首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims: The objective was to study the response of Cronobacter sakazakii ATCC 29544 cells to heat, pulsed electric fields (PEF), ultrasound under pressure (Manosonication, MS) and ultraviolet light (UV‐C) treatments after exposure to different sublethal stresses that may be encountered in food‐processing environments. Methods and Results: Cronobacter sakazakii stationary growth‐phase cells (30°C, 24 h) were exposed to acid (pH 4·5, 1 h), alkaline (pH 9·0, 1 h), osmotic (5% NaCl, 1 h), oxidative (0·5 mmol l?1 H2O2, 1 h), heat (47·5°C, 1 h) and cold (4°C, 4 h) stress conditions and subjected to the subsequent challenges: heat (60°C), PEF (25 kV cm?1, 35°C), MS (117 μm, 200 kPa, 35°C) and UV‐C light (88·55 mW cm?2, 25°C) treatments. The inactivation kinetics of Csakazakii by the different technologies did not change after exposure to any of the stresses. The combinations of sublethal stress and lethal treatment that were protective were: heat shock–heat, heat shock–PEF and acid pH–PEF. Conversely, the alkaline shock sensitized the cells to heat and UV‐C treatments, the osmotic shock to heat treatments and the oxidative shock to UV‐C treatments. The maximum adaptive response was observed when heat‐shocked cells were subjected to a heat treatment, increasing the time to inactivate 99·9% of the population by 1·6 times. Conclusions: Cronobacter sakazakii resistance to thermal and nonthermal preservation technologies can increase or decrease as a consequence of previous exposure to stressing conditions. Significance and Impact of the Study: The results help in understanding the physiology of the resistance of this emerging pathogen to traditional and novel preservation technologies.  相似文献   

2.
Aim: To explore whether ultraviolet (UV) light treatment within a closed circulating and filtered water drainage system can kill plant pathogenic species. Methods and Results: Ultraviolet experiments at 254 nm were conducted to determine the inactivation coefficients for seven plant pathogenic species. At 200 mJ cm?2, the individual species log reductions obtained for six Ascomycete fungi and a cereal virus were as follows: Leptosphaeria maculans (9·9‐log), Leptosphaeria biglobosa (7·1‐log), Barley stripe mosaic virus (BSMV) (4·1‐log), Mycosphaerella graminicola (2·9‐log), Fusarium culmorum (1·2‐log), Fusarium graminearum (0·6‐log) and Magnaporthe oryzae (0·3‐log). Dilution experiments showed that BSMV was rendered noninfectious when diluted to >1/512. Follow‐up large‐scale experiments using up to 400 l of microbiologically contaminated waste water revealed that the filtration of drainage water followed by UV treatment could successfully be used to inactivate several plant pathogens. Conclusions: By combining sedimentation, filtration and UV irradiation within a closed system, plant pathogens can be successfully removed from collected drainage water. Significance and Impact of the Study: Ultraviolet irradiation is a relatively low cost, energy efficient and labour nonintensive method to decontaminate water arising from a suite of higher biological containment level laboratories and plant growth rooms where genetically modified and/or quarantine fungal and viral plant pathogenic organisms are being used for research purposes.  相似文献   

3.
Spondias L. comprises at least nine Neotropical species, including the widely cultivated S. monbim and S. tuberosa. Umbu‐cajá, a putative hybrid between these two species, is also grown. In this paper, the karyotypes of five Spondias species and Umbu‐cajá were analysed for evidence of this hybridization. Chromosome banding with chromomycin A3 and the distribution of 5S and 45S rDNA sites were used to characterize the plants, also genomic in situ hybridization using nuclear DNA from both putative parents and the hybrid as probes. All material presented the same chromosome number (2n = 32) and morphology, but differed in the number and distribution of bands. Spondias monbim and S. tuberosa, the supposed relatives of Umbu‐cajá, displayed similar banding patterns, with five to six chromosome pairs having terminal bands, whereas Umbu‐cajá exhibited bands on both members of nine chromosome pairs. The three other species, S. venulosa, S. cytherea and S. purpurea, showed less closely related karyotypes, with bands in 12–18 chromosome pairs. In situ hybridization with 5S and 45S rDNA probes revealed one site of each probe per haploid chromosome complement in all material. However, in S. tuberosa, the location of 5S rDNA was different from the other species and found no counterpart in Umbu‐cajá. Several tests with total DNA from S. mombin and S. tuberosa against metaphase chromosomes of Umbu‐cajá failed to differentiate the individual genomes in the hybrid. From the chromosome banding and the distribution of rDNA sites, as well as from the genomic in situ hybridization, it seems clear that Umbu‐cajá is related closely to S. monbim and S. tuberosa, but it is karyotypically homozygous and distinct from theses other species. Karyotypically, the three other investigated species were related less closely to Umbu‐cajá. © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society, 2007, 155 , 541–547.  相似文献   

4.
DNA endoreduplication in Zea mays L. (cv. A619 × W64A) endosperm peaks between 16 and 18 d after pollination (DAP). The physiological function of DNA endoreduplication is not known but it is believed to be important in maize kernel development. In the present study, we investigated how 2, 4 or 6 d of high temperature (35 °C) affected DNA endoreduplication and maize kernel development in comparison with control kernels grown at 25 °C. Data were collected on fresh weight (FW), nuclei number, mitotic index, and DNA endoreduplication. Maize endosperm FW and nuclei number were reduced by exposure to 4 or 6 d of high temperature. At 18 DAP, the 2 d high temperature treatment (HTT) caused a reduction in FW and nuclei number, but had no effect on DNA endoreduplication and average DNA content per endosperm. However, when the exposure to high temperature was increased to 4 or 6 d, FW, nuclei number and the magnitude of DNA endoreduplication were progressively reduced, and the peak mitotic index was delayed compared with the control endosperm. At 18 DAP, the 4 d treatment showed 54·7% of the cells were 3 or 6 C, whereas only 41·2% were 12 C or higher. Six days of high temperature also resulted in a reduction in endosperm FW, nuclei number and a delay in the peak of mitotic index. DNA endoreduplication occurred in the kernels exposed to this treatment, although the magnitude was severely reduced compared with the control kernels. Nuclear DNA content was highly correlated (r = 0·93) with kernel FW, suggesting an important role of DNA endoreduplication in determining endosperm FW. The data suggest that high temperature during endosperm cell division exerted negative effects on DNA endoreduplication by dramatically reducing the nuclei number, leaving fewer nuclei available for DNA endoreduplication. However, the data also suggest that prolonged exposure to high temperature restricts entry of mitotic cells into the endoreduplication phase of the cell cycle.  相似文献   

5.
Responses to the ionotropic glutamate receptor agonist kainate were measured in Retzius cells (RCs) of intact segmental ganglia (in situ), acutely isolated RCs, and cultured RCs (in vitro) of the leech Hirudo medicinalis. RCs in intact ganglia responded to kainate (5–20 μM) with depolarizations up to 30 mV or with an inward current under voltage-clamp that reversed near -10 mV. The membrane conductance increased by a factor of 2.5 at a holding potential of -70 mV in the presence of 20 μM kainate. In RCs in situ the membrane responses to 5 μM kainate increased when applied repeatedly 3-5 times. After this potentiation, the amplitude and time course of the membrane responses to 5 μM kainate were similar to the membrane response to 20 μM kainate. In current-clamp experiments kainate evoked an increase in intracellular calcium concentrations ([Ca2+]¡) only when the membrane depolarized beyond -40 mV. In voltage-clamped RCs at a holding potential of -70 mV, kainate caused no significant rise in [Ca2+]¡, indicating that the Ca2+ permeability of these kainate-gated ion channels appears to be negligible. The potentiation of the kainate-induced responses in RCs in situ was also present in voltage-clamped cells, where no or only small changes in [Ca2+]¡ occurred, suggesting that the underlying mechanism seemed to be independent of intracellular Ca2+ changes. In addition, the potentiation of the kainate-induced membrane responses was unaffected by cyclothiazide (100 μM), concanavalin A (0.5 mg/mL), and in the presence of extracellular low-Ca2+ and high-Mg2+ concentrations to suppress synaptic transmission in the ganglion. During whole-cell patch-clamp recordings (up to 50 min) potentiation remained the same indicating that small intracellular messenger molecules, which would be expected to dissipate, were not likely to be involved in mediating this potentiation. In acutely isolated RCs kainate induced no or only very small voltage responses. A potentiation of the kainate response was never observed in acutely isolated RCs. In cultured RCs (2–7 days in vitro) kainate evoked membrane responses with no apparent potentiation. Cultured RCs also responded with Ca2+ transients only when depolarized beyond -40 mV. The results show that RCs respond differently to kainate when kept isolated in culture compared to RCs in intact ganglia. The mechanism underlying the potentiation of the kainate response of RCs in situ, however, could not yet be identified. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
Two L5178Y (LY) murine lymphoma cell sublines, LY-R, resistant, and LY-S, sensitive, to X-irradiation display inverse cross-sensitivity to camptothecin (CPT): LY-R cells were more susceptible to this specific topoisomerase I inhibitor than LY-S cells. After 1 h incubation with CPT, the doses that inhibited growth by 50 per cent (ID50) after 48 h of incubation were 0·54μM for LY-R cells and 1·25 μM for LY-S cells. Initial numbers of DNA–protein crosslinks (DPCs) measured at this level of growth inhibition were two-fold higher in LY-R (5·6 Gray-equivalents) than in LY-S cells (3·1 Gray-equivalents), which corresponds well with the greater in vitro sensitivity of Topo I from LY-R cells to CPT.1,2 Conversely, the initial levels of single-strand DNA breaks (SSBs) and double-strand DNA breaks (DSBs) were lower in LY-R cells (4·2 Gray-equivalent SSBs and 5·8 Gray equivalent DSBs) than in LY-S cells (8·0 Gray-equivalent SSBs and 12·0 Gray-equivalent DSBs). Dissimilarity in the replication-dependent DNA damage observed after 1 h of treatment with CPT was not due to a difference in the rate of DNA synthesis between the two cell lines, but may have arisen from a substantially slower repair of DNA breaks in LY-S cells.3 Release from G2 block by caffeine co-treatment significantly increased cell killing in the LY-S subline, and only slightly inhibited growth of LY-R cells. These results show that after CPT treatment cells arrest in G2, allowing them time to repair the long-lived DSBs. As LY-S cells are slower in repairing the DSBs, they were more susceptible to CPT in the presence of caffeine.  相似文献   

7.
The in vitro proliferation kinetics of a cell line derived from a patient with American Burkitt's lymphoma were investigated at three different growth phases: lag (day 1), exponential (day 3) and plateau (day 5). The growth curve, labeling and mitotic indices, percentage labeled mitosis (PLM) curves and DNA content distributions were determined. The data obtained have been analysed by the previously developed discrete-time kinetic (DTK) model by which a time course of DNA distributions during a 10-day growth period was characterized in terms of other cell kinetic parameters. The mean cell cycle times, initially estimated from PLM curves on days 1, 3 and 5, were further analysed by the DTK model of DNA distributions and subsequently the mean cell cycle times with respect to DNA distributions during the entire growth period were determined. The doubling times were 39·6, 31·2 and 67·2 hr, respectively, at days 1, 3 and 5. The mean cell cycle time increased from 23·0 to 37·7 hr from day 3 to day 5 mainly due to an elongation of the G1 and G2 phases. A slight increase in the cell loss rate from 0·0077 to 0·0081 fraction/hr was accompanied by a decrease in the cell production rate from 0·0299 to 0·0184 fraction/hr. This calculated cell loss rate correlated significantly with the number of dead cells determined by trypan blue exclusion. Analysis of the number of dead cells in relation to the cell cycle stage revealed that a majority of cell death occurred in G1 (r= 0·908; P < 0·0001). There was a good correlation between the in vitro proliferation kinetics at plateau phase of this Burkitt's lymphoma derived cell line and the in vivo proliferation kinetics of African Burkitt's lymphoma (Iversen et al., 1974), suggesting the potential utility of information obtained by in vitro kinetic studies.  相似文献   

8.
Summary— In the sperm nuclei the DNA is packaged into a highly condensed form and is not organized into nucleosome and solenoid but is bound and stabilized mainly by the protamines that arrange the DNA in an almost crystalline state. As demonstrated for somatic cells, the sperm DNA has been reported to be organized in loop domains attached to the nuclear matrix structures. However, the possible role of the sperm head matrix in maintaining the loop organization in absence of a typical nucleosomal structures has not been fully elucidated. By using in situ nick translation at confocal and electron microscope level, we analyzed the organization of the DNAprotamine complex and its association with the sperm nuclear matrix. The data obtained indicate that the chromatin organization in sperm nuclei is maintained during the sperm condensation by means of interactions with the nuclear matrix at fixed sites. The fine stucture of sperm nucleus and of sperm nuclear matrix, investigated on sections and replicas of freeze-fractured specimens, suggests that the lamellar array, observed by freeze-fracturing in the sperm nuclei, could depend on the inner matrix which presents a regular organization of globular structures possibly involved in the maintenance of chromatin domains in highly condensed sperm nuclei also.  相似文献   

9.
The objective of this study was to determine the effect of freezing on the function in Atlantic salmon Salmo salar spermatozoa. The semen was frozen in Cortland's medium + 1.3M dimethyl sulphoxide + 0.3M glucose + 2% bovine serum albumin (final concentration) in a ratio of 1:3 (semen:cryoprotectant) as the treatment (T) and fresh semen as the control (F). Straws of 0·5 ml of sperm suspension were frozen in 4 cm of N2L. They were thawed in a thermoregulated bath (40° C). After thawing, the percentage of spermatozoa with fragmented DNA [transferase dUTP (deoxyuridine triphosphate) nick‐end labelling (TUNEL)], plasma membrane integrity (SYBR‐14/PI) and mitochondrial membrane potential (ΔΨMMit, JC‐1) were evaluated by flow cytometry and motility was evaluated by optical microscope under stroboscopic light. The fertilization rates of the control and treatment semen were tested at a sperm density of 1·5 × 107 spermatozoa oocyte?1, by observation of the first cleavages after 16 h incubation at 10° C. In the cryopreserved semen (T), the mean ± s.d . DNA fragmentation was 4·8 ± 2·5%; plasma membrane integrity 75·2 ± 6·3%; mitochondrial membrane potential 51·7 ± 3·6%; motility 58·5 ± 5·3%; curved line velocity (VCL) 61·2 ± 17·4 µm s?1; average‐path velocity (VAP) 50·1 ± 17·3 µm s?1; straight‐line velocity (VSL) 59·1 ± 18·4 µm s?1; fertilization rate 81·6 ± 1·9%. There were significant differences in the plasma membrane integrity, mitochondrial membrane potential, motility, fertilization rate, VCL, VAP and VSL compared with the controls (P < 0·05). Also the mitochondrial membrane potential correlated with motility, fertilization rate, VCL and VSL (r = 0·75; r = 0·59; r = 0·77 and r = 0·79, respectively; P < 0·05); and the fertilization rate correlated with VCL and VSL (r = 0·59 and r = 0·55, respectively).  相似文献   

10.
Chromosome number variations play an important role in the genus Medicago. In addition to polyploidy there are cases of dysploidy as evidenced by two basic numbers, x = 8 and x = 7, the latter limited to five annual species having 2n = 14. Annuals are diploid with the exception of Medicago scutellata and Medicago rugosa which have 2n = 30 and are considered the result of crosses between the 2n = 16 and 2n = 14 species. However, this hypothesis has never been tested. This study was carried out to investigate the 2n = 14 and 2n = 30 karyotypes and verify the allopolyploid origin of M. scutellata and M. rugosa. Fluorescence in situ hybridization (FISH) of rDNA probes and genomic in situ hybridization (GISH) were performed. FISH showed that all five diploids with 2n = 14 have one pair of 45S and one pair of 5S rDNA sites. M. scutellata displayed four sites of 45S and four sites of 5S rDNA, while in M. rugosa only one pair of each of these sites was found. GISH did not produce signals useful to identify the presumed progenitors with 14 chromosomes. This result suggests alternative evolutionary pathways, such as the formation of tetraploids (2n = 32) and subsequent dysploidy events leading to the chromosome number reduction.  相似文献   

11.
The K14‐SCF transgenic murine model of variant pigmentation is based on epidermal expression of stem cell factor (SCF) on the C57BL/6J background. In this system, constitutive expression of SCF by epidermal keratinocytes results in retention of melanocytes in the interfollicular basal layer and pigmentation of the epidermis itself. Here, we extend this animal model by developing a compound mutant transgenic amelanotic animal defective at both the melanocortin 1 receptor (Mc1r) and tyrosinase (Tyr) loci. In the presence of K14‐Scf, tyrosinase‐mutant animals (previously thought incapable of synthesizing melanin) exhibited progressive robust epidermal pigmentation with age in the ears and tails. Furthermore, K14‐SCF Tyrc2j/c2j animals demonstrated tyrosinase expression and enzymatic activity, suggesting that the c2j Tyr defect can be rescued in part by SCF in the ears and tail. Lastly, UV sensitivity of K14‐Scf congenic animals depended mainly on the amount of eumelanin present in the skin. These findings suggest that c‐kit signaling can overcome the c2j Tyr mutation in the ears and tails of aging animals and that UV resistance depends on accumulation of epidermal eumelanin.  相似文献   

12.
This study was carried out to develop a rapid and simultaneous detection system of chromosome Y- and 1-bearing porcine spermatozoa by fluorescence in situ hybridization (FISH). Chromosome Y- and 1-specific DNA probes were produced by polymerase chain reaction with digoxigenin (Dig)- or biotin-dUTP. The hybridization probe mixture of labeled Y-chromosome and chromosome 1-specific DNA was applied to the preparation, immediately denatured at 75°C for 8 min, hybridized for 5 min at 37°C and overall FISH steps were done within a few hours. When double FISH with Dig-labeled chromosome Y-specific and biotin-labeled chromosome 1-specific probes was applied to sperm nuclei pretreated with dithiothreitol, the average of 50.9% of sperm nuclei had the Dig-signal, 99.2% of the sperm nuclei had the biotin-signal and the average of 0.3% of sperm nuclei showed no signal. The putative rate of Y-bearing spermatozoa ranged from 49.8% to 52.8% among 5 boars and the average putative rate of Y-bearing spermatozoa was 51.0%. The results indicated that a rapid and simultaneous FISH with chromosome Y- and 1-specific porcine DNA probes produced by PCR made possible more accurate assessment of Y-bearing porcine spermatozoa. © 1996 Wiley-Liss, Inc.  相似文献   

13.
—Cell nuclei were isolated from four regions of the brains of ovariectomized female rats 2 hr after the injection of [3H]oestradiol. By light microscopy, the nuclear pellets contained highly purified nuclei of neuronal and glial cells with little cytoplasmic contamination. Tritium was concentrated in cell nuclei from the preoptic-hypothalamic area, to a lesser extent in nuclei from the amygdaloid region and hippocampus, and least of all in cerebral cortical nuclei. In comparison with whole homogenates (= 1-0), the nuclear concentrations of radioactivity were 12·9, 4·7, 1·9 and 0·8, respectively. Approximately 40 per cent of the radioactivity in homogenates of the preoptic-hypothalamic area was present in cell nuclei, and upon TLC more than 85 per cent of the radioactive material in the nuclei exhibited the RF of oestradiol-17β. Pretreatment of ovariectomized females with 1 mg of unlabelled oestradiol 30 min before the injection of labelled hormone abolished the nuclear uptake of [3H]oestradiol in all four regions of the brain. A concurrent injection of 10 μg of unlabelled oestradiol-17β significantly reduced nuclear uptake, while a similar injection of testosterone or oestradiol-17α had no significant effect. One mg of oestradiol-17α, but not testosterone, did reduce nuclear uptake. The retention of [3H]oestradiol by the preoptic-hypothalamic area decreased exponentially in the tissue from 30 min to 4 h after an intraperitoneal injection; however, nuclear binding reached a peak at 1-2 h and still showed high retention at 4 h. These results, together with observations in other laboratories of morphological changes induced by oestrogens, establish that certain regions of the brain are bona fide targets for the action of oestradiol.  相似文献   

14.
Lactose monolaurate (LML) was previously found to be an antimicrobial against Listeria monocytogenes in culture medium at concentrations between 3 and 5 mg ml?1. In this study, the microbial inhibitory activity of LML in dairy products inoculated with a 5‐strain cocktail of clinical isolates of L. monocytogenes was investigated. Addition of LML at a concentration of 5 mg ml?1 resulted in 4·4, 4·0 and 4·2 log reductions in 0·5% fat, 1% fat and 3·25% fat milks, respectively; 4·1, 4·4, and 3·5 log reductions in nonfat, 1% fat, and 1·5% fat yogurts, respectively; and 4·0 log reductions in both nonfat and 2% fat cottage cheese. The inhibitory effect of LML was only observed at 37°C and not 5°C. Experiments suggest that both the lauric acid and the esterified lactose moiety of LML play roles in the growth inhibition.

Significance and Impact of the Study

A novel sugar ester, lactose monolaurate, inhibited the growth of a five‐strain cocktail of Listeria monocytogenes in milk, yogurt and cottage cheese. This is the first report of the use of a sugar ester to inhibit the growth of Listeria in food systems.  相似文献   

15.
Aims: To evaluate the efficacy of ultraviolet (UV) light (254 nm) combined with hydrogen peroxide (H2O2) to inactivate bacteria on and within fresh produce. Methods and Results: The produce was steep inoculated in bacterial cell suspension followed by vacuum infiltration. The inoculated samples were sprayed with H2O2 under constant UV illumination. The log count reduction (LCR) of Salmonella on and within lettuce was dependent on the H2O2 concentration, temperature and treatment time with UV intensity being less significant. By using the optimized parameters (1·5% H2O2 at 50°C, UV dose of 37·8 mJ cm?2), the surface Salmonella were reduced by 4·12 ± 0·45 and internal counts by 2·84 ± 0·34 log CFU, which was significantly higher compared with H2O2 or UV alone. Higher LCR of Escherichia coli O157:H7, Pectobacterium carotovora, Pseudomonas fluorescens and Salmonella were achieved on leafy vegetables compared with produce, such as cauliflower. In all cases, the surface LCR were significantly higher compared with the samples treated with 200 ppm hypochlorite. UV–H2O2‐treated lettuce did not develop brown discolouration during storage but growth of residual survivors occurred with samples held at 25°C. Conclusions: UV–H2O2 reduce the bacterial populations on and within fresh produce without affecting the shelf‐life stability. Significance of the Study: UV–H2O2 represent an alternative to hypochlorite washes to decontaminate fresh produce.  相似文献   

16.
Seed dressings with Vitavax—75 % w.p.—eliminated Ustilago nuda in spring barley seeds and greatly reduced infection due to U. tritici in winter wheat. Emergence and yield of these crops were not adversely affected. Seed soak treatments including 0·2 % aqueous Vitavax for 6 h at 30 °C (wheat and barley), 0·2% thiram for 24 h at 30 °C (barley) and 0·2% Vitavax for 1 h at 30 °C (barley) also rid the seeds of infection. In other tests with barley 2 h soaks in 0·2 % aqueous suspensions of Vitavax at 30 °C gave equivalent control to 12 h soaks in 0·2% thiram at 30 °C.  相似文献   

17.
The aim of the study was to determine the effects of different heat-processing methods of flaxseed on the in situ effective dry matter degradability (EDMD) and the in situ effective crude protein degradability (ECPD). The treatments included roasting, steep roasting, rolled roasting, rolled steep roasting, microwave irradiation and extrusion. Three rumen-fistulated sheep were used for in situ incubations. Furthermore, the effects of heat-processing methods on post-ruminal in vitro nutrient disappearance and total tract disappearance were measured by a three-step in vitro technique. The seeds were roasted and extruded at 140°C to 145°C. One lot of roasted seeds was gradually cooled for about 1 h (roasting) and another lot was held in temperature isolated barrels for 45 min (steep roasting). Moreover, roasted and steep roasted flaxseed was rolled in a roller mill. The lowest and highest EDMD was observed for unheated and extruded flaxseed, respectively (p < 0.05). The highest ECPD was observed for extruded flaxseed (p < 0.05). Roasting and microwave irradiation reduced ECPD of flaxseed (p < 0.05). In vitro post-ruminal disappearance of crude nutrients including fibre fractions was highest for rolled-roasted and rolled steep-roasted flaxseed (p < 0.05). The lowest and highest total tract disappearance rates of crude nutrients and fibre fractions were estimated for unheated and extruded flaxseed, respectively (p < 0.05). The post-ruminal disappearance of crude nutrients was also increased by roasting, in which rolling enhanced this effect. In conclusion, all investigated heat treatments had significant effects on in situ and in vitro degradability of nutrients. As well, rolling of roasted flaxseed enhanced the respective effects. Therefore, different methods of heat processing can be used to modify the feed value of flaxseed for specific purposes.  相似文献   

18.
Species of Cestrum L. (Solanaceae) exhibit large variability in the accumulation of repetitive DNA, although their species possess a stable diploid number with 2n = 16. In this study, we used chromosome banding and fluorescence in situ hybridization (FISH) to characterize the karyotypes and populations of two species, Cestrum nocturnum L. and C. mariquitense Kunth. We also performed a karyotype comparison using 16 idiograms, of which 4 were developed in this study and 12 were obtained from the literature. Cestrum nocturnum displayed more bands than C. mariquitense, but the latter exhibited greater interpopulational variation in the band patterns. There was a tendency for large bands to be located at intercalary/terminal regions and for small bands to be located at intermediate/proximal regions. The idiogram comparison revealed a large variation in the amount, distribution, and size of heterochromatic bands. FISH with rDNA probes revealed stability in the number and location of 5S sites, while 45S was more variable in size and number of sites. Although 45S rDNA always appeared in the subterminal regions, this DNA family exhibited a mobility among chromosome pairs. These data highlight the dynamic of repetitive DNA families in these genomes, as well as the contribution for intra- and interspecific karyotype differentiation in Cestrum.  相似文献   

19.
p53 is an important mediator of the cellular stress response with roles in cell cycle control, DNA repair, and apoptosis. 53BP2, a p53-interacting protein, enhances p53 transactivation, impedes cell cycle progression, and promotes apoptosis through unknown mechanisms. We now demonstrate that endogenous 53BP2 levels increase following UV irradiation induced DNA damage in a p53-independent manner. In contrast, we found that the presence of a wild-type (but not mutant) p53 gene suppressed 53BP2 steady-state levels in cell lines with defined p53 genotypes. Likewise, expression of a tetracycline-regulated wild-type p53 cDNA in p53-null fibroblasts caused a reduction in 53BP2 protein levels. However, 53BP2 levels were not reduced if the tetracycline-regulated p53 cDNA was expressed after UV damage in these cells. This suggests that UV damage activates cellular factors that can relieve the p53-mediated suppression of 53BP2 protein. To address the physiologic significance of 53BP2 induction, we utilized stable cell lines with a ponasterone A-regulated 53BP2 cDNA. Conditional expression of 53BP2 cDNA lowered the apoptotic threshold and decreased clonogenic survival following UV irradiation. Conversely, attenuation of endogenous 53BP2 induction with an antisense oligonucleotide resulted in enhanced clonogenic survival following UV irradiation. These results demonstrate that 53BP2 is a DNA damage-inducible protein that promotes DNA damage-induced apoptosis. Furthermore, 53BP2 expression is highly regulated and involves both p53-dependent and p53-independent mechanisms. Our data provide new insight into 53BP2 function and open new avenues for investigation into the cellular response to genotoxic stress.  相似文献   

20.
Topo IIα is considered an important constituent of the nuclear matrix, serving as a fastener of DNA loops to the underlying filamentous scaffolding network. To further define a mechanism of drug resistance to topo II poisons, we studied the quantity of topo IIα associated with the nuclear matrix in drug-resistant SMR16 and parental cells in the presence and absence of VP-16. Nuclear matrices were prepared from nuclei isolated in EDTA buffer, followed by nuclease digestion with DNase II in the absence of RNase treatment and extraction with 2 M NaCl. Whole-mount spreading of residual structures permits, by means of isoform-specific antibody and colloidal-gold secondary antibodies, an estimate of the amount of topo IIα in individual nuclear matrices. There are significant variations in topo IIα amounts between individual nuclear matrices due to the cell cycle distribution. The parental cell line contained eight to ten times more nuclear matrix–associated topo IIα than the resistant cell line matrices. Nuclear matrix–associated topo IIα from wild-type and resistant cell lines correlated well with the immunofluorescent staining of the enzyme in nuclei of intact cells. The amount of DNA associated with residual nuclear structures was five times greater in the resistant cell line. This quantity of DNA was not proportional to the quantity of topo IIα in the same matrix; in fact they were inversely related. In situ whole-mount nuclear matrix preparations were obtained from cells grown on grids and confirmed the results from labeling of isolated residual structures. J. Cell. Biochem. 67:112–130, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号