首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
We have mapped the positions in a ∼1.4-Mb region of genomic DNA around the human hprt gene which are accessible in vivo to cleavage by topoisomerase II associated with the nuclear matrix. These positions, which are interpreted as the boundaries of DNA loop domains, were mapped in K562 cells by examining the truncation of rare-cutter restriction fragments separated by pulsed field gel electrophoresis after topoisomerase II-mediated cleavage, using seven linked markers mapped in this region as probes for indirect end-labeling. Eleven cleavage positions were detected and were interpreted as defining ten loop domains of lengths between 70 and 210 kb (average ∼135 kb); the hprt gene resides in a 150-kb loop domain. Loop domain boundaries coincided with three of the fifteen deletion breakpoints mapped in a 600-kb sector of this region in human lymphocytes, within the limits of resolution of pulsed field gel electrophoresis; this correlation was not statistically significant. Received: 14 June 1998 / Accepted: 4 September 1998  相似文献   

2.
The human DNA replication origin, located in the lamin B2 gene, interacts with the DNA topoisomerases I and II in a cell cycle-modulated manner. The topoisomerases interact in vivo and in vitro with precise bonds ahead of the start sites of bidirectional replication, within the pre-replicative complex region; topoisomerase I is bound in M, early G1 and G1/S border and topoisomerase II in M and the middle of G1. The Orc2 protein competes for the same sites of the origin bound by either topoisomerase in different moments of the cell cycle; furthermore, it interacts on the DNA with topoisomerase II during the assembly of the pre-replicative complex and with DNA-bound topoisomerase I at the G1/S border. Inhibition of topoisomerase I activity abolishes origin firing. Thus, the two topoisomerases are closely associated with the replicative complexes, and DNA topology plays an essential functional role in origin activation.  相似文献   

3.
We have found and characterized an unusual extended area of DNA association with the nuclear matrix in the human dystrophin gene. This extended DNA loop anchorage region (LAR) has been mapped and characterized using a variety of biochemical and microscopy techniques. It spans approximately 200 kbp at chromosomal locations 950-1,150 Kb downstream to the beginning of the first exon of the dystrophin gene Dp427m and covers a part of the intron 43, exon 44, and most of intron 44. The extended LAR harbors the major recombination hot spot of the dystrophin gene and a replication origin. We propose a model where DNA topoisomerase II-mediated cleavage at the nuclear matrix may enhance recombination events within this extended LAR.  相似文献   

4.
Initiation of DNA replication involves the ordered assembly of the multi-protein pre-replicative complex (pre-RC) during G1 phase. Previously, DNA topoisomerase II (topo II) was shown to associate with the DNA replication origin located in the lamin B2 gene locus in a cell-cycle-modulated manner. Here we report that activation of both the early-firing lamin B2 and the late-firing hOrs8 human replication origins involves DNA topo II-dependent, transient, site-specific dsDNA-break formation. Topo IIβ in complex with the DNA repair protein Ku associates in vivo and in vitro with the pre-RC region, introducing dsDNA breaks in a biphasic manner, during early and mid-G1 phase. Inhibition of topo II activity interferes with the pre-RC assembly resulting in prolonged G1 phase. The data mechanistically link DNA topo IIβ-dependent dsDNA breaks and the components of the DNA repair machinery with the initiation of DNA replication and suggest an important role for DNA topology in origin activation.  相似文献   

5.
In the past, a highly sensitive and efficient method was developed to map DNA replication origins in human cells, based on quantitative PCR performed on nascent DNA samples. This method allowed the identification of a replication origin in the myeloid HL-60 cell line, located on chromosome 19 within an approximately 500 bp segment near the lamin B2 gene [Giacca et al. (1994) Proc. Natl. Acad. Sci. USA, 91, 7119]. The same procedure has now been further simplified and extended to a variety of other exponentially growing human cells of different histological derivation (three neural, one connectival and one epithelial), with a nearly diploid chromosomal content. In all the six cell lines tested, the origin activity within the lamin B2 gene domain was localized to the same region. Furthermore, the lamin B2 origin was also found to be active in stimulated, but not in quiescent, peripheral blood lymphocytes.  相似文献   

6.
The recently developed procedure of chromosomal DNA loop excision by topoisomerase II-mediated DNA cleavage at matrix attachment sites (S. V. Razin, R. Hancock, O. Iarovaia, O. Westergaard, I. Gromova, and G. P. Georgiev, Cold Spring Harbor Symp. Quant. Biol. 58:25-35, 1993; I. I. Gromova, B. Thompsen, and S. V. Razin, Proc. Natl. Acad. Sci. USA 92:102-106, 1995) has been employed for mapping the DNA loop anchorage sites in a 500-kb region of the Drosophila melanogaster X chromosome. Eleven anchorage sites delimiting 10 DNA loops ranging in size from 20 to 90 kb were found within this region. Ten of these 11 anchorage sites colocalize with previously mapped scaffold attachment regions. However, a number of other scaffold attachment regions are found to be located in loop DNA.  相似文献   

7.
Hybridization with an oligonucleotide array was used to map the regions of DNA anchorage to the nuclear matrix. Matrix-associated DNA served as a hybridization probe. To obtain the oligonucleotide array, 60-mer oligonucleotides regularly distributed throughout the genome region of interest at 2-kb intervals were immobilized on a nylon filter. The organization of DNA into loop domains was studied in a 100-kb region of chicken chromosome 16, including the α -globin gene cluster. A 40-kb DNA loop, which was fixed to the nuclear matrix and harbored all α-globin genes, was observed in erythroid cells. One of its anchorage regions colocalized with matrix associated region (MAR) and an insulator found previously in the 5′ region of the chicken α-globin gene domain. The spatial (domain-loop) organization of the α-globin gene cluster in lymphoid cells proved to be strikingly different from that in erythroid cells.  相似文献   

8.
The juxtaposition of intracellular DNA segments, together with the DNA‐passage activity of topoisomerase II, leads to the formation of DNA knots and interlinks, which jeopardize chromatin structure and gene expression. Recent studies in budding yeast have shown that some mechanism minimizes the knotting probability of intracellular DNA. Here, we tested whether this is achieved via the intrinsic capacity of topoisomerase II for simplifying the equilibrium topology of DNA; or whether it is mediated by SMC (structural maintenance of chromosomes) protein complexes like condensin or cohesin, whose capacity to extrude DNA loops could enforce dissolution of DNA knots by topoisomerase II. We show that the low knotting probability of DNA does not depend on the simplification capacity of topoisomerase II nor on the activities of cohesin or Smc5/6 complexes. However, inactivation of condensin increases the occurrence of DNA knots throughout the cell cycle. These results suggest an in vivo role for the DNA loop extrusion activity of condensin and may explain why condensin disruption produces a variety of alterations in interphase chromatin, in addition to persistent sister chromatid interlinks in mitotic chromatin.  相似文献   

9.
P N Cockerill  W T Garrard 《Cell》1986,44(2):273-282
Introduction of torsional stress into active chromatin domains requires that linear DNA molecules be anchored in vivo to impede free rotation. While searching for these anchorage elements, we have localized a nuclear matrix association region (MAR) within the mouse immunoglobulin kappa gene that contains two topoisomerase II sites and is adjacent to the tissue-specific enhancer. The same matrix contact occurs when the kappa locus is in germ-line (inactive) or rear-ranged (transcribed) configurations. This constitutive anchorage site partitions the gene into V-J and C region chromatin domains. We demonstrate that at least 10,000 similar and evolutionarily conserved MAR binding sites exist in the nucleus. We propose that these sites, in association with topoisomerase II and possibly in conjunction with enhancers, play fundamental roles in the functional organization of chromatin loop domains.  相似文献   

10.
Modular structure of the human lamin B2 replicator   总被引:6,自引:0,他引:6       下载免费PDF全文
The cis-acting elements necessary for the activity of DNA replication origins in metazoan cells are still poorly understood. Here we report a thorough characterization of the DNA sequence requirements of the origin associated with the human lamin B2 gene. A 1.2-kb DNA segment, comprising the start site of DNA replication and located within a large protein-bound region, as well as a CpG island, displays origin activity when moved to different ectopic positions. Genomic footprinting analysis of both the endogenous and the ectopic origins indicates that the large protein complex is assembled in both cases around the replication start site. Replacement of this footprinted region with an unrelated sequence, maintaining the CpG island intact, abolishes origin activity and the interaction with hORC2, a subunit of the origin recognition complex. Conversely, the replacement of 17 bp within the protected region reduces the extension of the protection without affecting the interaction with hORC2. This substitution does not abolish the origin activity but makes it more sensitive to the integration site. Finally, the nearby CpG island positively affects the efficiency of initiation. This analysis reveals the modular structure of the lamin B2 origin and supports the idea that sequence elements close to the replication start site play an important role in origin activation.  相似文献   

11.
The role of nuclear lamins in DNA replication is unclear. To address this, nuclei were assembled in Xenopus extracts containing AraC, a reversible inhibitor that blocks near the onset of the elongation phase of replication. Dominant-negative lamin mutants lacking their NH(2)-terminal domains were added to assembled nuclei to disrupt lamin organization. This prevented the resumption of DNA replication after the release of the AraC block. This inhibition of replication was not due to gross disruption of nuclear envelope structure and function. The organization of initiation factors was not altered by lamin disruption, and nuclei resumed replication when transferred to extracts treated with CIP, an inhibitor of the cyclin-dependent kinase (cdk) 2-dependent step of initiation. This suggests that alteration of lamin organization does not affect the initiation phase of DNA replication. Instead, we find that disruption of lamin organization inhibited chain elongation in a dose-dependent fashion. Furthermore, the established organization of two elongation factors, proliferating cell nuclear antigen, and replication factor complex, was disrupted by DeltaNLA. These findings demonstrate that lamin organization must be maintained in nuclei for the elongation phase of DNA replication to proceed.  相似文献   

12.
A hypothesis has been proposed that the regions of DNA loop anchorage to the nuclear matrix are the preferential sites (hot spots) of illegitimate recombination mediated or triggered by topoisomerase II of the nuclear matrix. Recombination between the regions of DNA loop anchorage to the nuclear matrix may result in deletion or repositioning of DNA loops or their groups. The proposed hypothesis is confirmed by the results of original experiments and published data obtained by other researchers.__________Translated from Molekulyarnaya Biologiya, Vol. 39, No. 4, 2005, pp. 633–638.Original Russian Text Copyright © 2005 by Razin, Iarovaia.  相似文献   

13.
14.
15.
16.
The nuclear matrix is thought to be responsible for DNA organization, DNA replication, RNA synthesis, and RNA processing. We have looked for the presence of nuclear matrix antigens during early mouse embryogenesis. Antibodies to peripheral and interior antigens (P1, Pl1, Pl2, and lamin B) were used to immunolocalize nuclear matrix antigens in germinal vesicle oocytes, metaphase II oocytes, zygotes, two-cell-stage embryos, and eight-cell stage embryos. All antibodies reacted with the nuclei of germinal vesicle oocytes, and two- and eight-cell-stage embryos; however, only P1 and lamin B were present at the pronuclear stage. In eggs collected at the pronuclear stage and cultured to the late two-cell stage in the presence of alpha-amanitin, the matrix morphology was altered for Pl1 and Pl2. alpha-Amanitin had no affect on the distribution of P1 or lamin B antigens. If alpha-amanitin was added 2 hr after cleavage to the two-cell stage, the normal staining pattern of Pl2 was retained. These results suggest that the presence of specific components of an internal matrix is correlated with normal genomic activity.  相似文献   

17.
We suggest a hypothesis postulating that sites of DNA loop anchorage to the nuclear matrix harbor "hot spots" of illegitimate recombination which is mediated or triggered by topoisomerase II of the nuclear matrix. Recombination between DNA loop anchorage sites may result in deletion and/or repositioning of DNA loops and loop oligomers. This hypothesis is corroborated by our own results and published results of other research groups.  相似文献   

18.
19.
We have investigated the possible relationship between replicons and chromatin loops during Xenopus development. In early embryos, replication of the ribosomal RNA genes (rDNA) can initiate at apparently any sequence. Nevertheless, the need for a regular spacing of replication origins suggests that some periodic chromatin folding might dictate which sites are actually used for initiation. After the midblastula transition, replication initiation is restricted to the rDNA intergenic spacers. A remodeling of chromatin folding could account for this change in origin usage. Here, it is reported that nuclear matrix anchorage of the Xenopus rDNA occurs at multiple, apparently random sequences, throughout embryonic development as well as in adult cells. In vitro matrix rebinding assays confirmed the lack of specific anchoring sequences in the rDNA, before as well as after specific replication origins are established. Thus, no change in loop attachment sites could explain the change in origin usage at this locus. Nonspecific loop anchorage was a special feature of the rDNA locus, since the same nuclear matrices were able selectively to bind the scaffold attachment region (SAR) of the Drosophila histone gene cluster in vitro. Blastula and gastrula nuclear matrices bound a higher amount of SAR sequences than matrices from later stages or adult cells. This developmental change in SAR binding might explain the increase in size of the bulk of genomic DNA loops that occurs after the gastrula stage. However, no change in chromatin loop organization that could explain the midblastula stage transition from small to large replicons was observed. Received: 15 January 1998; in revised form: 4 March 1998 / Accepted: 9 March 1998  相似文献   

20.
The DNA replication origins of metazoan genomes are the sites of complex sequence-specific protein-DNA interactions determining their precise cycle of activation and deactivation, once only along each cell cycle. Some of the involved proteins have been identified (and particularly the essential six-protein Origin Recognition complex, ORC) thanks to their homology with the proteins identified in yeast. Whereas in the latter organism ORC has a specific affinity for an origin consensus, metazoan (and human) ORC shows no sequence specificity and no origin consensus is identifiable in their genomes. The modulation of topology around the origin sequence plays an essential role in the function of the human lamin B2 origin and the two topoisomerases interact specifically with it in a cell-cycle modulated way. The two enzymes are never present on the origin at the same time and compete, in different moments of the cell cycle, with the ORC2 subunit for the same sites in the origin area. The topoisomerases could give essential contributions to origin definition, as demonstrated by their capacity to bind specifically, in vitro the lamin B2 origin, either alone (topoisomerase I) or in a multi-protein complex (topoisomerase II). They also play critical roles in the origin activation-deactivation cycle, topoisomerase II probably contributing to attain and/or maintain a topological status fit for pre-replicative complex assembly and topoisomerase I allowing the topological adaptations necessary for initiation of bi-directional synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号