首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies of optic nerve regeneration in goldfish have indicated that the optic tectum plays an important role in modulating the induction of nicotinic acetylcholine receptor (nAChR) gene expression in regenerating retinal ganglion cells (Hieber, Agranoff, and Goldman, 1992, J. Neurochem. 58:1009–1015). These observations suggest that induction of these genes is regulated by brain target regions. The appearance of nAChR mRNA in the developing rat retina coincides with a time when ganglion cells are sending axons to their brain targets (Hoover and Goldman, 1992, Exp. Eye Res. 54:561–571). Might a mechanism similar to that seen during goldfish optic nerve regenerationalso mediate induction of nAChR gene expression during development of the mammalian retina? This possibility was tested by either transplanting embryonic rat retina to different brain regions, or explanting it to organ culture and assaying for nAChR gene expression. These studies showed that induction of the nAChR genes in developing rat retina is independent of the environment in which the retina develops. These results indicate that either the retinal microenvironment or a signal intrinsic to the retinal ganglion cell is responsible for this induction. © 1993 John Wiley & Sons, Inc.  相似文献   

2.
Screening of a rat brain cDNA library with a radiolabeled probe made from an alpha 3 cDNA (Boulter, J., Evans, K., Goldman, D., Martin, G., Treco, D., Heinemanns, S., and Patrick, J. (1986) Nature 319, 368-374) resulted in the isolation of a clone whose sequence encodes a protein, beta 3, which is homologous (40-55% amino acid sequence identity) to previously described neuronal nicotinic acetylcholine receptor subunits. The encoded protein has structural features found in other nicotinic acetylcholine receptor (nAChR) subunits. Two cysteine residues that correspond to cysteins 128 and 142 of the Torpedo nAChR alpha subunit are present in beta 3. Absent from beta 3 are 2 adjacent cysteine residues that correspond to cysteines 192 and 193 of the Torpedo subunit. In situ hybridization histochemistry, performed using probes derived from beta 3 cDNAs, demonstrated that the beta 3 gene is expressed in the brain. Thus, beta 3 is the fifth member of the nAChR gene family that is expressed in the brain. The pattern of beta 3 gene expression partially overlaps with that of the neuronal nAChR subunit genes alpha 3, alpha 4, or beta 2. These results lead us to propose that the beta 3 gene encodes a neuronal nAChR subunit.  相似文献   

3.
Cloning of a Putative Neuronal Nicotinic Acetylcholine Receptor Subunit   总被引:2,自引:0,他引:2  
A cDNA clone was isolated from a rat superior cervical ganglion cDNA library with an oligonucleotide that hybridized to muscle-like nicotinic acetylcholine receptor (nAChR) subunit cDNA. The deduced amino acid sequence possesses characteristics expected of a nAChR subunit that does not bind acetylcholine, in addition to distinctive features such as unique cysteine residues and N-linked glycosylation sites.  相似文献   

4.
The recent characterization of an acetylcholine binding protein (AChBP) from the fresh water snail, Lymnaea stagnalis, shows it to be a structural homolog of the extracellular domain of the nicotinic acetylcholine receptor (nAChR). To ascertain whether the AChBP exhibits the recognition properties and functional states of the nAChR, we have expressed the protein in milligram quantities from a synthetic cDNA transfected into human embryonic kidney (HEK) cells. The protein secreted into the medium shows a pentameric rosette structure with ligand stoichiometry approximating five sites per pentamer. Surprisingly, binding of acetylcholine, selective agonists, and antagonists ranging from small alkaloids to larger peptides results in substantial quenching of the intrinsic tryptophan fluorescence. Using stopped-flow techniques, we demonstrate rapid rates of association and dissociation of agonists and slow rates for the alpha-neurotoxins. Since agonist binding occurs in millisecond time frames, and the alpha-neurotoxins may induce a distinct conformational state for the AChBP-toxin complex, the snail protein shows many of the properties expected for receptor recognition of interacting ligands. Thus, the marked tryptophan quenching not only documents the importance of aromatic residues in ligand recognition, but establishes that the AChBP will be a useful functional as well as structural surrogate of the nicotinic receptor.  相似文献   

5.
We have isolated a second goldfish estrogen receptor (ER) beta-subtype (gfER-beta2) cDNA which is distinct from the liver-derived ER-beta (gfER-beta1) cDNA reported previously. The 2650-bp cDNA, isolated from a goldfish pituitary and brain cDNA library, encodes a 610 amino acid (aa) protein which shows only a 53% aa sequence identity with gfER-beta1 in overall structure. RT-PCR analysis showed that mRNA of gfER-beta2, in contrast to that of gfER-beta1, was predominantly expressed in pituitary, telencephalon and hypothalamus as well as in liver of female goldfish. The existence of a second distinct ER-beta subtype opens new dimensions for studying tissue-specific regulation of gene expression by estrogen in the tetraploid goldfish.  相似文献   

6.
7.
The alpha7 nicotinic acetylcholine receptor (nAChR) plays a key role in neural development and neurodegeneration. Here, we identify a novel, modulatory receptor ligand, a 14-amino acid peptide (AEFHRWSSYMVHWK) derived from the C-terminus of acetylcholinesterase (AChE). In three different in vitro preparations, this 'AChE-peptide' is bioactive in a ligand-specific and concentration-dependent manner. First, it modulates acutely the effect of acetylcholine (ACh) on Xenopus oocytes transfected with human alpha7, but not alpha4/beta2, nAChR. The action persists when intracellular calcium is chelated with BAPTA or when calcium is substituted with barium ions. This observation suggests that intracellular Ca(2+) signals do not mediate the interaction between the peptide and nAChR, but rather that the interaction is direct: however, the intervention of other mediators cannot be excluded. Secondly, in recordings from the CA1 region in guinea-pig hippocampal slices, AChE-peptide modulates synaptic plasticity in a alpha-bungarotoxin (alpha-BgTx)-sensitive manner. Thirdly, in organotypic cultures of rat hippocampus, long-term exposure to peptide attenuates neurite outgrowth: this chronic, functional effect is selectively blocked by the alpha7 nAChR antagonists, alpha-BgTx and methyllycaconitine, but not by the alpha4/beta2-preferring blocker dihydro-beta-ethroidine. A scrambled peptide variant, and the analogous peptide from butyrylcholinesterase, are ineffective in all three paradigms. The consequences of this novel modulation of the alpha7 nAChR may be activation of a trophic-toxic axis, of relevance to neurodegeneration.  相似文献   

8.
Abstract: Heterologous expression of cloned Drosophila nicotinic acetylcholine receptor (nAChR) subunits indicates that these proteins misfold when expressed in mammalian cell lines at 37°C. This misfolding can, however, be overcome either by growing transfected mammalian cells at lower temperatures or by the expression of Drosophila nAChR subunits in a Drosophila cell line. Whereas the Drosophila nAChR β subunit (SBD) cDNA, reported previously, lacked part of the SBD coding sequence, here we report the construction and expression of a full-length SBD cDNA. We have examined whether problems in expressing functional Drosophila nAChRs in either Xenopus oocytes or mammalian cell lines can be attributed to an inability of these expression systems to assemble correctly Drosophila nAChRs. Despite expression in what might be considered a more native cellular environment, we have been unable to detect functional nAChRs in a Drosophila cell line unless Drosophila nAChR subunit cDNAs are coexpressed with vertebrate nAChR subunits. Our results indicate that the folding of Drosophila nAChR subunits is temperature-sensitive and strongly suggest that the inability of these Drosophila nAChR subunits to generate functional channels in the absence of vertebrate subunits is due to a requirement for coassembly with as yet unidentified Drosophila nAChR subunits.  相似文献   

9.
通过建立乙酰胆碱受体α4β2亚型(α4β2 nAChR)在非洲爪蟾卵母细胞中的表达模型,以便以α4β2 nAChR为作用靶点进行药物筛选。将乙酰胆碱受体亚基基因α4、β2体外转录获得的cRNA,通过显微注射的方法注入非洲爪蟾卵母细胞,并对该受体的表达情况进行检测。结果显示,乙酰胆碱受体α4β2亚型在蛙卵细胞中获得了有效表达,记录到典型的ACh配体门控的离子通道内向电流。  相似文献   

10.
烟碱型乙酰胆碱受体是昆虫体内重要的神经受体,同时也是杀虫剂作用靶标.从甜菜夜蛾Spodoptera exigua3龄幼虫体内提取总的RNA,经过反转录,利用RT-PCR获得了烟碱型乙酰胆碱受体6个α和1个β亚基基因的cD-NA序列片段,并利用cDNA末端快速扩增技术(RACE)获得了β亚基基因的cDNA序列全长.该基因命名为SenAChRβl,其长度为2231个碱基,含有一个1575个碱基的开放读码框,开放读码框编码524个氨基酸残基,预测的分子量为60 kDa.推导得到的氨基酸序列与其它昆虫特别是鳞翅目昆虫的烟碱型乙酰胆碱受体β亚基具有高度的同源性,并具有典型的烟碱型乙酰胆碱受体β亚基特征化位点.  相似文献   

11.
12.
A baculovirus transfer vector was constructed containing an entire cDNA copy of the chick nicotinic acetylcholine receptor (nAChR) alpha-subunit under control of the Autographa californica nuclear polyhedrosis virus (AcNPV) polyhedrin gene promoter. Recombinant baculovirus was obtained by co-transfection of Spodoptera frugiperda cells with infectious, wild-type AcNPV DNA and the transfer vector. Polyhedrin-negative, recombinant viruses were identified which expressed the nAChR alpha-subunit. The insect cell-expressed alpha-subunit protein had a molecular mass of 42 kDa and was shown to be targeted to the plasma membrane by fluorescence microscopy and toxin-binding assays. The levels of expression were low, approximately 1-2% of cell proteins, when compared with the levels of natural polyhedrin protein. The expressed receptor alpha-subunit was recognised by polyclonal antisera raised against purified Torpedo nAChR alpha-subunit and carried the binding site for the snake venom toxin, alpha-bungarotoxin. Bound alpha-bungarotoxin was displaced in competition binding assays by alpha-cobra toxin, carbamylcholine and d-tubocurarine, and thus had a similar pharmacological profile to that obtained with authentic receptors in muscle cells and receptors expressed in other systems i.e. Xenopus oocytes and mammalian cells. We have also shown that when the chick nAChR alpha-subunit is expressed in the absence of other receptor subunits, unexpectedly high concentrations of nicotine (10 mM) were required to displace bound alpha-bungarotoxin.  相似文献   

13.
The expression and distribution of AMPA, kainate and NMDA glutamate receptor subunits was studied in the goldfish retina. For the immunocytochemical localization of the AMPA receptor antisera against GluR2, GluR2/3 and GluR4 were used, and for in situ hybridization rat specific probes for GluR1 and GluR2 and goldfish specific probes for GluR3 and GluR4 were used. The localization of the low affinity kainate receptor and NMDA receptor was studied using antisera against GluR5-7 and NR1. All AMPA receptor subtypes were demonstrated to be present in the goldfish retina both by immunocytochemistry and in situ hybridization. In situ hybridization revealed expression of all AMPA receptors subunit at the inner border of the INL. Only GluR3 was also strongly expressed in the outer border of the INL. Some of the ganglion cells displayed a strong signal for GluR1, GluR3 and GluR4. GluR1-immunoreactivity was present in subsets of bipolar, amacrine, and ganglion cells. GluR2 and GluR2/3-immunoreactivity was mainly localized in the outer plexiform layer. GluR2 and GluR2/3-immunoreactivity are associated with the photoreceptor synaptic terminals. GluR4-immunoreactivity is present on Müller cells in the inner retina and on dendrites of bipolar cells in the OPL, whereas GluR5-7-immunoreactivity was prominently present on horizontal cell axon terminals. Finally, NR1-immunoreactivity was confined to amacrine cells, the inner plexiform layer and ganglion cells. This study shows that there is a strong heterogeneity of glutamate receptor subunit expression in the various layers of the retina. Of the AMPA receptor subunits GluR3 seems to be expressed the most widely in all layers with strong glutamatergic synaptic interactions whereas all the other subunits seem to have a more restricted expressed pattern.  相似文献   

14.
Abstract: In efforts to determine the primary structure of intermediate filament proteins in the goldfish visual pathway, we isolated clones from a retinal λgt11 cDNA expression library that represent goldfish vimentin. We show that there are at least two forms of goldfish vimentin, designated as vimentin α and vimentin β. RNase protection assays indicate that vimentin α mRNA is expressed in low amounts in retina, optic nerve, and brain and in higher amounts in spinal cord. In contrast, vimentin β mRNA is expressed in low amounts in retina, optic nerve, brain, and spinal cord and in very high amounts in eye lens. Immunohistochemical studies show that in the optic nerve, vimentin α is mainly restricted to blood vessels, meninges, and septa. Light staining is observed with this antibody in an astrocytic glial pattern throughout the optic nerve. Two-dimensional gel analysis shows that all of these goldfish vimentins are low abundant components of optic nerve cytoskeletal preparations.  相似文献   

15.
The nicotinic acetylcholine receptor (nAChR) β3 subunit is thought to serve an accessory role in nAChR subtypes expressed in dopaminergic regions implicated in drug dependence and reward. When β3 subunits are expressed in excess, they have a dominant-negative effect on function of selected nAChR subtypes. In this study, we show, in Xenopus oocytes expressing α2, α3 or α4 plus either β2 or β4 subunits, that in the presumed presence of similar amounts of each nAChR subunit, co-expression with wild-type β3 subunits generally (except for α3*-nAChR) lowers amplitudes of agonist-evoked, inward peak currents by 20-50% without having dramatic effects (≤ 2-fold) on agonist potencies. By contrast, co-expression with mutant β3(V9'S) subunits generally (except for α4β2*-nAChR) increases agonist potencies, consistent with an expected gain-of-function effect. This most dramatically demonstrates formation of complexes containing three kinds of subunit. Moreover, for oocytes expressing nAChR containing any α subunit plus β4 and β3(V9'S) subunits, there is spontaneous channel opening sensitive to blockade by the open channel blocker, atropine. Collectively, the results indicate that β3 subunits integrate into all of the studied receptor assemblies and suggest that natural co-expression with β3 subunits can influence levels of expression and agonist sensitivities of several nAChR subtypes.  相似文献   

16.
17.
烟碱型乙酰胆碱受体(nicotinic acetylcholine receptor,nAChR)在昆虫中枢神经系统的递质传递过程中起着重要作用。本研究采用RT-PCR和RACE技术,从桔小实蝇Bactrocera dorsalis(Hendel)体内克隆获得nAChRβ亚基的cDNA序列,命名为Bdβ3(GenBank登录号:JF974074)。测序结果表明,Bdβ3的cDNA序列全长1602bp,开放阅读框为1287bp,编码429个氨基酸残基,预测蛋白质分子量和等电点分别为48.8ku和5.81。通过对氨基酸同源性分析表明,Bdβ3具有nAChR亚基的典型特征,与其他昆虫nAChR亚基具有较高的氨基酸相似性,与黑腹果蝇nAChRβ3亚基具有49.78%的相似性。Bdβ3在桔小实蝇的不同发育时期和成虫的不同体段的实时定量PCR结果表明,Bdβ3在整个发育阶段均有表达,其中在成虫期的表达水平最高,这可能与Bdβ3主要在成虫期发挥作用有关;Bdβ3在桔小实蝇头部表达量最高,显著高于胸部和腹部。研究结果为深入分析桔小实蝇nAChR亚基的功能以及对多杀菌素的靶标抗性机制提供了基础数据。  相似文献   

18.
To characterize the structural requirements for ligand orientation compatible with activation of the Torpedo nicotinic acetylcholine receptor (nAChR), we used Cys mutagenesis in conjunction with sulfhydryl-reactive reagents to tether primary or quaternary amines at defined positions within the agonist binding site of nAChRs containing mutant alpha- or gamma-subunits expressed in Xenopus oocytes. 4-(N-Maleimido)benzyltrimethylammonium and 2-aminoethylmethanethiosulfonate acted as irreversible antagonists when tethered at alphaY93C, alphaY198C, or gammaE57C, as well as at alphaN94C (2-aminoethylmethanethiosulfonate only). [2-(Trimethylammonium)-ethyl]-methanethiosulfonate (MTSET), which attaches thiocholine to binding site Cys, also acted as an irreversible antagonist when tethered at alphaY93C, alphaN94C, or gammaE57C. However, MTSET modification of alphaY198C resulted in prolonged activation of the nAChR not reversible by washing but inhibitable by subsequent exposure to non-competitive antagonists. Modification of alphaY198C (or any of the other positions tested) by [(trimethylammonium)methyl]methanethiosulfonate resulted only in irreversible inhibition, while modification of alphaY198C by [3-(trimethylammonium)propyl]methanethiosulfonate resulted in irreversible activation of nAChR, but at lower efficacy than by MTSET. Thus changing the length of the tethering arm by less than 1 A in either direction markedly effects the ability of the covalent trimethylammonium to activate the nAChR, and agonist activation depends on a very selective orientation of the quaternary ammonium within the agonist binding site.  相似文献   

19.
Ticks and tick-borne diseases have a major impact on human and animal health worldwide. Current control strategies rely heavily on the use of chemical acaricides, most of which target the CNS and with increasing resistance, new drugs are urgently needed. Nicotinic acetylcholine receptors (nAChRs) are targets of highly successful insecticides. We isolated a full-length nAChR α subunit from a normalised cDNA library from the synganglion (brain) of the brown dog tick, Rhipicephalus sanguineus. Phylogenetic analysis has shown this R. sanguineus nAChR to be most similar to the insect α1 nAChR group and has been named Rsanα1. Rsanα1 is distributed in multiple tick tissues and is present across all life-stages. When expressed in Xenopus laevis oocytes Rsanα1 failed to function as a homomer, with and without the addition of either Caenorhabditis elegans resistance-to-cholinesterase (RIC)-3 or X. laevis RIC-3. When co-expressed with chicken β2 nAChR, Rsanα1 evoked concentration-dependent, inward currents in response to acetylcholine (ACh) and showed sensitivity to nicotine (100 μM) and choline (100 μM). Rsanα1/β2 was insensitive to both imidacloprid (100 μM) and spinosad (100 μM). The unreliable expression of Rsanα1 in vitro suggests that additional subunits or chaperone proteins may be required for more robust expression. This study enhances our understanding of nAChRs in arachnids and may provide a basis for further studies on the interaction of compounds with the tick nAChR as part of a discovery process for novel acaricides.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号