首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
All-trans-retinoic acid (trans-RA) and other retinoids exert anticancer effects through two types of retinoid receptors, the RA receptors (RARs) and retinoid X receptors (RXRs). Previous studies demonstrated that the growth-inhibitory effects of trans-RA and related retinoids are impaired in certain estrogen-independent breast cancer cell lines due to their lower levels of RAR alpha and RARbeta. In this study, we evaluated several synthetic retinoids for their ability to induce growth inhibition and apoptosis in both trans-RA-sensitive and trans-RA-resistant breast cancer cell lines. Our results demonstrate that RXR-selective retinoids, particularly in combination with RAR-selective retinoids, could significantly induce RARbeta and inhibit the growth and induce the apoptosis of trans-RA-resistant, RAR alpha-deficient MDA-MB-231 cells but had low activity against trans-RA-sensitive ZR-75-1 cells that express high levels of RAR alpha. Using gel retardation and transient transfection assays, we found that the effects of RXR-selective retinoids on MDA-MB-231 cells were most likely mediated by RXR-nur77 heterodimers that bound to the RA response element in the RARbeta promoter and activated the RARbeta promoter in response to RXR-selective retinoids. In contrast, growth inhibition by RAR-selective retinoids in trans-RA-sensitive, RAR alpha-expressing cells most probably occurred through RXR-RAR alpha heterodimers that also bound to and activated the RARbeta promoter. In MDA-MB-231 clones stably expressing RAR alpha, both RARbeta induction and growth inhibition by RXR-selective retinoids were suppressed, while the effects of RAR-selective retinoids were enhanced. Together, our results demonstrate that activation of RXR can inhibit the growth of trans-RA-resistant MDA-MB-231 breast cancer cells and suggest that low cellular RAR alpha may regulate the signaling switch from RAR-mediated to RXR-mediated growth inhibition in breast cancer cells.  相似文献   

4.
Heterodimerization of retinoic acid receptors (RARs) with 9-cis-retinoic receptors (RXRs) is a prerequisite for binding of RXR.RAR dimers to DNA and for retinoic acid-induced gene regulation. Whether retinoids control RXR/RAR solution interaction remains a debated question, and we have used in vitro and in vivo protein interaction assays to investigate the role of ligand in modulating RXR/RAR interaction in the absence of DNA. Two-hybrid assay in mammalian cells demonstrated that only RAR agonists were able to increase significantly RAR interaction with RXR, whereas RAR antagonists inhibited RXR binding to RAR. Quantitative glutathione S-transferase pull-down assays established that there was a strict correlation between agonist binding affinity for the RAR monomer and the affinity of RXR for liganded RAR, but RAR antagonists were inactive in inducing RXR recruitment to RAR in vitro. Alteration of coactivator- or corepressor-binding interfaces of RXR or RAR did not alter ligand-enhanced dimerization. In contrast, preventing the formation of a stable holoreceptor structure upon agonist binding strongly altered RXR.RAR dimerization. Finally, we observed that RAR interaction with RXR silenced RXR ligand-dependent activation function. We propose that ligand-controlled dimerization of RAR with RXR is an important step in the RXR.RAR activation process. This interaction is dependent upon adequate remodeling of the AF-2 structure and amenable to pharmacological inhibition by structurally modified retinoids.  相似文献   

5.
The biological actions of retinoids are mediated by nuclear retinoic acid receptors (RARs) and retinoid X receptors (RXRs). We have recently reported that decreased expression of RARα and RXRα has an important role in high glucose (HG)-induced cardiomyocyte apoptosis. However, the regulatory mechanisms of HG effects on RARα and RXRα remain unclear. Using neonatal cardiomyocytes, we found that ligand-induced promoter activity of RAR and RXR was significantly suppressed by HG. HG promoted protein destabilization and serine-phosphorylation of RARα and RXRα. Proteasome inhibitor MG132 blocked the inhibitory effect of HG on RARα and RXRα. Inhibition of intracellular reactive oxidative species (ROS) abolished the HG effect. In contrast, H(2)O(2) stimulation suppressed the expression and ligand-induced promoter activity of RARα and RXRα. HG promoted phosphorylation of ERK1/2, JNK and p38 MAP kinases, which was abrogated by an ROS inhibitor. Inhibition of JNK, but not ERK and p38 activity, reversed HG effects on RARα and RXRα. Activation of JNK by over expressing MKK7 and MEKK1, resulted in significant downregulation of RARα and RXRα. Ligand-induced promoter activity of RARα and RXRα was also suppressed by overexpression of MEKK1. HG-induced cardiomyocyte apoptosis was potentiated by activation of JNK, and prevented by all-trans retinoic acid and inhibition of JNK. Silencing the expression of RARα and RXRα activated the JNK pathway. In conclusion, HG-induced oxidative stress and activation of the JNK pathway negatively regulated expression/activation of RAR and RXR. The impaired RAR/RXR signaling and oxidative stress/JNK pathway forms a vicious circle, which significantly contributes to hyperglycemia induced cardiomyocyte apoptosis.  相似文献   

6.
7.
8.
9.
Mouse F9 embryocarcinoma (EC) cells constitute a well established cell-autonomous model system for investigating retinoid signaling in vitro as, depending on culture conditions, retinoic acid (RA) can induce their differentiation into either primitive, parietal or visceral extraembryonic endoderm-like cells. These RA-induced differentiations are accompanied by decreases in proliferation rates, modifications of expression of subsets of RA-target genes, and induction of apoptosis. To elucidate the roles played by the multiple retinoid receptors (RARs and RXRs) in response to RA treatments, F9 EC cells lacking one or several RARs or RXRs were engineered through homologous recombination. Mutated RARs and/or RXRs were then reexpressed in given RAR or RXR null backgrounds. WT and mutant cells were also treated with different combinations of ligands selective for RXRs and/or for each of the three RAR isotypes. These studies lead to the conclusion that most RA-induced events (e.g. primitive and visceral differentiation, growth arrest, apoptosis and activation of expression of a number of genes) are transduced by RARgamma/RXRalpha heterodimers, whereas some other events (e.g. parietal differentiation) are mediated by RARalpha/RXRalpha. heterodimers. They also demonstrate that both AF-1 and AF-2 activation functions of RARs and RXRs, as well as their phosphorylation, are differentially required in these RA-induced events. In RARgamma/RXRalpha heterodimers, the phosphorylation of RARgamma is necessary for triggering primitive differentiation, while that of RXRalpha is required for growth arrest. On the other hand, phosphorylation of RARalpha is necessary for parietal differentiation. Thus, retinoid receptors are sophisticated signal integrators that transduce not only the effects of their cognate ligands, but also those of ligands that bind to membrane receptors.  相似文献   

10.
Activated by retinoids, metabolites of vitamin A, the retinoic acid receptors (RARs) and the retinoid X receptors (RXRs) play important roles in a wide variety of biological processes, including embryo development, homeostasis, cell proliferation, differentiation and death. In this review, we summarized the functional roles of nuclear receptor RAR/RXR heterodimers in liver physiology. Specifically, RAR/RXR modulate the synthesis and metabolism of lipids and bile acids in hepatocytes, regulate cholesterol transport in macrophages, and repress fibrogenesis in hepatic stellate cells. We have also listed the specific genes that carry these functions and how RAR/RXR regulate their expression in liver cells, providing a mechanistic view of their roles in liver physiology. Meanwhile, we pointed out many questions regarding the detailed signaling of RAR/RXR in regulating the expression of liver genes, and hope future studies will address these issues.  相似文献   

11.
12.
Retinoic acid (RA) is an important mediator of cell differentiation. It stimulates hCG secretion by JEG-3 choriocarcinoma cells in vitro after a time lag. The first aim of this study was to characterize which types of retinoid receptors (RARs and RXRs) are present in JEG-3 cells. Using Western blot analysis and immunocytochemistry with specific antibodies as well as Northern blot analysis, we found that JEG-3 cells expressed RARα and RXRα, the latter being the predominant receptor. We then analyzed the action on cell proliferation and hCG secretion of the physiological retinoids all-trans RA (RA) and 9 cis RA as well as synthetic retinoids with specific affinity for RARα and RXRα. All these retinoids were potent inhibitors of cell growth, maximal inhibition (72 ± 2%) being observed after 4 days of treatment with Ro 25, a RXRα specific ligand. Within 24 h, 9 cis RA and Ro 25 stimulated hCG secretion, and maximal stimulation (1,472 ± 10%) occurred at 48 h with the RXRα-specific ligand. The RARα-specific ligand also stimulated hCG secretion but to a lower extend and after a delay of 48 h. These results suggest a predominant role of RXRα in mediating the biological effects of retinoids on JEG-3 cells and the possible induction by RA itself of the metabolic pathway leading to 9 cis RA. J. Cell. Physiol. 176:595–601, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
Retinoid X receptors and retinoid response in neuroblastoma cells   总被引:5,自引:0,他引:5  
Retinoic acid (RA) modulates differentiation and apoptosis of neural cells via RA receptors (RARs) and retinoid X receptors (RXRs). Neuroblastoma cells are potentially useful models for elucidating the molecular mechanisms of RA in neural cells, and responses to different isomers of RA have been interpreted in terms of differential homo- and heterodimerization of RXRs. The aim of this study was to identify the RXR types expressed in neuroblast and substrate-adherent neuroblastoma cells, and to study the participation of these RXRs in RAR heterodimers. RXRbeta was the predominant RXR type in N-type SH SY 5Y cells and S-type SH EP cells. Gel shift and supershift assays demonstrated that RARbeta and RARgamma predominantly heterodimerize with RXRbeta. In SH SY 5Y cells, RARgamma/RXRbeta was the predominant heterodimer binding to the DR5 RARE in the absence of 9-cis RA (9C), whereas the balance shifted in favor of RARbeta/RXRbeta in the presence of ligand. There was a marked difference between the N- and S-type neuroblastoma cells in retinoid receptor-DNA interactions, and this may underlie the differential effects of retinoids in these neuroblastoma cell types. There was no evidence to indicate that 9C functions via RXR homodimers in either SH SY 5Y or SH EP neuroblastoma cells. The results of this study suggest that interactions between retinoid receptors and other nuclear proteins may be critical determinants of retinoid responses in neural cells.  相似文献   

14.
15.
16.
Many synthetic retinoids contain an aromatic structure with a bulky hydrophobic fragment. In order to obtain retinoids with therapeutic potential that do not bind to or activate retinoic acid X receptors (RXRs), we focused on the introduction of novel hydrophobic moieties, that is, metacyclophane, phenalene and benzoheptalene derivatives. The designed compounds were synthesized and their agonistic activities towards RARs and RXRs were evaluated. Most of the active compounds showed selectivity for RARα and RARβ over RARγ, and higher RARβ transactivating activity seemed to correlate with higher cell differentiation-inducing activity towards promyelocytic leukemia cell line HL-60. These compounds showed no agonistic activity towards RXRs.  相似文献   

17.
Ligands that specifically target retinoid-X receptors (RXRs) are emerging as potentially powerful therapies for cancer, diabetes, and the lowering of circulatory cholesterol. To date, RXR has only been crystallized in the absence of ligand or with the promiscuous ligand 9-cis retinoic acid, which also activates retinoic acid receptors. Here we present the structure of hRXRbeta in complex with the RXR-specific agonist LG100268 (LG268). The structure clearly reveals why LG268 is specific for the RXR ligand binding pocket and will not activate retinoic acid receptors. Intriguingly, in the crystals, the C-terminal "activation" helix (AF-2/helix H12) is trapped in a novel position not seen in other nuclear receptor structures such that it does not cap the ligand binding cavity. Mammalian two-hybrid assays indicate that LG268 is unable to release co-repressors from RXR unless co-activators are also present. Together these findings suggest that RXR ligands may be inefficient at repositioning helix H12.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号