首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The authors sought to determine whether developmental differences in the magnitude of embryonic mortality caused by heat stress in vivo are caused by changes in resistance of embryos to elevated temperature. In this regard, responses of oocytes, two-cell embryos, four- to eight-cell embryos, and compacted morulae to heat shock were compared. An additional goal was to define further the role of cumulus cells and glutathione in thermoprotection of oocytes. In experiment 1, heat shock (41°C for 12 hr) decreased the number of embryos developing to the blastocyst stage for two-cell (26% vs. 0%) and four- to eight-cell (25% vs. 10%) embryos but did not affect morulae (37% vs. 42%). In experiment 2, exposure of two-cell embryos to 41°C for 12 hr reduced the number of four- to eight-cell embryos present 24 hr after the end of heat shock (88% vs. 62%). In experiment 3, heat shock reduced the number of two-cell embryos developing to blastocyst (49% vs. 8%) but did not affect subsequent development of oocytes when heat shock occurred during the first 12 hr of maturation (46% vs. 41% development to blastocyst); membrane integrity was not altered. In experiment 4, oocytes were cultured with an inhibitor of glutathione synthesis, DL-buthionine-[S,R]-sulfoximine (BSO), for 24 hr and exposed to 41°C for the first 12 hr of maturation. Percentages of blastocysts were 35% (39°C), 18% (41°C), 17% (39°C+BSO), and 11% (41°C+BSO). For experiment 5, oocytes were either denuded or left with cumulus intact and were then radiolabeled with [35S]methionine and [35S]cysteine at 39°C or 41°C for 12 hr. Exposure of oocytes to 41°C for 12 hr reduced overall synthesis of 35S-labeled TCA-precipitable intracellular proteins (18,160 vs. 14,594 dpm/oocyte), whereas presence of cumulus increased synthesis (9,509 vs. 23,246). Analysis by two-dimensional SDS PAGE and fluorography revealed that heat shock protein 68 (HSP68) and two other putative heat shock proteins, P71 and P70, were synthesized by all oocytes regardless of treatment. Heat shock did not alter the synthesis of HSP68 or P71 but decreased amounts of newly synthesized P70. Cumulus cells increased synthesis of P71 and P70. Results indicate there is a biphasic change in resistance to elevations in temperature as oocytes mature, become fertilized, and develop. Resistance declines from the oocyte to the two-cell stage and then increases. Evidence suggests a role for cumulus cells in increasing HSP70 molecules and protein synthesis. Data also indicate a role for glutathione in oocyte function. Mol Reprod Dev 46:138–145, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
5.
6.
7.
Bovine zonae pellucidae (ZP) from follicular oocytes and from embryos and degenerated ova collected on Day 7 from superovulated cows were examined by scanning electron microscopy, by dimensional measurement, and by total protein determination. The number of plaque-forming units (PFU) of infectious bovine rhinotracheitis virus (IBRV) that were associated with ZP-intact embryos/ova from each of the 3 sources after in vitro exposure was also determined.

Scanning electron microscopy revealed that the surfaces of Day-7 embryos and degenerated ova were smoother than those of follicular oocytes. Mean dimensional measurements of the diameter/thickness of the ZP from follicular oocytes, Day-7 embryos, and degenerated Day-7 ova were 156.7 μm/12.3μm, 161.3μm/12.6μm, and 158.9μm/12.8μm, respectively. The mean total protein per ZP of follicular oocytes, embryos, and degenerated ova was 0.331 μg, 0.349 μg, and 0.254 μg, respectively. Considerable variability existed within groups, but significantly greater quantities of IBRV were associated with follicular oocytes (mean PFU/oocyte = 68.1) than with Day-7 embryos (mean PFU/embryo = 43.0; P<0.05) or with Day-7 ova (mean PFU/ovum = 31.9; P<0.01).

The reliability of using an assay for IBRV associated with nontransferable ova/embryos as an indicator of the presence or absence of the virus in transferable embryos from the same collection (Day 7) was supported. Although structural differences between the ZPs of follicular oocytes and Day-7 embryos were observed in this study, further investigation is needed to determine if there are differences in the protective function of the respective ZPs.  相似文献   


8.
9.
10.
11.
The objective of this study was to determine the effect of different frequencies of transvaginal ovum pick-up (OPU) on the quantity of recovered cumulus oocyte complexes (COCs) and subsequently the competence of matured oocytes to support the preimplantation development of cloned bovine embryos. The COCs were aspirated from the ovaries of 6 Chinese Holstein cows by transvaginal follicle aspiration twice a week (every 3 or 4 days) (Group I), every 5 days (Group II), once a week (every 7 days) (Group III), every 10 days (Group IV), and once every 2 weeks (every 14 days) (Group V). The developmental stages of the follicles were confirmed by the diameter of the dominant follicle (DF) and harvested COCs, and the dynamics of the follicular wave were clarified. In addition, extrusions of the first polar body (PB I) from the oocytes were observed at different time intervals after the initiation of in vitro maturation (IVM) to identify the appropriate culture time window for somatic cell nuclear transfer. Matured oocytes were used to produce cloned bovine embryos that were subsequently cultured in the goat oviduct. After 7 days, the embryos were flushed out, and the developmental rates of the blastocysts were compared among the five groups. The results showed that the aspirations of all follicles >or=3 mm in diameter (D1) induced and synchronized the dynamics of the follicular wave, and the subordinate follicles became atretic after 4 days (D5). Another follicular wave started between D7 and D10, and atresia in the subordinate follicles in the second follicular wave began on D14. The timing of meiotic progression (from the initiation of IVM to the extrusion of PB I) in the oocytes obtained by OPU was later than that of the oocytes obtained from the abattoir. Between 20 and 24 hr after the initiation of IVM, 20% of the oocytes extruded their PB I. Further, 80% (520/650) of the harvested COCs were arrested at metaphase II (MII) by 22 hr of the initiation of IVM and were used as cytoplast donors. The rates of development of the reconstituted embryos to the blastocyst stage were 23.1% (Group I), 15.0% (Group II), 10.9% (Group III), 4.9% (Group IV), and 29.0% (Group V). The results indicate that the developmental potential of follicles from the same living donors were different when different intervals of OPU were adopted and early atretic follicles from the second follicular wave had higher competence to support the early development of cloned bovine embryos.  相似文献   

12.
13.
14.
Summary This study reconstructed heterogeneous embryos using camel skin fibroblast cells as donor karyoplasts and the bovine oocytes as recipient cytoplasts to investigate the reprogramming of camel somatic cell nuclei in bovine oocyte cytoplasm and the developmental potential of the reconstructed embryos. Serum-starved skin fibroblast cells, obtained from adult camel, were electrically fused into enucleated bovine metaphase II (MII) oocytes that were matured in vitro. The fused eggs were activated by Inomycin with 2 mM/ml 6-dimethylaminopurine. The activated reconstructed embryos were cocultured with bovine cumulus cells in synthetic oviduct fluid supplemented with amino acid (SOFaa) and 10% fetal calf serum for 168 h. Results showed that 53% of the injected oocytes were successfully fused, 34% of the fused eggs underwent the first egg cleavage, and 100% of them developed to four- or 16-cell embryo stages. The first completed cleavage of xenonuclear transfer camel embryos occurred between 22 and 48 h following activation. This study demonstrated that the reconstructed embryos underwent the first embryonic division and that the reprogramming of camel fibroblast nuclei can be initiated in enucleated bovine MII oocytes.  相似文献   

15.
The preimplantation developmental period is associated with constant changes within the embryo, and some of these changes are apparent on the embryo cell surface. For example, during transition from maternal to embryonic genome control and the compaction and differentiation of embryonic cells, the cell surface undergoes morphologic alterations that reflect changes in gene control. In order to gain insight into the events occurring during embryonic development and cellular differentiation, monoclonal antibodies specific for cell surface antigens (TEC antigens) of embryonic cells have been generated previously and shown to recognise either the carbohydrate moiety of embryoglycan or a developmentally regulated protein epitope. The TEC antigens have been identified on mouse preimplantation embryos, and their expression is specific to particular developmental stages. To determine whether these antigens are conserved in higher mammals, we examined the expression of four TEC antigens (TEC-1 to TEC-4) on in vitro–derived bovine and murine embryos during the preimplantation stage of development. It was found that bovine oocytes and embryos derived from in vitro maturation (IVM) and in vitro fertilisation (IVF) showed stage-specific expression of each of the TEC antigens investigated, with the pattern of expression overlapping but not identical to that seen in the mouse. Immunoprecipitation together with Western blot analysis showed that the TEC monoclonal antibodies recognised a single glycoprotein band with an apparent molecular weight of 70 kDa. Confocal microscopy of immunofluorescence staining of the bovine cells showed this protein to be located on the cell surface. The apparent negative expression of these TEC antigens by immunohistochemistry and immunoprecipitation at particular stages of development appears to be due to the epitopes being inaccessible to the TEC antibodies, since Western blotting revealed the TEC antigens to be present at all stages of development examined. Antibodies identifying stage-specific antigens will provide useful markers to characterise early embryonic cells, monitor normal embryonic development in vitro, and identify cell surface structures having a function in cell-cell interactions during embryogenesis and differentiation. Mol. Reprod. Dev. 49:19–28, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
17.
18.
19.
20.
The effect of glucose in the medium used during in vitro culture on both cell death by apoptosis and the sex ratio of bovine blastocysts derived from in vitro-matured and in vitro-fertilized oocytes was evaluated. Oocytes were matured, inseminated, and cultured in vitro in mSOF medium with 10% FCS with or without glucose supplementation. Exposure to high concentrations of glucose (10, 20, and 30 mM) during bovine embryo development in vitro from zygote to blastocyst resulted in a decrease in the number of cells per embryo and an increase in the frequency of apoptotic cells. A significantly higher proportion of females was found among those embryos that developed under hyperglycemic conditions in vitro. Moreover, both murine and bovine blastocysts incubated for 6 hr in 20 mM glucose had a significantly higher number of apoptotic cells in comparison to control. In this study, we also determined whether blastocyst production of the X-linked inhibitor of apoptosis protein (XIAP) differs between the sexes. Our results show that female bovine blastocysts produce significantly higher amounts of XIAP mRNA than males and this could be crucial in explaining the higher proportion of female blastocysts observed following in vitro culture under hyperglycemic conditions which induce apoptosis. Moreover, a higher proportion of female murine blastocysts cultured under hyperglycemic conditions were implanted in the uterus (65.3 of implantations from embryos cultured with 20 mM of glucose are females vs. 49% in control). This mechanism provides an explanation for the significant reduction of male children born to diabetic mothers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号