首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Vascular endothelial growth factor (VEGF) is a promising molecule for cardiovascular diseases therapy. But lack of a targeted delivery system limits its translation into clinical application. This study aimed to develop stably overexpressing VEGF macrophages for targeted VEGF delivery to injured arteries and determine their potential for repairing of the damaged endothelium. Wire-induced carotid artery injury model was established in atherosclerosis-prone mice. It was observed that the VEGF-modified macrophages were recruited to the site of vascular injury and incorporated into new endothelium formation. VEGF-modified macrophages therapy accelerated reendothelialization and attenuated neointima formation. The VEGF protein level in tissues of injured arteries treated with VEGF-modified macrophages was increased. The upregulated C-C chemokine receptor type 5 (CCR5) and unaltered CCR2 protein levels were verified in VEGF-modified macrophages in vitro. Moreover, enhanced nitric oxide (NO) production in the culture medium of VEGF-modified macrophages was demonstrated. Our results indicated that VEGF-modified macrophages acted as vectors of VEGF targeting injured arteries, promoting the repairing directly by incorporating into new endothelium formation and indirectly by secreting sustainable VEGF and producing NO locally. This study represents a novel therapeutic application of targeted cell therapy with VEGF-modified macrophages for cardiovascular diseases.  相似文献   

3.
4.
5.
Photosystem II complex (PSII) of thylakoid membranes uses light energy to oxidise extremely stable water and produce oxygen (2H(2)O-->O(2)+4H(+)+4e(-)). PSII is compared with cytochrome c oxidase that catalyses the opposite reaction coupled to proton translocation. Cytochrome c oxidase has proton and water channels, and a tentative oxygen channel. I propose that functional PSII complexes also need a specific oxygen channel to direct O(2) from the water molecules bound to specific Mn atoms of the Mn cluster within PSII out to the membrane surface. The function of this channel will be to prevent oxygen being accessible to the radical pair P680(+)Pheo(-), thereby preventing singlet oxygen generation from the triplet P680 state in functional PSII. The important role of singlet oxygen in structurally perturbed non-functional photosystem II is also discussed.  相似文献   

6.
7.
8.
We have investigated the mRNA expression of the Ets-1 and Ets-2 genes in murine gonads and found expression in adult ovaries. In situ hybridization experiments show that the Ets genes are predominantly expressed in theca cells and cells of ovarian interstitium. By gel retardation experiments we detected DNA binding proteins in ovaries that specifically bind to the ETS motif, suggesting the expression of Ets or Ets-related proteins. Our results raise the possibility of Ets-2 involvement in ovarian pathology seen in patients with Down's syndrome.  相似文献   

9.
Cysteine-rich motor neuron 1 (CRIM1) is expressed in vascular endothelial cells and plays a crucial role in angiogenesis. In this study, we investigated the expression of CRIM1 mRNA in human umbilical vein endothelial cells (HUVECs). CRIM1 mRNA levels were not altered in vascular endothelial growth factor (VEGF)-stimulated monolayer HUVECs or in cells in collagen gels without VEGF. In contrast, the expression of CRIM1 mRNA was elevated in VEGF-stimulated cells in collagen gels. The increase in CRIM1 mRNA expression was observed even at 2 h when HUVECs did not form tubular structures in collagen gels. Extracellular signal-regulated kinase (Erk) 1/2, Akt and focal adhesion kinase (FAK) were activated by VEGF in HUVECs. The VEGF-induced expression of CRIM1 mRNA was significantly abrogated by PD98059 or PF562271, but was not affected by LY294002. These results demonstrate that CRIM1 is an early response gene in the presence of both angiogenic stimulation (VEGF) and environmental (extracellular matrix) factors, and Erk and FAK might be involved in the upregulation of CRIM1 mRNA expression in vascular endothelial cells.  相似文献   

10.
11.
We studied the changes in subcellular ultrastructure associated with the hypertrophy of capillary endothelial cells during repair of hyperoxic (100% O2) lung injury in rats. We used stereologic-morphometric measurements at different magnifications to determine the absolute volume of each subcellular compartment per average capillary endothelial cell. The increases in this value during the first 3 days of postexposure repair were 118% for cytoplasm, 786% for polyribosomes, 310% for rough endoplasmic reticulum, and 79% for mitochondria; the volume of pinocytotic vesicles did not change. By day 7 of repair, only the polyribosomes and rough endoplasmic reticulum were still increased; by day 14 all values were normal. We conclude that the capillary endothelial cell hypertrophy that develops during repair of hyperoxic lung injury is associated with large and heterogeneous increases in subcellular organelles and is not merely due to increases in the cytosol or to cellular edema. These increases seem to be an integral part of the repair process and may be important in the development of tolerance to subsequent oxygen exposure.  相似文献   

12.
In this study, we analyzed the effect of endothelin-1 (ET-1) on expression of the lectin-like oxidized low-density lipoprotein (oxLDL) receptor-1 LOX-1 and on oxLDL uptake in primary cultures of human umbilical vein endothelial cells (HUVEC). LOX-1 mRNA was quantified by standard-calibrated competitive RT-PCR, LOX-1 protein expression by Western analysis and endothelial oxLDL uptake using DiI-labeled oxLDL. ET-1 induces LOX-1 mRNA expression, reaching its maximum after 1 h (160 +/- 14% of control, 100 nM ET-1, P < 0.05). This increased ET-1-mediated LOX-1 mRNA expression could be inhibited by endothelin receptor B antagonist BQ-788. In addition, ET-1 stimulates LOX-1 protein expression and oxLDL uptake in HUVEC. The augmented oxLDL uptake by ET-1 is mediated by endothelin receptor B, but not by protein kinases. These data support a new pathophysiological mechanism how locally and systemically increased ET-1 levels could promote LOX-1-mediated oxLDL uptake in human endothelial cells and the development and progression of endothelial dysfunction and atherosclerosis.  相似文献   

13.
14.
15.
The X box in promoters of class II major histocompatibility complex genes plays a crucial role in the B-cell-specific and gamma interferon-inducible expression of these genes. The sequence TTCC is located in the pyrimidine tract which extends 5' to and partially overlaps the X box of the DRA promoter. This sequence resembles the core binding site for the Ets family of DNA-binding proteins. In this study, we demonstrate that mutations within the pyrimidine tract which change the TTCC motif, but do not affect the binding of regulatory factor X to the X box, decrease the activity of the DRA promoter in B cells. Furthermore, using electrophoretic mobility shift assays and cotransfection experiments, we demonstrate that Ets-1, but not Ets-2 or PU.1, functionally interacts with the pyrimidine tract and activates the DRA promoter.  相似文献   

16.
The association between periodontal and cardiovascular diseases could be mediated by direct interaction of periodontal pathogens with cardiac tissue. In order to explore this possibility, the effect of the periodontal pathogen Porphyromonas gingivalis on monocyte chemoattractant protein-1 (MCP-1) production by endothelial cells was investigated. When incubated with live P. gingivalis 381, MCP-1 production by human umbilical vein endothelial cells (HUVEC) was potently increased. Compared to the type strain 381, non-adhesive/invasive strains (W50 and DPG3) did not increase MCP-1 production, which was also demonstrated at the mRNA level. Killed P. gingivalis 381 was much less effective than live bacteria for MCP-1 induction. Treatment of HUVEC with cytochalasin D, an inhibitor of endocytosis, prevented MCP-1 mRNA up-regulation by P. gingivalis 381, suggesting that internalization of P. gingivalis is necessary for MCP-1 induction. In conclusion, the secretion of high levels of MCP-1 resulting from interactions of P. gingivalis with endothelial cells could enhance atherosclerosis progression by contributing to the recruitment of monocytes.  相似文献   

17.
Summary In the present study the expression of insulin-like growth factor I (IGF-I; somatomedin C) immunoreactivity was examined in endothelial cells during repair after injury to the intima in the femoral artery of adult rats. Two types of injury were examined: (1) endothelial denudation induced by the use of a catheter, and (2) vessel compression by short-term ligation. In untreated rats, arterial endothelial cells showed no or, only infrequently, low IGF-I immunoreactivity in their cytoplasm. Endothelial cells at the border to the denuded area showed increased IGF-I immunoreactivity one day after injury to the intima of the femoral artery. Thrombocytes and fibrin deposits as well as vital endothelial cells, covered by clots, were immunonegative. The maximal intensity of IGF-I immunoreactivity was reached within 3 days after insult. The IGF-I immunoreactivity in the endothelial cells remained elevated for at least 4 weeks, compared to the controls. Intimai thickenings appeared within a week after injury and many cells in these thickenings showed intense IGF-I immunoreactivity as did the covering endothelial cells. Smooth muscle cells in the media were generally immunonegative during control conditions and after endothelial denudation. Spontaneously hypertensive rats (SHR) showed, similarly to their matched controls (WKY), approximately the same patterns of IGF-I immunoreactivity in their endothelial cells both under normal conditions and after injury. It is concluded that IGF-I is likely to be involved in the repair of the intima in injured arteries.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号