首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The nocturnality hypothesis of K. Autumn and coworkers states that nocturnal geckos have evolved a low energetic cost of locomotion (C(min)). A low C(min) increases maximum aerobic speed and partially offsets the decrease in maximum oxygen consumption caused by activity at low nocturnal temperatures. We tested whether a low C(min) is unique to nocturnal geckos or represents a more general pattern of convergent evolution among lizards that enables nocturnality and/or cold-temperature activity. We measured C(min) in four carefully selected lizard species from New Zealand (two nocturnal and two diurnal; n=5-9 individuals per species), including a nocturnal and diurnal gecko (a low C(min) is a gecko trait and is not related to nocturnality), a nocturnal skink (a low C(min) is related to being nocturnal), and a diurnal skink active at low temperatures (a low C(min) is related to being active at low body temperatures). The C(min) values of the four species measured in this study (range=0.21-2.00 mL O(2) g(-1) km(-1)) are lower than those of diurnal lizards from elsewhere, and the values are within or below the 95% confidence limits previously published for nocturnal geckos. A low C(min) increases the range of locomotor speeds possible at low temperatures and provides an advantage for lizards active at these temperatures. We accepted the hypothesis that nocturnal lizards in general have a low C(min) and provide evidence for a low C(min) in lizards from cool-temperate environments. The low C(min) in lizards living at high latitudes may enable extension of their latitudinal range into otherwise thermally suboptimal habitats.  相似文献   

2.
Geckos are the only major lizard group consisting mostly of nocturnal species. Nocturnality is presumed to have evolved early in gecko evolution and geckos possess numerous adaptations to functioning in low light and at low temperatures. However, not all gecko species are nocturnal and most diurnal geckos have their own distinct adaptations to living in warmer, sunlit environments. We reconstructed the evolution of gecko activity patterns using a newly generated time‐calibrated phylogeny. Our results provide the first phylogenetic analysis of temporal activity patterns in geckos and confirm an ancient origin of nocturnality at the root of the gecko tree. We identify multiple transitions to diurnality at a variety of evolutionary time scales and transitions back to nocturnality occur in several predominantly diurnal clades. The scenario presented here will be useful in reinterpreting existing hypotheses of how geckos have adapted to varying thermal and light environments. These results can also inform future research of gecko ecology, physiology, morphology and vision as it relates to changes in temporal activity patterns. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, ●●, ●●–●●.  相似文献   

3.
To investigate whether the sensitivity to environmental temperature varies between nocturnal and diurnal species of tenebrionid beetle, the metabolic rates of three diurnal species (Onymacris plana Peringuey, Onymacris rugatipennis Haag and Physadesmia globosa Haag) and three nocturnal species (Epiphysa arenicola Penrith, Gonopus sp. and Stips sp.) of beetles from the Namib Desert are measured over a range of temperatures (15–40 °C) that are experienced by these beetles in their natural habitat. The diurnal species O. plana, O. rugatipennis and P. globosa exhibit temperature‐independent metabolic rates (mean Q10 = 1.2) within temperature ranges that are ecologically relevant for diurnal desert beetles (30–40 °C). Onymacris plana, in particular, has a 20–40 °C rate–temperature slope (0.007 log10 mL O2 h?1 g?1 °C?1; Q10 = 1.1) that is less than half that of the other five beetle species (0.022–0.063 log10 mL O2 h?1 g?1 °C?1; Q10 ranges from 1.3–1.9), suggesting that O. plana is more metabolically independent of temperature than the other nocturnal and diurnal tenebrionids being investigated. Animals with metabolic rates that are decoupled from body temperature (or ambient temperature) may have an ecological advantage that allows them to exploit thermal and spatial niches during extreme temperature conditions.  相似文献   

4.
Nocturnal geckos are active at body temperatures 10–35°C below the thermal optima for maximum rate of aerobic metabolism of diurnal lizards. Therefore, given ancestral (diurnal) lizard physiology, nocturnality causes a substantial thermal handicap in locomotor performance. In prior studies, we hypothesized that a low minimum cost of locomotion (Cmin) in geckos was an adaptation that increased locomotor endurance capacity at low, nocturnal temperatures. However, Cmin is only part of an integrated system that, in conjunction with the maximum rate of oxygen consumption, sets the maximum speed that can be sustained aerobically (termed the maximum aerobic speed or MAS). We conducted the first phylogenetic analysis of MAS and lizards and found that the greatest changes in MAS, Cmin and (at activity temperatures) in the evolutionary history of lizards all coincided with the evolution of nocturnality in geckos. Geckos active at 15–25°C did not become optimized for nocturnal temperatures, or fully offset the thermal effects of nocturnality by evolving maximal rates of oxygen consumption comparable to diurnal lizards active at 35°C. Geckos did evolve MAS twice that of diurnal lizards running at low temperatures by evolving a remarkably low Cmin. Allometric analysis and phylogenetically independent contrasts of , Cmin, and MAS indicate a 72% evolutionary decrease in , (at activity temperatures) and a 50% evolutionary decrease in Cmin concordant with the evolution of nocturnality in geckos. Experimental measurements show that decreased Cmin in six species of gecko increased MAS by 50–120% compared to diurnal lizards at low temperatures. Thus, geckos sufficiently overcame the near paralyzing effects of nocturnal temperatures, but only offset about 50% of the decrease in MAS resulting from the low maximum rate of oxygen consumption. Although the nocturnal environment remains severely suboptimal, the evolution of a low cost of locomotion in the ancestor of geckos was highly adaptive for nocturnality. We also present a generalized approach to ecophysiological evolution that integrates phylogeny with the causal relationships among environment, physiology, and performance capacity. With respect to a clade, two hypotheses are central to our integrative approach: (1) a change of an environmental variable (e.g., temperature) causes a performance handicap; and (2) evolution of a physiological variable (e.g., minimum cost of locomotion [Cmin]) increases performance in the derived environment. To test the hypothesis that evolution of a physiological variable is adaptive in nature, we suggest determining if individuals in nature perform at levels exceeding the performance capacity of their hypothetical ancestors and if this additional performance capacity is due to the evolution of the physiological variable in question.  相似文献   

5.
The division of animals into those that are diurnal (day-active) and those that are nocturnal (night-active) is widely recognized. However, closer examination of the selection of temporal niches by mammalian species reveals the existence of a gradient of diurnality between and within species, wherein “diurnal” and “nocturnal” are merely the opposite ends of a continuum. Evidence against a simple diurnal - nocturnal dichotomy includes the existence of species without any preference for time of day, species with a crepuscular pattern of activity, species containing both diurnal and nocturnal individuals, species containing individuals that spontaneously shift from a nocturnal to a diurnal activity pattern, species showing degrees of diurnality greater or smaller than those of other species, organismal variables exhibiting degrees of diurnality greater or smaller than those of other variables, and species having different temporal patterns under the effects of different environmental variables. Research on the neural processes responsible for temporal niche selection has revealed no fundamental difference between the circadian clocks of diurnal and nocturnal animals, but recent findings suggest that different output pathways from the clock in a given species may operate with different circadian phases, thus providing an explanation for why different body functions in the same individual are subjected to different temporal niche selections.  相似文献   

6.
Glucocorticoid effects on the diurnal rhythm of circulating leptin levels   总被引:3,自引:0,他引:3  
It is known that circulating leptin shows diurnal variation with a nocturnal rise; however, the mechanisms generating this rhythm have not been fully elucidated. Glucocorticoids are a potent stimulator of leptin secretion, and there is a reciprocal relationship between circulating leptin and glucocorticoid levels. We hypothesized that glucocorticoids could modulate the diurnal rhythm of circulating leptin. We therefore explored the diurnal variation of leptin under situations in which subjects showed no or some shift of glucocorticoid diurnal rhythm, such as prednisolone-administered humans, and adrenalectomized and corticosterone-replaced (ADX+B) rats. The peak level of plasma cortisol immunoreactivity was shifted from early morning to noon by prednisolone administration. The nocturnal increment of plasma leptin in prednisolone-administered patients (71.2 +/- 14.2% from 08:00 h value) was significantly greater than that in normal volunteers (12.2 +/- 7.5% from 08:00 h value), but the timing of nadir and the peak of plasma leptin was not shifted. In normal rats, the plasma concentration of leptin showed the diurnal rhythm with the bottom at 16:00 h and the top between midnight and early morning. The amplitude of leptin diurnal rhythm was significantly reduced in ADX+B rats (08:00 h: 3.0 +/- 0.2, 16:00 h: 2.7 +/- 0.2, 00:00 h; 3.7 +/- 0.2 ng/ml) compared with sham operated rats (08:00 h: 3.0 +/- 0.2, 16:00 h 2.2 +/- 0.2, 00:00 h: 4.7 +/- 0.4 ng/ml); but ADX+B rats still retained similar timing of nadir and the peak of plasma leptin as observed in sham rats. These results indicate that glucocorticoids enhance the amplitude of leptin diurnal rhythm, and are consistent with previous findings showing that glucocorticoids increase leptin secretion. Glucocorticoids appear to play modulatory, but not essential roles in generating leptin diurnal rhythm.  相似文献   

7.
Most geckos are nocturnal forms and possess rod retinas, but some diurnal genera have pure-cone retinas. We isolated cDNAs encoding the diurnal gecko opsins, dg1 and dg2, similar to nocturnal gecko P521 and P467, respectively. Despite the large morphological differences between the diurnal and nocturnal gecko photoreceptor types, they express phylogenetically closely related opsins. These results provide molecular evidence for the reverse transmutation, that is, rods of an ancestral nocturnal gecko have backed into cones of diurnal geckos. The amino acid substitution rates of dgl and dg2 are higher than those of P521 and P467, respectively. Changes of behavior regarding photic environment may have contributed to acceleration of amino acid substitutions in the diurnal gecko opsins.  相似文献   

8.
Viviparity has evolved numerous times among squamate reptiles; however, the combination of viviparity and nocturnality is apparently rare among lizards. We used time‐lapse photography to examine evidence for diurnal activity in a viviparous lizard often described as nocturnal, the gecko Woodworthia ‘Otago/Southland’ from southern New Zealand (family Diplodactylidae). Evidence for diurnal emergence was extensive. Females have a higher incidence of basking compared to males, although no difference was detected between females in different reproductive conditions. Temperature loggers inserted into calibrated copper models were used to compare the body temperatures available to geckos in two basking positions and in two retreat types. Models in basking positions reached higher mean temperatures than models in retreats, although there was no significant effect of basking position or retreat type on model temperatures. Collectively, our results indicate that pregnant geckos that bask consistently could reduce gestation length by at least 14 days compared with females that remain in retreats. Extensive basking in this species adds to the growing evidence of diurno‐nocturnality in many New Zealand lepidosaurs, including other viviparous geckos. Our results lead us to question whether viviparity in lizards is ever compatible with ‘pure’ nocturnality in a cool climate. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, ●● , ●●–●●.  相似文献   

9.
10.
The dependence of metabolic processes on temperature constrains the behavior, physiology and ecology of many ectothermic animals. The evolution of nocturnality in lizards, especially in temperate regions, requires adaptations for activity at low temperatures when optimal body temperatures are unlikely to be obtained. We examined whether nocturnal lizards have cold-adapted lactate dehydrogenase (LDH). LDH was chosen as a representative metabolic enzyme. We measured LDH activity of tail muscle in six lizard species (n = 123: three nocturnal, two diurnal and one crepuscular) between 5 and 35 °C and found no differences in LDH-specific activity or thermal sensitivity among the species. Similarly, the specific activity and thermal sensitivity of LDH were similar between skinks and geckos. Similar enzyme activities among nocturnal and diurnal lizards indicate that there is no selection of temperature specific LDH enzyme activity at any temperature. As many nocturnal lizards actively thermoregulate during the day, LDH may be adapted for a broad range of temperatures rather than adapted specifically for the low temperatures encountered when the animals are active. The total activity of LDH in tropical and temperate lizards is not cold-adapted. More data are required on biochemical adaptations and whole animal thermal preferences before trends can be established.  相似文献   

11.
The underlying neural causes of the differences between nocturnal and diurnal animals with respect to their patterns of rhythmicity have not yet been identified. These differences could be due to differences in some subpopulation of neurons within the suprachiasmatic nucleus (SCN) or to differences in responsiveness to signals emanating from the SCN. The experiments described in this article were designed to address the former hypothesis by examining Fos expression within vasopressin (VP) neurons in the SCN of nocturnal and diurnal rodents. Earlier work has shown that within the SCN of the diurnal rodent Arvicanthis niloticus, approximately 30% of VP-immunoreactive (IR) neurons express Fos during the day, whereas Fos rarely is expressed in VP-IR neurons in the SCN of nocturnal rats. However, in earlier studies, rats were housed in constant darkness and pulsed with light, whereas Arvicanthis were housed in a light:dark (LD) cycle. To provide data from rats that would permit comparisons with A. niloticus, the first experiment examined VP/Fos double labeling in the SCN of rats housed in a 12:12 LD cycle and perfused 4 h into the light phase or 4 h into the dark phase. Fos was significantly elevated in the SCN of animals sacrificed during the light compared to the dark phase, but virtually no Fos at either time was found in VP-IR neurons, confirming that the SCN of rats and diurnal Arvicanthis are significantly different in this regard. The authors also evaluated the relationship between this aspect of SCN function and diurnality by examining Fos-IR and VP-IR in diurnal and nocturnal forms of Arvicanthis. In this species, most individuals exhibit diurnal wheel-running rhythms, but some exhibit a distinctly different and relatively nocturnal pattern. The authors have bred their laboratory colony for this trait and used animals with both patterns in this experiment. They examined Fos expression within VP-IR neurons in the SCN of both nocturnal and diurnal A. niloticus kept on a 12:12 LD cycle and perfused 4 h into the light phase or 4 h into the dark phase, and brains were processed for immunohistochemical identification of Fos and VP. Both the total number of Fos-IR cells and the proportion of VP-IR neurons containing Fos (20%) were higher during the day than during the night. Neither of these parameters differed between nocturnal and diurnal animals. The implications of these findings are discussed.  相似文献   

12.
Diurnality, associated with enhanced visual acuity and color vision, is typical of most modern Primates. However, it remains a matter of debate when and how many times primates re-acquired diurnality or returned to nocturnality. We analyzed the features specific to nocturnal and diurnal vision that were recently found in the nuclei of mammalian rod photoreceptor cells in 11 species representing various groups of the Primates and related tree shrew and colugo. In particular, heterochromatin in rod nuclei of nocturnal mammals is clustered in the center of rod nuclei (inverted architecture), whereas rods of diurnal mammals retain rods with peripheral heterochromatin (conventional architecture). Rod nuclei of the nocturnal owl monkey have a state transitional to the inverted one. Surprisingly, rod nuclei of the tarsier have a conventional nuclear architecture typical for diurnal mammals, strongly implying that recent Tarsiiformes returned to nocturnality from the diurnal state. Diurnal lemurs retain inverted rod nuclei typical of nocturnal mammals, which conforms to the notion that the ancestors of all Lemuroidea were nocturnal. Data on the expression of proteins indispensable for peripheral heterochromatin maintenance (and, respectively, conventional or inverted nuclear organization) in rod cells support the view that the primate ancestors were nocturnal and transition to diurnality occurred independently in several primate and related groups: Tupaia, diurnal lemurs, and, at least partially independently, in Simiiformes (monkeys and apes) and Tarsiiformes.  相似文献   

13.
1. The thermal adaptation hypothesis proposes that because thermoregulation involves a high metabolic cost, thermal limits of organisms must be locally adapted to temperatures experienced in their environments. There is evidence that tolerance to high temperatures decreases in insects inhabiting colder habitats and microclimates. However, it is not clear if thermal limits of ectotherms with contrasting temporal regimes, such as diurnal and nocturnal insects, are also adapted to temperatures associated with their circadian activities. 2. This study explores differences in heat tolerance among diurnal and nocturnal ant species in four ecosystems in Mexico: tropical montane, tropical rainforest, subtropical dry forests, and high‐elevation semi‐desert. 3. The critical thermal maximum (CTmax), i.e. the temperature at which ants lost motor control, was estimated for diurnal and nocturnal species. CTmax for 19 diurnal and 12 nocturnal ant species distributed among 45 populations was also estimated. 4. Semi‐desert and subtropical dry forest ants displayed higher tolerances to high temperatures than did ants in tropical rainforest. The lowest tolerance to high temperatures was recorded in tropical montane forest ants. In general, among all habitats, the CTmax of nocturnal ants was lower than that of diurnal ants. 5. An increase in nocturnal temperatures, combined with lower tolerance to high temperatures, may represent a substantial challenge for nocturnal ectotherms in a warming world.  相似文献   

14.
Examples of animals that switch activity times between nocturnality and diurnality in nature are relatively infrequent. Furthermore, the mechanism for switching activity time is not clear: does a complete inversion of the circadian system occur in conjunction with activity pattern? Are there switching centers downstream from the internal clock that interpret the clock differently? Or does the switch reflect a masking effect? Answering these key questions may shed light on the mechanisms regulating activity patterns and their evolution. The golden spiny mouse (Acomys russatus) can switch between nocturnal and diurnal activity. This study investigated the relationship between its internal circadian clock and its diurnal activity pattern observed in the field. The goal is to understand the mechanisms underlying species rhythm shifts in order to gain insight into the evolution of activity patterns. All golden spiny mice had opposite activity patterns in the field than those under controlled continuous dark conditions in the laboratory. Activity and body temperature patterns in the field were diurnal, while in the laboratory all individuals immediately showed a free-running rhythm starting with a nocturnal pattern. No phase transients were found toward the preferred nocturnal activity pattern, as would be expected in the case of true entrainment. Moreover, the fact that the free-running activity patterns began from the individuals' subjective night suggests that golden spiny mice are nocturnal and that their diurnality in their natural habitat in the field results from a change that is downstream to the internal clock or reflects a masking effect.  相似文献   

15.
Most mammals can be characterized as nocturnal or diurnal. However infrequently, species may overcome evolutionary constraints and alter their activity patterns. We modeled the fundamental temporal niche of a diurnal desert rodent, the golden spiny mouse, Acomys russatus. This species can shift into nocturnal activity in the absence of its congener, the common spiny mouse, Acomys cahirinus, suggesting that it was competitively driven into diurnality and that this shift in a small desert rodent may involve physiological costs. Therefore, we compared metabolic costs of diurnal versus nocturnal activity using a biophysical model to evaluate the preferred temporal niche of this species. The model predicted that energy expenditure during foraging is almost always lower during the day except during midday in summer at the less sheltered microhabitat. We also found that a shift in summer to foraging in less sheltered microhabitats in response to predation pressure and food availability involves a significant physiological cost moderated by midday reduction in activity. Thus, adaptation to diurnality may reflect the "ghost of competition past"; climate-driven diurnality is an alternative but less likely hypothesis. While climate is considered to play a major role in the physiology and evolution of mammals, this is the first study to model its potential to affect the evolution of activity patterns of mammals.  相似文献   

16.
Lepidoptera (butterflies and moths) are one of the most taxonomically diverse insect orders with nearly 160,000 described species. They have been studied extensively for centuries and are found on nearly all continents and in many environments. It is often assumed that adult butterflies are strictly diurnal and adult moths are strictly nocturnal, but there are many exceptions. Despite the broad interest in butterflies and moths, a comprehensive review of diel (day-night) activity has not been conducted. Here, we synthesize existing data on diel activity in Lepidoptera, trace its evolutionary history on a phylogeny, and show where gaps lie in our knowledge. Diurnality was likely the ancestral condition in Lepidoptera, the ancestral heteroneuran was likely nocturnal, and more than 40 transitions to diurnality subsequently occurred. Using species diversity estimates across the order, we predict that roughly 75-85% of Lepidoptera are nocturnal. We also define the three frequently used terms for activity in animals (diurnal, nocturnal, crepuscular), and show that literature on the activity of micro-moths is significantly lacking. Ecological factors leading to nocturnality/diurnality is a compelling area of research and should be the focus of future studies.  相似文献   

17.
Cerebral blood flow in intoxicated newborn piglets   总被引:1,自引:0,他引:1  
Ethanol exposure in the neonatal period causes impaired brain growth and altered adult behaviour in rats. One possible mechanism may be altered cerebral perfusion caused by ethanol intoxication. We assessed the effects of ethanol on cerebral blood flow and its autoregulation in 2-day-old piglets. Piglets received ethanol (1.4 g/kg) or an equivalent volume of dextrose 5% in water over 30 min. One hour later, cerebral blood flow was measured using the microsphere technique at resting, elevated, and decreased mean arterial blood pressure. Ethanol-treated piglets had total cerebral blood flows of 88 +/- 14, 82 +/- 10, and 82 +/- 12 mL X 100 g-1 X min-1 (mean +/- SE) at mean arterial blood pressures of 12.4 +/- 1.1, 15.7 +/- 1.5, and 8.2 +/- 0.9 kPa. Corresponding values in control piglets were 82 +/- 14, 78 +/- 4, and 82 +/- 7 mL X 100 g-1 X min-1 at mean arterial blood pressures of 10.5 +/- 1.5, 14.0 +/- 1.2, and 7.7 +/- 1.1 kPa. At resting arterial blood pressures, regional blood flows to basal ganglia, cortex, brainstem, and cerebellum in ethanol-treated piglets were 123 +/- 21, 90 +/- 16, 94 +/- 17, and 77 +/- 12 mL X 100 g-1 X min-1, respectively. Corresponding regional blood flows for the control piglets were 118 +/- 16, 85 +/- 15, 76 +/- 16, and 76 +/- 16 mL X 100 g-1 X min-1. Blood flow to basal ganglia was greater than to other brain regions in both ethanol-treated and control piglets (P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
A new explanation for the origin of the primate suborder Anthropoidea is presented. Functional analyses of the “forward”-facing orbits, postorbital septum and retinal fovea are used to reconstruct the morphological and ecological contexts in which these features are most likely to have evolved. The postorbital septum is argued to have evolved as an adaptation to protect the orbital contents from encroaching fibers of anterior temporalis. This encroachment resulted from increasing convergence and frontation of the orbital margins in a lineage of small-bodied animals with relatively large eyes. Increasing orbital convergence is hypothesized to have resulted from reduction in relative orbit diameter associated with a shift to diurnality at small body size (<1,300 g). Increased frontation (verticality) of the orbital margins is hypothesized to have been due to rostral displacement of the superior orbital margin or increasing basicranial flexion in a lineage of animals with orbits pushed to the midline below the olfactory tract. Either of these changes would have occurred as a result of increases in neocortex size. Increased neocortical volume is hypothesized to have resulted from a shift to group living associated with a shift to diurnality. Diurnal, visual predation among other vertebrates is commonly associated with possession of a retinal fovea and the haplorhine fovea is hypothesized to have evolved in a similar context. All these features are hypothesized to have evolved in association with a shift from nocturnal to diurnal visual predation of insects at small body size and this adaptive shift is argued to be the defining feature of the anthropoid suborder. The omomyid skull is the best structural antecedent of the anthropoid skull; however, if basal primates exhibited moderate degrees of orbital convergence and frontation, orbits that were closely approximated below the olfactory tract and nocturnal habits, they could easily have given rise to the anthropoid stem species. The presence of a retinal fovea and lack of a tapetum lucidum in extant tarsiers implies that they shared a diurnal ancestry with anthropoids. This suggests that the adaptive explanation for anthropoid origins presented here applies to the origins of the haplorhine stem lineage. © 1996 Wiley-Liss, Inc.  相似文献   

19.
Tre of the suricates exhibits a marked diurnal rhythm (mean Tre at night 36.3 +/- 0.6 degrees C and 38.3 +/- 0.5 degrees C during the day). Oxygen consumption is lowest at Ta 30-32.5 degrees C (mean 0.365 +/- 0.022 ml O2 g-1 hr-1); this is 42% below the value expected from body mass. At Ta below the TNZ, oxygen uptake rises rapidly, minimal thermal conductance (0.040 ml O2 g-1 h-1 degrees C-1) being 18% above the mass-specific level. Lowest heart rates occur at Ta 30 degrees C (mean 109.6 +/- 9.8 beats min-1) and oxygen pulse is minimal at Ta 30-35 degrees C with 40-45 microliter O2 beat-1. At Ta 15-32.5 degrees C total evaporative water loss is between 0.46-0.63 ml H2O kg-1 hr-1 and increases markedly during heat stress (to a mean of 5.35 ml H2O kg-1 hr-1 at Ta 40 degrees C). This rise of TEWL is mainly attributable to the onset of panting at Ta above 35 degrees C.  相似文献   

20.
To test the hypothesis that maximal O2 uptake (VO2max) can be limited by O2 diffusion in the peripheral tissue, we kept O2 delivery [blood flow X arterial O2 content (CaO2)] to maximally contracting muscle equal between 1) low flow-high CaO2 and 2) high flow-low CaO2 conditions. The hypothesis predicts, because of differences in the capillary PO2 profile, that the former condition will result in both a higher VO2max and muscle effluent venous PO2 (PVO2). We studied the relations among VO2max, PVO2, and O2 delivery during maximal isometric contractions in isolated, in situ dog gastrocnemius muscle (n = 6) during these two conditions. O2 delivery was matched by varying arterial O2 partial pressure and adjusting flow to the muscle accordingly. A total of 18 matched O2 delivery pairs were obtained. As planned, O2 delivery was not significantly different between the two treatments. In contrast, VO2max was significantly higher [10.4 +/- 0.5 (SE) ml.100 g-1.min-1; P = 0.01], as was PVO2 (25 +/- 1 Torr; P less than 0.01) in the low flow-high CaO2 treatment compared with the high flow-low CaO2 treatment (9.1 +/- 0.4 ml.100 g-1.min-1 and 20 +/- 1 Torr, respectively). The rate of fatigue was greater in the high flow-low CaO2 condition, as was lactate output from the muscle and muscle lactate concentration. The results of this study show that VO2max is not uniquely dependent on O2 delivery and support the hypothesis that VO2max can be limited by peripheral tissue O2 diffusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号