首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT Researchers have suggested golden eagle (Aquila chrysaetos) populations may be declining in portions of their range. However, there are few baseline data describing golden eagle populations across their range in the western United States. We used aerial line transect distance methodology with a double-observer modification to estimate golden eagle population numbers in 4 bird conservation regions of the western United States. We conducted surveys from 16 August to 8 September 2003, after most golden eagles had fledged and before fall migration. The goal of our sampling strategy was to provide >80% power (α = 0.1) to detect an annual rate of total population change >3% per year over a 20-year period. We observed 172 golden eagles across 148 transects and estimated 27,392 golden eagles (90% CI: 21,352-35,140) occurred in the study area during the late summer and early fall of 2003. Following the surveys, we used Monte Carlo simulation to determine the statistical power to detect trends in the golden eagle populations if yearly surveys were continued over a 20-year monitoring period. The simulation indicated the desired power could be achieved under the current methodology and sample size. The methods utilized in this study can be implemented for other raptor species when population estimates that include nonbreeding members of a population are needed. The results of this study can be utilized by professionals to help manage golden eagle populations and to develop conservation strategies.  相似文献   

2.
Bald eagles (Haliaeetus leucocephalus) are currently protected in the United States under the Bald and Golden Eagle Protection Act of 1940 and Migratory Bird Treaty Act of 1918. Given these protections and the increasing development of wind energy throughout the United States, it is important for regulators and the wind industry to understand the risk of bald eagle collisions with wind turbines. Prior probability distributions for eagle exposure rates and collision rates have been developed for golden eagles (Aquila chrysaetos) by the United States Fish and Wildlife Service (USFWS). Given similar information has not been available for bald eagles, the current recommendation by the USFWS is to use the prior probability distributions developed using data collected on golden eagles to predict take for bald eagles. But some evidence suggests that bald and golden eagles may be at different risk for collision with wind turbines and the prior probability distributions developed for golden eagles may not be appropriate for bald eagles. We developed prior probability distributions using data collected at MidAmerican Energy Company's operating wind energy facilities in Iowa, USA, from December 2014 to March 2017 for bald eagle exposure rates and collision rates. The prior probability distribution for collision rate developed for bald eagles has a lower mean collision rate and less variability relative to that developed for golden eagles. We determined that the prior probability distributions specific to bald eagles from these operating facilities are a better starting point for predicting take for bald eagles at operating wind energy facilities in an agricultural landscape than those developed for golden eagles. © 2021 The Wildlife Society.  相似文献   

3.
Understanding the behavioral ecology of species of conservation concern can help to inform better management. During winters 2011 through 2017, we placed camera traps at stations baited with carrion to investigate characteristics of winter scavenging by golden eagles (Aquila chrysaetos) and bald eagles (Haliaeetus leucocephalus) in eastern Washington and Oregon, USA. Our objectives were to better understand exposure risk of individual eagles to lead contaminants and evaluate factors that affect eagle visitation to carrion to inform measures that reduce lead exposure. We studied photo sequences from 108 traps ( = 2,725 ± 306 [SE] images/trap) and used plumage and physical characteristics to track visitation of 183 individual golden eagles and 90 bald eagles at deer (Odocoileus spp.) carrion until it was totally consumed. At least 1 eagle visited 76% of traps ( = 2.5 ± 0.3 unique eagles/trap). On average, an eagle visited a trap 3.4 ± 0.2 times (range = 1–19 visits) over 1.9 ± 0.1 days (range = 1–9 days). We used general linear mixed models to identify influences on number of eagle visits and pooled visit duration. Individual golden eagles visited carrion about 25% more often and 50% longer than bald eagles, and individual juvenile eagles visited carrion more often and longer than immature and adult eagles. On average, an eagle made an additional visit to carrion for every golden eagle that came to the same trap. Eagles spent less time at offal ( = 26.2 ± 6.4 min) than at a whole carcass ( = 92.9 ± 7.5 min), and understory vegetation immediately surrounding carrion was associated with a 30% reduction in visitation time. In the Pacific Northwest during winter, adult and juvenile golden eagles, by virtue of their abundance and visitation to carrion compared to the immature age class and bald eagles of all ages, have the highest potential for exposure to anthropogenic effects from carrion visitation. Concealment of offal piles in vegetation may reduce, but not eliminate, eagle use because of competing scavengers that expose carrion locations. We found no evidence that carrion proximity to nearest known nests, topography, or snow cover affect visitation by eagles. Thus, short of using alternative ammunition to lead, we recommend burial or removal of offal from hunter-killed ungulates. © 2019 The Wildlife Society.  相似文献   

4.
Lead poisoning and organ levels of the non-essential heavy metals lead, cadmium and mercury of seven free-ranging golden eagles (Aquila chrysaetos) from the European Alps, and of one 23-year-old captive golden eagle are reported. All birds were found dead or moribund during the years 2000 and 2001 in Austria, Germany and Switzerland. One golden eagle from Switzerland with extraordinarily high lead residues in its liver and kidney was clearly identified as lethally lead poisoned. Another bird from the same region was found still alive and died in a wildlife rehabilitation center, showing lead residues in its organs known for acute lead poisoning with detrimental physiological effects, such as nervous disorders and the inhibition of the hemoglobine synthesis. Concentrations of cadmium, mercury and lead residues in the organs of the other five free-ranging birds, and in the long-lived captive golden eagle, were low and represent the natural background levels in birds of prey of the terrestrial food web. This is the first published report of lead poisoning in golden eagles from Switzerland. Sources for lead poisoning in golden eagles in the Alpine region are discussed.  相似文献   

5.
Proactive conservation planning for species requires the identification of important spatial attributes across ecologically relevant scales in a model-based framework. However, it is often difficult to develop predictive models, as the explanatory data required for model development across regional management scales is rarely available. Golden eagles are a large-ranging predator of conservation concern in the United States that may be negatively affected by wind energy development. Thus, identifying landscapes least likely to pose conflict between eagles and wind development via shared space prior to development will be critical for conserving populations in the face of imposing development. We used publically available data on golden eagle nests to generate predictive models of golden eagle nesting sites in Wyoming, USA, using a suite of environmental and anthropogenic variables. By overlaying predictive models of golden eagle nesting habitat with wind energy resource maps, we highlight areas of potential conflict among eagle nesting habitat and wind development. However, our results suggest that wind potential and the relative probability of golden eagle nesting are not necessarily spatially correlated. Indeed, the majority of our sample frame includes areas with disparate predictions between suitable nesting habitat and potential for developing wind energy resources. Map predictions cannot replace on-the-ground monitoring for potential risk of wind turbines on wildlife populations, though they provide industry and managers a useful framework to first assess potential development.  相似文献   

6.
In depth genetic comparisons of populations of Cutleria multifida (Tilopteridales, Phaeophyceae) collected from Europe, the northwestern Pacific Ocean, Australia and New Zealand using the DNA sequences of four gene regions (the mitochondrial cox2 and cox3 genes, the intergeneric spacer region adjacent to cox3, and the open reading frame) suggested that the northwestern European and Japanese populations were considerably greater in terms of their genetic divergence than Mediterranean, Australian or New Zealand populations. The haplotypes of the populations in northwestern European (distribution range including the type locality, seven haplotypes) and Japanese populations (seven haplotypes) were unique except for one shared haplotype. There were weak but positive correlations between the geographical distance and the genetic divergence among northwestern European and Japanese populations. Moreover, both female and male gametophytes occurred in eight of the nine Japanese localities, suggesting Japanese populations showed normal sexual heteromorphic life history of the species. In light of these results, it appears that Japanese populations were native to the area despite earlier hypothesis. In contrast, Australian and New Zealand populations were composed of only one haplotype that is very close to those found in northwestern Europe and Japan, suggesting a recent introduction history from Europe (or from northeastern Asia via Europe) by ship transport to Australia and New Zealand. The Mediterranean populations included two haplotypes identical to those found in northwestern Europe and Japan, and it is suggestive of transoceanic introductions of some populations between Mediterranean and Japanese coasts.  相似文献   

7.
The Japanese regional population of the Oriental white stork (Ciconia boyciana) became extinct in 1986. Mitochondrial DNA (mtDNA) D-loop region from 20 mounted specimens preserved at public facilities in Toyooka City, Hyogo Prefecture, Japan and its vicinity (n = 17), the area inhabited by the last of the Japanese population, and samples originating from China (n = 3) which were kept at a zoo was analyzed. After extracting DNA from small pieces of skin from mounted specimens, a 1210-bp region of the mtDNA D-loop region was analyzed. The haplotypes among 11 specimens of storks captured or found dead at Toyooka City just before the population became extinct were completely identical. Four haplotypes observed among the mounted specimens preserved in the vicinity of Toyooka City were differentiated from those of captive storks originating from China and Russia in a previous study. Therefore, the last Japanese population might have been a genetically unique group. However, phylogenetic analysis using the maximum likelihood method showed that haplotypes found in the Japanese regional population were closely related to the Chinese and Russian lineages (sequence difference = 2.1%). One mounted specimen collected in 1935 at Izushi village, in the vicinity of Toyooka City, showed the same haplotype as the captive storks from China, suggesting that genetic flow may have historically occurred between the populations of Japan and the continent. Recently, reintroduction for the Oriental white stork has been planned in Toyooka City. The planning for the recovery of extinct populations should not only involve translocation of species to the range from which it disappeared, but also reconstruction of regional populations while considering the genetic lineage between the extinct and introduced populations.  相似文献   

8.
To investigate genetic diversity among populations of the sika deer, Cervus nippon, nucleotide sequences (705–824 bases) of the mitochondrial D-loop regions were determined in animals from 13 localities in the Japanese islands. Phylogenetic trees constructed by the sequences indicated that the Japanese sika deer is separated into two distinct lineages: the northern Japan group (the Hokkaido island and most of the Honshu mainland) and the southern Japan group (a part of the southern Honshu mainland, the Kyushu island, and small islands around the Kyushu island). All sika deer examined in this study shared four to seven units of repetitive sequences (37 to 40 bases each) within the D-loop sequences. The number of tandem repeats was different among the populations, and it was specific to each population. Six or seven repeats occurred in populations of the northern Japan group, while four or five repeats occurred in populations of the southern Japan group. Each repeat unit included several nucleotide substitutions, compared with others, and 26 types were identified from 31 animals. Sequences of the first, second, and third units in arrays were clearly different between the northern and the southern groups. Based on these D-loop data, colonization and separation of the sika deer populations in the Japanese islands were estimated to have occurred less than 0.5 million years before present. Our results provide an invaluable insight into better understanding the evolutionary history, phylogeny, taxonomy, and population genetics of the sika deer.  相似文献   

9.
Top predators may induce extensive cascading effects on lower trophic levels, for example, through intraguild predation (IGP). The impacts of both mammalian and avian top predators on species of the same class have been extensively studied, but the effects of the latter upon mammalian mesopredators are not yet as well known. We examined the impact of the predation risk imposed by a large avian predator, the golden eagle (Aquila chrysaetos, L.), on its potential mammalian mesopredator prey, the red fox (Vulpes vulpes, L.), and the pine marten (Martes martes, L.). The study combined 23 years of countrywide data from nesting records of eagles and wildlife track counts of mesopredators in Finland, northern Europe. The predation risk of the golden eagle was modeled as a function of territory density, density of fledglings produced, and distance to nearest active eagle territory, with the expectation that a high predation risk would reduce the abundances of smaller sized pine martens in particular. Red foxes appeared not to suffer from eagle predation, being in fact most numerous close to eagle nests and in areas with more eagle territories. This is likely due to similar prey preferences of the two predators and the larger size of foxes enabling them to escape eagle predation risk. Somewhat contrary to our prediction, the abundance of pine martens increased from low to intermediate territory density and at close proximity to eagle nests, possibly because of similar habitat preferences of martens and eagles. We found a slightly decreasing trend of marten abundance at high territory density, which could indicate that the response in marten populations is dependent on eagle density. However, more research is needed to better establish whether mesopredators are intimidated or predated by golden eagles, and whether such effects could in turn cascade to lower trophic levels, benefitting herbivorous species.  相似文献   

10.
Climate and landscape change are expected to significantly affect trophic interactions, which will especially harm top predators such as the golden eagle Aquila chrysaetos. Availability of optimal prey is recognized to influence reproductive success of raptors on a regional scale. For the golden eagle, medium‐sized prey species between 0.5 and 5 kg are widely considered to be optimal prey during the breeding season, whereas smaller and larger species are deemed as energetically sub‐optimal. However, knowledge about the effects of optimal prey availability is still scarce on larger scales. To decrease this apparent knowledge gap, we combined biogeographical information on range margins with information about the foraging behaviour and reproductive success of golden eagles from 67 studies spanning the Northern Hemisphere. We hypothesized that availability of optimal prey will affect foraging behaviour and breeding success and, thus, distribution patterns of the golden eagle not only on a local but also on a continental scale. We correlated the diet breadth quantifying foraging generalism, breeding success and proportions of small (< 0.5 kg), medium (0.5–5 kg) and large‐sized (> 5 kg) prey species within the diet with the minimum distance of the examined eagles to the actual species distribution boundary. Closer to the range edge, we observed decreased proportions of medium‐sized prey species and decreasing breeding success of golden eagles. Diet breadth as well as proportions of small and large‐sized prey species increased, however, towards the range edge. Thus, availability of optimal‐sized prey species seems to be a crucial driver of foraging behaviour, breeding success and distribution of golden eagles on a continental scale. However, underlying effects of landscape characteristics and human influence on optimal prey availability has to be investigated in further large‐scale studies to fully understand the major threats facing the golden eagle and possibly other large terrestrial birds of prey.  相似文献   

11.
Vehicle collisions are a significant source of wildlife mortality worldwide, but less attention has been given to secondary mortality of roadkill scavengers, such as the golden eagle (Aquila chrysaetos). We sought to quantify golden eagle winter use of roadkill mammal carcasses and eagle flushing from vehicles in Oregon, Utah, and Wyoming, USA, as proxies for strike risk, using motion-sensitive cameras. We monitored 160 carcasses and captured 2,146 eagle–vehicle interactions at 58 carcasses (1–240 observations/carcass) during winters of 2016–2017, 2017–2018, and 2018–2019. We used generalized linear mixed models, which suggested that eagle use of carcasses declined with time since camera deployment but increased with distance to road. Flushing from vehicles decreased with carcass distance to road but was higher in the morning, in response to larger vehicles and vehicles in the closest lane, and in the Oregon study area. We suggest that roadkill distance to road is the easiest factor to manipulate with the dual benefits of increasing food availability to golden eagles and decreasing flush-related vehicle strike risk. We recommend that roadkill be moved at least 12 m from the road to increase eagle use and decrease flushing 4-fold relative to behavior observed at the road edge. Because flushing from roadkill is believed to be the primary cause of eagle–vehicle strikes, informed roadkill management has the potential to reduce human-caused mortality of golden eagles.  相似文献   

12.
In this study, we assessed the maternal origin of six Hungarian indigenous chicken breeds using mitochondrial DNA information. Sequences of Hungarian chickens were compared with the D-loop chicken sequences annotated in the GenBank and to nine previously described reference haplotypes representing the main haplogroups of chicken. The first 530 bases of the D-loop region were sequenced in 74 chickens of nine populations. Eleven haplotypes (HIC1-HIC11) were observed from 17 variable sites. Three sequences (HIC3, HIC8 and HIC9) of our chickens were found as unique to Hungary when searched against the NCBI GenBank database. Hungarian domestic chicken mtDNA sequences could be assigned into three clades and probably two maternal lineages. Results indicated that 86% of the Hungarian haplotypes are related to the reference sequence that likely originated from the Indian subcontinent, while the minor part of our sequences presumably derive from South East Asia, China and Japan.  相似文献   

13.
Wild common carp ( Cyprinus carpio ) are probably suffering from biological invasions of conspecific domesticated strains. However, such invasions may be largely camouflaged by morphological similarities between introduced and native strains. We conducted a large survey of mitochondrial DNA sequences (complete D-loop region) from 11 localities in Japan. From a total of 166 individuals, 28 haplotypes were determined to fit into six divergent clades. One of the six clades included 19 closely related haplotypes with moderate nucleotide differences; however, the remaining five clades each included either a single haplotype or two almost identical haplotypes. Phylogenetic analysis together with the previously published Eurasian haplotypes further demonstrated that the 'monotypic' clades were sisters to various Eurasian lineages, whereas the 19 related haplotypes formed a monophyletic group apart from the whole Eurasian clade. Given their monophyly and genetic diversity, the 19 related haplotypes were thought to originate from the Japanese native strain. Conversely, their phylogenetic affinities to Eurasian lineages and unnaturally low genetic diversities caused the haplotypes of the five monotypic clades to be considered as domesticated strains introduced from Eurasia. These hypotheses were supported by further evidences; i.e. the probable non-native haplotypes were frequently found from Japanese domesticated strains, and the probable native population structure was rescued when the probable non-native haplotypes were excluded from the analyses. This study revealed that almost half or more of the haplotypes in all of the locations studied originated from domesticated strains introduced from Eurasia.  相似文献   

14.
In southern Kantoh, Japanese sika deer (Cervus nippon) are distributed discontinuously due to large urban areas and developed road networks. To assess the impact of habitat fragmentation on sika deer subpopulations, we examined mitochondrial D-loop sequences from 435 individuals throughout southern Kantoh. About 13 haplotypes were detected, and their distributions revealed spatial genetic structure. Significant genetic differentiation was observed among seven of eight subpopulations. We found no significant correlation between pairwise F ST and geographical distance among subpopulations. Genetic diversity indices suggested that seven of eight subpopulations had probably experienced population bottlenecks in the recent past. Therefore, and in the light of the results of a nested clade analysis of these haplotypes, we conclude that recent fluctuations in population size and the interruption of gene flow due to past and present habitat fragmentation have played major roles influencing the spatial genetic structure of the sika deer population. This is the first evidence of spatial genetic population structure in the highly fragmented sika deer population in Honshu, Japan.  相似文献   

15.
We determined the complete mitochondrial genome sequences of two haplotypes of the smallmouth bass, Micropterus dolomieu; individuals used in the analysis were collected from nonindigenous populations in Japan. Both genomes comprised 16,488 bp, with genome contents and gene orders being identical to those of other teleost fishes. A previous study revealed that the Japanese smallmouth bass had only two haplotypes, and the present study revealed that the complete mitochondrial DNA (mtDNA) sequences of the haplotypes differed in only one nucleotide difference. The low genetic diversity in the mtDNA of the smallmouth bass individuals in our study and the results of the mtDNA sequence comparison between the Japanese and the North American individuals suggested that the fish had been transplanted from a fish farm with a low-diversity stock.  相似文献   

16.
Although wind farms in Spain have increased in numbers in recent years, their impact on birds, particularly large raptors, has received relatively little attention in the scientific literature. We study the potential impact of 72 wind energy developments planned for the south-east of Spain covering 128 golden eagle and 152 Bonelli’s eagle territories using nearest neighbour distances (NND) as an indicator of potential future interactions (abandonment, displacement and collision risk). Our analyses indicate low levels of potential interactions between wind farms and large eagles, and suggest that, of the two species studied, golden eagles will be the more affected because a greater proportion of wind farms will be constructed close to the breeding territories of this species. In the light of these findings, we discuss various management strategies in order to improve the compatibility of harvesting wind energy with the conservation of both species.  相似文献   

17.
小口白甲鱼都柳江种群mtDNA D环的序列变异及遗传多样性   总被引:1,自引:0,他引:1  
采用PCR结合DNA测序技术,测定分析了易危鱼类小口白甲鱼(Onychostoma lini)都柳江种群36个个体mtDNA D环约470bp序列的变异及遗传多样性。结果表明,在36个个体中,该序列的长度为469~475bp,其碱基组成为A+T的平均含量(68.4%)高于G+C(31.6%)。共检测到25个多态位点,其中转换19个、颠换6个。核苷酸多样性(π)为0.00575,平均核苷酸差异数(K)为2.695。36个个体分属5个单倍型,单倍型多样度(Hd)为0.260,单倍型间的平均遗传距离(P)为0.026。5个单倍型构建的UPGMA系统树聚为2个分支。目前小口白甲鱼都柳江种群mtDNA D环序列存在着较丰富的变异和遗传多样性。  相似文献   

18.
Phylogenetic analyses were conducted using complete nucleotide sequences of the D-loop in the mitochondrial genome of Mola specimens, collected mainly in Japanese waters, to clarify the genetic features and distribution patterns of Mola sunfishes. Two significantly distinct groups (designated A and B) were present in the genus, with a considerable net nucleotide sequence divergence between the two (8.4%). The two groups occurred sympatrically around the Japanese coast, as previously suggested by Sagara et al. (2005). Group A occurred mostly on the Pacific coast of eastern Japan, while group B was widely distributed along the Kuroshio Current, strongly suggesting different migration routes for each group. The morphological characteristics of the two group specimens were differentiated via the head bump, body proportions and shape of the clavus. Through the addition of Mola sequence data taken from outside Japan to our phylogenetic analyses, three independent groups, including groups A and B, were found, each with a wide geographical distribution, which suggests the presence of at least three independent species within the genus Mola.  相似文献   

19.
The genetic structure of the Asiatic black bear (Ursus thibetanus) in Japan was studied to understand the events that occurred during its evolution. The left domain of the mitochondrial control region (about 240 bp) was sequenced, defining 27 haplotypes that consisted of 23 haplotypes from 333 bears in Japan and 22 bears in the Asian continent. The network tree of the control region indicated that the Japanese population formed a distinct clade from the continental population. The phylogeographic analysis of the haplotypes indicated that the Shikoku and Kii Hanto populations had diverged during the initial phase from the ancestral population. After the 3 dominant haplotypes were rapidly distributed throughout Japan in the early stage of the population dispersal, the Japanese population diverged into eastern and western populations. Using the entire mitochondrial cytochrome b sequence, divergence time between the Japanese and the Continental populations suggested that the Japanese population might have colonized into Japan through the land bridge from the Korean Peninsula around 500 ka, which is consistent with paleontological evidence. Our finding that bears in western Japan exhibit lower genetic diversity and higher levels of genetic differentiation than bears in eastern Japan provides a vital contribution to conservation policy for these isolated populations.  相似文献   

20.
To investigate genetic diversity among populations of the sika deer, Cervus nippon, nucleotide sequences (705-824 bases) of the mitochondrial D-loop regions were determined in animals from 13 localities in the Japanese islands. Phylogenetic trees constructed by the sequences indicated that the Japanese sika deer is separated into two distinct lineages: the northern Japan group (the Hokkaido island and most of the Honshu mainland) and the southern Japan group (a part of the southern Honshu mainland, the Kyushu island, and small islands around the Kyushu island). All sika deer examined in this study shared four to seven units of repetitive sequences (37 to 40 bases each) within the D-loop sequences. The number of tandem repeats was different among the populations, and it was specific to each population. Six or seven repeats occurred in populations of the northern Japan group, while four or five repeats occurred in populations of the southern Japan group. Each repeat unit included several nucleotide substitutions, compared with others, and 26 types were identified from 31 animals. Sequences of the first, second, and third units in arrays were clearly different between the northern and the southern groups. Based on these D-loop data, colonization and separation of the sika deer populations in the Japanese islands were estimated to have occurred less than 0.5 million years before present. Our results provide an invaluable insight into better understanding the evolutionary history, phylogeny, taxonomy, and population genetics of the sika deer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号