首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary After injection of 3H 1,25(OH)2 vitamin D3 to rats fed a vitamin D-deficient diet, nuclear concentration and retention of radioactivity exists in reticular cells of the thymus medulla and cortex, as well as outer cells of developing Hassal's corpuscles. Lymphocytes do not show nuclear concentration of radioactivity. Nuclear concentration in reticular cells is prevented by prior injection of excess 1,25(OH)2 vitamin D3. The results indicate that reticular-endothelial cells contain nuclear receptors for 1,25(OH)2 vitamin D3 and suggest that effects of 1,25(OH)2 vitamin D3 on immune response and lymphocyte differentiation are indirect and mediated through genomic modulation of reticular cell functions such as messenger secretion.  相似文献   

2.
Summary After injection of radiolabeled 1,25 (OH)2 vitamin D3, nuclear concentration of radioactivity is observed in parenchymal cells of the parathyroid gland in pregnant, adult male, and 10-day male neonatal rats. In competition studies with unlabeled 1,25 (OH)2 vitamin D3, but not with 25 (OH) vitamin D3, nuclear uptake is prevented. Experiments with 3H 25 (OH) vitamin D3, in contrast to 3H 1,25 (OH)2 vitamin D3, do not show nuclear concentration in cells of the parathyroid. The results of the autoradiographic studies suggest the presence of receptors for a direct effect of 1,25 (OH)2 vitamin D3 on the parathyroid gland for modulation of parathyroid hormone secretion.  相似文献   

3.
Summary Autoradiographic studies were conducted to identify and characterize target cells for 1,25(OH)2 vitamin D3 in the pyloric region of rats and mice. After injection of 3H 1,25(OH)2 vitamin D3, nuclear concentration of radioactivity was observed in nuclei of duodenal epithelium and certain cells of pyloric glands, while most of the epithelial cells in the pyloric and gastric glands did not show nuclear labeling. In combined immunohistochemical studies, cells in the pyloric glands that showed nuclear concentration of radioactivity, were stained in their cytoplasm with antibodies to gastrin. Also, cells of the pyloric sphincter muscle showed nuclear labeling, in contrast to cells of the duodenal muscularis, which remained unlabeled under the conditions of the experiments. The results indicate that the cells with nuclear radioactivity contain receptors for 1,25(OH)2 vitamin D3 and suggest that gastrin secretion and pyloric muscle functions are regulated by a direct action of 1,25(OH)2 vitamin D3 on these cells.  相似文献   

4.
Summary Rats and mice fed a vitamin D-deficient or vitamin D-complete diet were injected with 3H 1,25 (OH)2 vitamin D3. Autoradiograms prepared from cross sections through the neck region revealed nuclear concentration of radioactivity strongest in parathyroid chief cells, occasionally in thyroid follicular epithelial and interfollicular cells, in the epithelium of tubular remnants of the ultimobranchial body, in epithelium of the esophagus, in chondrocytes of tracheal cartilage, and in myoepithelial cells of tracheal glands. In the thyroid, most of the follicle epithelial cells did not show nuclear concentration of radioactivity which occurred only occasionally and predominantly in follicles located in marginal positions. Thyroglobulin in lumina of thyroid follicles contained varying amounts of radioactivity that correspond to the diameter of the follicles, with relatively high amounts in large follicles and little or no radioactivity in small follicles. Competition with excess of unlabeled 1,25 (OH)2 vitamin D3 abolished nuclear radioactivity, but not the radioactivity in the colloid, while 25 (OH) vitamin D3 did not affect either. When a combination of autoradiography and immunohistochemistry was applied, follicular and parafollicular C-cells positive for calcitonin antibodies, did not show nuclear concentration of radioactivity. Tubular remnants of ultimobranchial bodies, however, showed distinct nuclear labeling, but did not stain, or only weakly stain, with antibodies to calcitonin. When 3H 25 (OH) vitamin D3 was injected, no nuclear concentration of radioactivity was noted in any of the tissues.The results from these histochemical studies suggest the existence of nuclear receptors and direct genomic effects of 1,25 (OH)2 vitamin D3 in heterogeneous tissues of the neck region, which include parathyroid chief cells, myoepithelial cells of tracheal glands, chondrocytes of tracheal cartilage, epithelial cells of esophagus, and certain thyroid follicle epithelial cells. No evidence could be obtained for nuclear receptors in C-cells and cells of striated muscle.  相似文献   

5.
Summary Adult male and female mice under normal diet were injected with 3H 1,25(OH)2 vitamin D3 and sacrificed 3.5 h afterwards. Autoradiograms were prepared according to our thaw-mount technique and stained with antibodies to pituitary hormones. Thyrotropes showed strong and extensive nuclear concentration of radioactivity: about 90% of the immunostained thyrotropes were labeled. Lactotropes, somatotropes and gonadotropes showed no or only weak nuclear radioactivity: a subpopulation of 5%–10% of each of these immunostained cell types displayed nuclear labeling that was weak when compared to thyrotropes. Neural lobe pituicytes also showed weak to intermediate nuclear labeling. The results indicate a presence of nuclear receptors for 1,25(OH)2 vitamin D3 in pituitary cell types and suggest direct but differential genomic effects of 1,25(OH)2 vitamin D3 on pituitary hormone secretion. Evidence further suggests the existence of a vitamin D regulated brain-pituitary-thyroid axis.  相似文献   

6.
Summary After injection of 3H 1,25(OH)2 vitamin D3 to adult rats and mice, under normal or vitamin D deficient diet, the hormone was found to be accumulated in nuclei of neurons in certain brain regions. Nuclear concentration was prevented or diminished, when excess unlabeled 1,25 (OH)2 vitamin D3 was injected before 3H 1,25(OH)2 vitamin D3, while excess 25 (OH) vitamin D3 did not prevent nuclear labeling.Highest nuclear concentration of 3H 1,25 (OH)2 vitamin D3 is observed in certain neurons in the nucleus interstitialis striae terminalis, involving its septo-preoptic pars dorsolateralis and its anterior hypothalamic-thalamic portion, and in the nucleus centralis of the amygdala, all constituting a system of target neurons linked by a component of the stria terminalis. Nuclear concentration of 3H 1,25 (OH)2 vitamin D3 is also found in neurons in the periventricular nucleus of the preoptic-hypothalamic region, including its extensions, the parvocellular paraventricular and arcuate nucleus, in the ventromedial nucleus, supramammillary nucleus, reticular nucleus of the thalamus, ventral hippocampus, caudate nucleus, pallium, in the midbrain-pontine central gray, dorsal raphe nucleus, parabrachial nuclei, cranial motor nuclei, substantia gelatinosa of the sensory nucleus of the trigeminus, Golgi type II cells of the cerebellum, and others.The extensive distribution of target neurons suggests that 1,25(OH)2 vitamin D3 regulates the production of several aminergic and peptidergic messengers, and influences the activity of certain endocrine-autonomic, sensory and motor systems.  相似文献   

7.
8.
Structure-functional characterization of vitamin D receptor (VDR) requires identification of structurally distinct areas of VDR-ligand-binding domain (VDR-LBD) important for biological properties of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3). We hypothesized that covalent attachment of the ligand into VDR-LBD might alter ‘surface structure’ of that area influencing biological activity of the ligand. We compared anti-proliferative activity of three affinity alkylating derivatives of 1,25(OH)2D3 containing an alkylating probe at 1,3 and 11 positions. These compounds possessed high-affinity binding for VDR; and affinity labeled VDR-LBD. But, only the analog with probe at 3-position significantly altered growth in keratinocytes, compared with 1,25(OH)2D3. Molecular models of these analogs, docked inside VDR-LBD tentatively identified Ser237 (helix-3: 1,25(OH)2D3-1-BE), Cys288 (β-hairpin region: 1,25(OH)2D3-3-BE,) and Tyr295 (helix-6: 1,25(OH)2D3-11-BE,) as amino acids that are potentially modified by these reagents. Therefore, we conclude that the β-hairpin region (modified by 1,25(OH)2D3-3-BE) is most important for growth inhibition by 1,25(OH)2D3, while helices 3 and 6 are less important for such activity.  相似文献   

9.
The mechanisms that control fibroproliferation and matrix deposition in lung fibrosis remain unclear. We speculate that vitamin D deficiency may contribute to pulmonary fibrosis since vitamin D deficiency has been implicated in several diseases. First, we confirmed the presence of vitamin D receptors (VDRs) in cultured NIH/3T3 and lung fibroblasts. Fibroblasts transfected with a vitamin D response element–reporter construct and exposed to the active vitamin D metabolite, 1,25(OH)2D3, showed increased promoter activity indicating VDR functionality in these cells. Testing the effects of 1,25(OH)2D3 on fibroblasts treated with transforming growth factor β1 (TGFβ1), considered a driver of many fibrotic disorders, we found that 1,25(OH)2D3 inhibited TGFβ1-induced fibroblast proliferation in a dose-dependent fashion. 1,25(OH)2D3 also inhibited TGFβ1 stimulation of α-smooth muscle actin expression and polymerization and prevented the upregulation of fibronectin and collagen in TGFβ1-treated fibroblasts. Finally, we examined how 1,25(OH)2D3 affects epithelial–mesenchymal transformation of lung epithelial cells upon exposure to TGFβ1. We showed that the TGFβ1-induced upregulation of mesenchymal cell markers and abnormal expression of epithelial cell markers were blunted by 1,25(OH)2D3. These observations suggest that under TGFβ1 stimulation, 1,25(OH)2D3 inhibits the pro-fibrotic phenotype of lung fibroblasts and epithelial cells.  相似文献   

10.
The active form of vitamin D3, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], is a potent ligand for the nuclear receptor vitamin D receptor (VDR) and induces myeloid leukemia cell differentiation. The cardiotonic steroid bufalin enhances vitamin D-induced differentiation of leukemia cells and VDR transactivation activity. In this study, we examined the combined effects of 1,25(OH)2D3 and bufalin on differentiation and VDR target gene expression in human leukemia cells. Bufalin in combination with 1,25(OH)2D3 enhanced the expression of VDR target genes, such as CYP24A1 and cathelicidin antimicrobial peptide, and effectively induced differentiation phenotypes. An inhibitor of the Erk mitogen-activated protein (MAP) kinase pathway partially inhibited bufalin induction of VDR target gene expression. 1,25(OH)2D3 treatment induced transient nuclear expression of VDR in HL60 cells. Interestingly, bufalin enhanced 1,25(OH)2D3-induced nuclear VDR expression. The MAP kinase pathway inhibitor increased nuclear VDR expression induced by 1,25(OH)2D3 and did not change that by 1,25(OH)2D3 plus bufalin. A proteasome inhibitor also enhanced 1,25(OH)2D3-induced CYP24A1 expression and nuclear VDR expression. Bufalin-induced nuclear VDR expression was associated with histone acetylation and VDR recruitment to the CYP24A1 promoter in HL60 cells. Thus, the Na+,K+-ATPase inhibitor bufalin modulates VDR function through several mechanisms, including Erk MAP kinase activation and increased nuclear VDR expression.  相似文献   

11.
1,25-Dihydroxyvitamin D3 (1,25D) is involved in the regulation of proliferation and differentiation of a variety of cell types including cancer cells. In recent years, numerous new vitamin D3 analogs have been developed in order to obtain favorable therapeutic properties. The effects of a new 20-epi analog, CB1093 (20-epi-22-ethoxy-23-yne-24a,26a,27a-trihomo-1α,25(OH)2D3), on the proliferation and differentiation of human MG-63 osteosarcoma cell line were compared here with those of the parent compound 1,25D. Proliferation of the MG-63 cells was inhibited similarly by 22%, 50% and 59% after treatment with 0.1 μM 1,25D or CB1093 for 48 h, 96 h, and 144 h, respectively. In transfection experiments, the compounds were equipotent in stimulating reporter gene activity under the control of human osteocalcin gene promoter. In cell culture experiments, however, CB1093 was more potent than 1,25D at low concentrations and more effective for a longer period of time in activating the osteocalcin gene expression at mRNA and protein levels. Also, a 6-h pretreatment and subsequent culture for up to 120 h without 1,25D or CB1093 yielded higher osteocalcin mRNA and protein levels with analog-treated cells than with 1,25D-treated cells. The electrophoretic mobility shift assay (EMSA) revealed stronger VDR-VDRE binding with analog-treated MG-63 cells than with 1,25D-treated cells. The differences in the DNA binding of 1,25D-bound vs. analog-bound VDR, however, largely disappeared when the binding reactions were performed with recombinant hVDR and hRXRβ proteins. These results demonstrate that the new analog CB1093 was equally or even more effective than 1,25D in regulating all human osteosarcoma cell functions ranging from growth inhibition to marker gene expression and that the differences in effectivity most probably resulted from interactions of the hVDR:hRXRβ-complex with additional nuclear proteins. J. Cell. Biochem. 70:414–424, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
13.
A combination of ion microscopic and conventional radionuclide techniques was employed to investigate the temporal-spatial dynamics of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]-stimulated intestinal calcium (Ca) absorption. At varying times following the administration of a single intravenous dose of 1,25(OH)2D3, to vitamin D-deficient chicks, transepithelial transport and tissue retention of Ca were quantitated in vivo, using the ligated duodenal loop technique and47Ca as the tracer. The localization of Ca in the intestinal tissue during absorption was monitored by ion microscopy, using the stable Ca isotope,44Ca, as the absorbed species. There was little transepithelial absorption of Ca in the vitamin D-deficient animals despite a substantial tissue accumulation of luminally derived Ca, the latter localizing predominantly in the brush border region of the enterocyte, as shown by the44Ca-ion microscopic images. The early (30 min-1 h) response to 1,25(OH)2D3 was an increased tissue uptake of luminal47Ca, which also primarily associated with the brush border region, again as shown by ion microscopy. At 2–4 h after the 1,25(OH)2)D3 dose, there was a progressive redistribution of Ca from the brush border region throughout the cytoplasm and into the lamina propria. At 8–16 h,47Ca absorption was maximal and44Ca was sparsely distributed in the intestinal tissue.47Ca absorption gradually declined and reached pre-dose levels by 72 h. At this time, tissue44Ca was again largely limited to the brush border region. These results provide support for the multiple actions of 1,25(OH)2D3 on the intestinal Ca absorption  相似文献   

14.
In addition to classical roles in calcium homeostasis and bone development, 1,25 dihydroxyvitamin D3 [1,25(OH)2D3] inhibits the growth of several cancer types, including breast cancer. Although cellular effects of 1,25(OH)2D3 traditionally have been attributed to activation of a nuclear vitamin D receptor (VDR), a novel receptor for 1,25(OH)2D3 called 1,25D3-MARRS (membrane-associated, rapid response steroid-binding) protein was identified recently. The purpose of this study was to determine if the level of 1,25D3-MARRS expression modulates 1,25(OH)2D3 activity in breast cancer cells.Relative levels of 1,25D3-MARRS protein in MCF-7, MDA MB 231, and MCF-10A cells were estimated by real-time RT-PCR and Western blotting. To determine if 1,25D3-MARRS receptor was involved in the growth inhibitory effects of 1,25(OH)2D3 in MCF-7 cells, a ribozyme construct designed to knock down 1,25D3-MARRS mRNA was stably transfected into MCF-7 cells. MCF-7 clones in which 1,25D3-MARRS receptor expression was reduced showed increased sensitivity to 1,25(OH)2D3 ( IC50 56 ± 24 nM) compared to controls (319 ± 181 nM; P < 0.05). Reduction in 1,25D3-MARRS receptor lengthened the doubling time in transfectants treated with 1,25(OH)2D3. Knockdown of 1,25D3-MARRS receptor also increased the sensitivity of MCF-7 cells to the vitamin D analogs KH1060 and MC903, but not to unrelated agents (all-trans retinoic acid, paclitaxel, serum/glucose starvation, or the isoflavone, pomiferin). These results suggest that 1,25D3-MARRS receptor expression interferes with the growth inhibitory activity of 1,25(OH)2D3 in breast cancer cells, possibly through the nuclear VDR. Further research should examine the potential for pharmacological or natural agents that modify 1,25D3-MARRS expression or activity as anticancer agents.  相似文献   

15.
16.
17.
《Bone and mineral》1989,5(3):323-333
Investigation of the effects of 1,25(OH)2D3 and 24,25(OH)2D3 on the proliferation and differentiation of the human myelomonocytic cell line U937 has been complemented with studies of the effect of the same metabolites on the number of nuclear receptors for 1,25(OH)2D3. Both 1,25(OH)2D3 and 24,25(OH)2D3 inhibit the proliferation of U937 cells in a dose-dependent manner. The concentrations of 24,25(OH)2D3 required to produce this effect were 100-times greater than those of 1,25(OH)2D3. Inhibition of proliferation was associated with increased expression of the CD14 and 200 kDa 63D3 antigens thus confirming differentiation of U937 towards a more mature cell type.Studies of the nuclear receptor for 1,25(OH)2D3 showed that pre-treatment of the cells with 1,25(OH)2D3 resulted in an apparent 40% decrease in the number of detectable 1,25(OH)2D3 receptors as compared to control U937 cells. This is due to the fact that the 1,25(OH)2D3 binds to U937 cell nuclei during culture and thus blocks the subsequent binding of radiolabelled 1,25(OH)2D3 used to measure the number of 1,25(OH)2D3 receptors. Measurement of the binding of unlabelled 1,25(OH)2D3 by radioimmunoassay indicated that pre-treatment of the cells with 1,25(OH)2D3 increased the capacity of U937 to bind the hormone, although measurement of these receptors by whole cell assay was prevented by the binding of 1,25(OH)2D3 itself. This effect was not observed with 24,25(OH)2D3 which was more easily displaced from binding sites by radiolabelled 1,25(OH)2D3 and it appears to act through low affinity binding to the 1,25(OH)2D3 receptor.  相似文献   

18.
As a further means of evaluating 1,25-dihydroxyvitamin D3-parathyroid gland interaction and its relation to calcium homeostasis, a comparative study of the subcellular localization of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]in the parathyroid glands, intestinal mucosa, kidney, and liver of rachitic chickens has been carried out. Only in the chromatin fraction from parathyroids and intestinal mucosa could there be demonstrated selective and specific localization of the 1,25(OH)2D3. The chromatin-bound picomoles of 1,25(OH)2D3 (per gram of tissue) was in the ratio (mucosa:parathyroids:kidney:liver) of 1.0:0.23:0.11:0.17 2 h after an intracardial injection of 290 pmol of [3H]1,25(OH)2D3. This same ratio after a 30-min (23 °C) homogenate incubation with 1 × 10?8m [3H]1,25(OH)2D3 was 1.0:1.0:0.10:0.03. Analogous results were obtained when reconstituted chromatin and cytosol fractions from the different tissues were compared for chromatin localization efficiency. This chromatin localization of 1,25(OH)2D3 in the parathyroid glands was temperature dependent. In addition, parathyroid glands were found to contain 3.0–3.5 S cytoplasmic and KCl-extractable chromatin receptors specific for 1,25(OH)2D3.  相似文献   

19.
The biologically active metabolite of vitamin D3, 1,25 (OH)2 D3, exerts important immunoregulatory effects in addition to being a central mediator of calcium/phosphate metabolism. Utilizing an interleukin 1 responsive murine T cell line and 125I-interleukin 1α, we show that 1,25 (OH)2 D3 (5,50 nM) enhanced 125I-interleukin 1α binding up to almost 2-fold over control. This 1,25 (OH)2 D3 effect occurred in a dose-dependent manner and was detectable after 24 h but not before 7 h of culture. Scatchard analysis of 125I-interleukin 1α binding data demonstrated that 1,25 (OH)2 D3 enhanced interleukin 1 receptor number without a significant change in affinity. The biologically less potent metabolite of vitamin D3, 25 (OH) D3, also augmented 125I-interleukin 1α binding but at steroid levels 2–3 log orders greater than 1,25 (OH)2 D3. This observation, combined with the presence of high-affinity 3H-1,25 (OH)2 D3 receptors (88 sites/cell, K = 0.45 nM) in cytosolic extracts, strongly suggests that the nuclear vitamin D receptor mediates this steroid's effect on interleukin 1 receptor expression. Based on the capacity of an anti-type 1 interleukin 1 receptor monoclonal antibody (35F5) to block 1,25 (OH)2 D3-enhanced 125I-interleukin 1α binding, we conclude that this steroid augments type 1 interleukin 1 receptor expression. When combined with interleukin 1, a cytokine that also impacts MD10 interleukin 1 receptor expression, 1,25 (OH)2 D3 enhanced interleukin 1 receptor expression. Northern blots hybridized with a 32P-type 1 interleukin 1 receptor cDNA probe show that 1,25 (OH)2 D3 enhanced type 1 interleukin 1 receptor steady state mRNA levels. Functionally, 1,25 (OH)2 D3 pretreatment augmented the MD10 proliferative response to suboptimal levels of interleukin 1 (< 100 fM interleukin 1α). These findings further support 1,25 (OH)2 D3's role as an immunoregulatory molecule and provides a possible mechanism by which this steroid could potentiate certain immune activities.  相似文献   

20.
Of the various risk factors contributing to osteoporosis, dietary/lifestyle factors are important. In a clinical study we reported that women with caffeine intakes >300 mg/day had higher bone loss and women with vitamin D receptor (VDR) variant, tt were at a greater risk for this deleterious effect of caffeine. However, the mechanism of how caffeine effects bone metabolism is not clear. 1,25-Dihydroxy vitamin D3 (1,25(OH)2D3) plays a critical role in regulating bone metabolism. The receptor for 1,25(OH)2D3, VDR has been demonstrated in osteoblast cells and it belongs to the superfamily of nuclear hormone receptors. To understand the molecular mechanism of the role of caffeine in relation to bone, we tested the effect of caffeine on VDR expression and 1,25(OH)2D3 mediated actions in bone. We therefore examined the effect of different doses of caffeine (0.2, 0.5, 1.0 and 10 mM) on 1,25(OH)2D3 induced VDR protein expression in human osteoblast cells. We also tested the effect of different doses of caffeine on 1,25(OH)2D3 induced alkaline phosphatase (ALP) activity, a widely used marker of osteoblastic activity. Caffeine dose dependently decreased the 1,25(OH)2D3 induced VDR expression and at concentrations of 1 and 10 mM, VDR expression was decreased by about 50–70%, respectively. In addition, the 1,25(OH)2D3 induced alkaline phosphatase activity was also reduced at similar doses thus affecting the osteoblastic function. The basal ALP activity was not affected with increasing doses of caffeine. Overall, our results suggest that caffeine affects 1,25(OH)2D3 stimulated VDR protein expression and 1,25(OH)2D3 mediated actions in human osteoblast cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号