in vessel diameter in skeletal muscle first-order arterioles, and DPPIV is active in mitigating NPY overflow in young adult female rats. Long-term estradiol supplementation did not influence NPY vasoconstriction, overflow, or its enzymatic breakdown in skeletal muscle first-order arterioles.  相似文献   

16.
The mechanisms that account for acetylcholine (ACh)-induced responses of skeletal muscle arterioles of mice lacking endothelial nitric oxide (NO) synthase (eNOS-KO) were investigated. Isolated, cannulated, and pressurized arterioles of gracilis muscle from male eNOS-KO (74.1 +/- 2.3 microm) and wild-type (WT, 87.2 +/- 2.1 microm) mice developed spontaneous tone accounting for 63 and 61% of their passive diameter (116.8 +/- 3.4 vs. 143.2 +/- 2.8 microm, respectively) and dilated dose-dependently to ACh (10(-9)-10(-7) M). These dilations were significantly smaller in vessels of eNOS-KO compared with WT mice (29.2 +/- 2.0 microm vs. 46.3 +/- 2.1 microm, at maximum concentration) but responses to the NO donor, sodium nitrite (NaNO(2), 10(-6)-3 x 10(-5) M), were comparable in the vessels of the two strains. N(G)-nitro-L-arginine (L-NNA, 10(-4) M), an inhibitor of eNOS, inhibited ACh-induced dilations by 60-90% in arterioles of WT mice but did not affect responses in those of eNOS-KO mice. In arterioles of eNOS-KO mice, dilations to ACh were not affected by indomethacin but were essentially abolished by inhibitors of cytochrome P-450, clotrimazole (CTZ, 2 x 10(-6) M) or miconazole (MCZ, 2 x 10(-6) M), as well as by either high K(+) (40 mM) or iberiotoxin [10(-7) M, a blocker of Ca(2+)-dependent K(+) channels (K(Ca) channels)]. On the other hand, in WT arterioles CTZ or MCZ inhibited ACh-induced dilations only by approximately 10% and only in the presence of L-NNA. These results indicate that in arterioles of eNOS-KO mice, endothelium-derived hyperpolarizing factor (EDHF), synthesized via cytochrome P-450, accounts entirely for the mediation of ACh-induced dilation via an increase in K(Ca)-channel activity. In contrast, in arterioles of WT mice, endothelium-derived NO predominantly mediates ACh-induced dilation in which participation of EDHF becomes apparent only after inhibition of NO synthesis.  相似文献   

17.
[Na]i, [K]i and wet weight of the extensor digitrum longus (EDL) and soleus (SOL) muscles of 9- and 52-week-old rats were measured for 7 days after sectioning of the sciatic nerve. The changes in wet weight of the EDL and SOL muscles of rats over 52 weeks and those of morbid state rats were also measured. There was no significant difference in wet weights between the EDL and SOL muscles in infant rats, but the EDL muscle became much heavier than the SOL muscle with aging. The decrease in rate of growth of wet weight of the EDL and SOL muscles caused by denervation, was greater in young rats than in mature rats. In addition, the rate of decrease was greater in the SOL muscles than in the EDL muscles in both young and mature rats. The [Na]i increased while [K]i was decreased by denervation, and the net Na+ increase and the net K+ loss were greater in young rats than in mature rats. The changing rate was more remarkable in the EDL muscles than in the SOL muscles throughout the aging process. During DOCA treatment over 4 weeks, the decrease of muscle wet weight was greater in the EDL muscles. The mechanisms which serve to maintain normal muscle wet weight in the SOL muscle after denervation or treatment with DOCA, were discussed.  相似文献   

18.
The purpose of the present study was to determine whether hindlimb unloading of rats alters vasoconstrictor and myogenic responsiveness of skeletal muscle arterioles. After either 2 wk of hindlimb unloading (HU) or cage control (C), second-order arterioles were isolated from the white portion of gastrocnemius (WG; C: n = 9, HU: n = 10) or soleus (Sol; C: n = 9, HU: n = 10) muscles and cannulated with two micropipettes connected to reservoir systems for in vitro study. Intraluminal pressure was set at 60 cmH2O. The arterioles were exposed to step changes in intraluminal pressure ranging from 20 to 140 cmH2O to determine myogenic responsiveness and to KCl (10-100 mM) and norepinephrine (10(-9)-10(-4) M) to determine vasoconstrictor responsiveness. Although maximal diameter of WG arterioles was not different between C (185 +/- 12 microm) and HU (191 +/- 14 microm) rats, WG arterioles from HU rats developed less spontaneous tone (C: 33 +/- 5%, HU 20 +/-3%), were unable to maintain myogenic tone at pressures from 140 to 100 cmH2O, and were less sensitive to the vasoconstrictor effects of KCl and norepinephrine (as indicated by a higher agonist concentration that produced 50% of maximal vasoconstrictor response). In contrast, maximal diameter of Sol arterioles from HU rats (117 +/- 12 microm) was smaller than that in C rats (148 +/- 14 microm). However, the development of spontaneous tone (C: 30 +/- 4%, HU: 36 +/- 5%), myogenic activity, and the responsiveness to vasoconstrictor agonists were not different between Sol arterioles from C and HU rats. These results indicate that hindlimb unloading diminishes the myogenic autoregulatory and contractile responsiveness of arterioles from muscle composed of type IIB fibers and suggest that the compromised ability to elevate vascular resistance after exposure to microgravity may be related to these vascular alterations. In addition, hindlimb unloading appears to induce vascular remodeling of arterioles from muscle composed of type I fibers, as indicated by the decrease in maximal diameter of arterioles from Sol muscle.  相似文献   

19.
This study addressed the effects of nandrolone decanoate (ND) on contractile properties and muscle fiber characteristics of rats submitted to swimming. Male Wistar rats were grouped in sedentary (S), swimming (Sw), sedentary+ND (SND), and swimming+ND (SwND), six animals per group. ND (3 mg/kg) was injected (subcutaneously) 5 days/week, for 4 weeks. Swimming consisted of 60-min sessions (load 2%), 5 days/week, for 4 weeks. After this period, the sciatic nerve extensor digitorum longus (EDL) muscle was isolated for myographic recordings. Fatigue resistance was assessed by the percent (%) decline of 180 direct tetanic contractions (30 Hz). Safety margin of synaptic transmission was determined from the resistance to the blockade of indirectly evoked twitches (0.5 Hz) induced by pancuronium (5 to 9x10(-7) M). EDL muscles were also submitted to histological and histochemical analysis (haematoxylin-eosin (HE); nicotinamide adenine dinucleotide-tetrazolium reductase (NADH-TR)). Significant differences were detected by two-way ANOVA (p<0.05). ND did not change body mass, fatigue resistance or kinetic properties of indirect twitches in either sedentary or swimming rats. In contrast, ND reduced the safety margin of synaptic transmission in sedentary animals (SND=53.3+/-4.7% vs. S=75.7+/-2.0%), but did not affect the safety margin in the swimming rats (SwND=75.81+/-3.1% vs. Sw=71.0+/-4.0%). No significant difference in fiber type proportions or diameters was observed in EDL muscle of any experimental group. These results indicate that ND does not act as an ergogenic reinforcement in rats submitted to 4 weeks of swimming. On the other hand, this study revealed an important toxic effect of ND, that it reduces the safety margin of synaptic transmission in sedentary animals. Such an effect is masked when associated with physical exercise.  相似文献   

20.
We tested the hypothesis that constriction of descending vasa recta (DVR) is mediated by voltage-gated calcium entry. K(+) channel blockade with BaCl(2) (1 mM) or TEACl (30 mM) depolarized DVR smooth muscle/pericytes and constricted in vitro-perfused vessels. Pericyte depolarization by 100 mM extracellular KCl constricted DVR and increased pericyte intracellular Ca(2+) ([Ca(2+)](i)). The K(ATP) channel opener pinacidil (10(-7)-10(-4) M) hyperpolarized resting pericytes, repolarized pericytes previously depolarized by ANG II (10(-8) M), and vasodilated DVR. The DVR vasodilator bradykinin (10(-7) M) also reversed ANG II depolarization. The L-type Ca(2+) channel blocker diltiazem vasodilated ANG II (10(-8) M)- or KCl (100 mM)-preconstricted DVR, and the L-type agonist BayK 8644 constricted DVR. The plateau phase of the pericyte [Ca(2+)](i) response to ANG II was inhibited by diltiazem. These data support the conclusion that DVR vasoreactivity is controlled through variation of membrane potential and voltage-gated Ca(2+) entry into the pericyte cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号