首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxygen supply is a critical issue in the optimization of in vitro hepatocyte microenvironments. Although several strategies have been developed to balance complex oxygen requirements, these techniques are not able to accurately meet the cellular oxygen demand. Indeed, neither the actual oxygen concentration encountered by cells nor the cellular oxygen consumption rates (OCR) was assessed. The aim of this study is to define appropriate oxygen conditions at the cell level that could accurately match the OCR and allow hepatocytes to maintain liver specific functions in a normoxic environment. Matrigel overlaid rat hepatocytes were cultured on the polydimethylsiloxane (PDMS) membranes under either atmospheric oxygen concentration [20%‐O2 (+)] or physiological oxygen concentrations [10%‐O2 (+), 5%‐O2 (+)], respectively, to investigate the effects of various oxygen concentrations on the efficient functioning of hepatocytes. In parallel, the gas‐impermeable cultures (polystyrene) with PDMS membrane inserts were used as the control groups [PS‐O2 (?)]. The results indicated that the hepatocytes under 10%‐O2 (+) exhibited improved survival and maintenance of metabolic activities and functional polarization. The dramatic elevation of cellular OCR up to the in vivo liver rate proposed a normoxic environment for hepatocytes, especially when comparing with PS‐O2 (?) cultures, in which the cells generally tolerated hypoxia. Additionally, the expression levels of 84 drug‐metabolism genes were the closest to physiological levels. In conclusion, this study clearly shows the benefit of long‐term culture of hepatocytes at physiological oxygen concentration, and indicates on an oxygen‐permeable membrane system to provide a simple method for in vitro studies. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1401–1410, 2014  相似文献   

2.
3.
The silk protein sericin has been identified as a potent antioxidant in mammalian cells. This study was conducted to examine the effects of sericin on preimplantation development and quality of bovine embryos cultured individually. When two-cell-stage embryos were cultured individually for 7 days in CR1aa medium supplemented with 0, 0.1, 0.5, or 1% sericin, rates of total blastocyst formation and development to expanded blastocysts from embryos cultured with 0.5% sericin were higher (P < 0.05) than those from embryos cultured with 0 or 1% sericin. When embryos were cultured individually for 7 days in the CR1aa medium supplemented with 0 or 0.5% sericin under two oxidative stress conditions (50 or 100 μm H2O2), the addition of sericin significantly improved the blastocyst formation rate of embryos exposed to 100 μm H2O2. However, the protective effect of sericin was not observed in development of embryos exposed to 50 μm H2O2. When embryos were exposed to 100 μm H2O2 during culture, the DNA fragmentation index of total blastocysts from embryos cultured with 0.5% sericin was lower than blastocysts derived from embryos cultured without sericin (4.4 vs. 6.8%; P < 0.01). In conclusion, the addition of 0.5% sericin to in vitro culture medium improved preimplantation development and quality of bovine embryos cultured individually by preventing oxidative stress.  相似文献   

4.
Summary Cell viability, cytochrome P-450 content, cell respiration, and lipid peroxidation were all investigated as a function of oxygen tension in adult rat hepatocytes in short-term culture (less than 9 h). The various oxygen tensions used in this study were obtained by equilibrating culture medium with air, air + nitrogen, or air + oxygen. Cell viability, as assessed by trypan blue exclusion, was significantly greater at all time points tested when hepatocytes were cultured in Ham's F12 medium containing 132 μM O2, as compared to medium equilibrated with air (220 μM O2) or air + oxygen (298 μM O2). Cells cultured in 220 μM O2 (air) also exhibited a gradual loss of cytochrome P-450, so that by 9 h of incubation less than 60% of the active material remained. This loss of P-450 was minimized when cells were cultured in 163 μM O2 and abolished when cells were cultured in 132 μM O2. The 132 μM O2 exposure conditions also maintained cell respiration at the 1 h incubation values, whereas there was a continuous loss in cell respiration over time when the cells were cultured in either 220 μM O2 (air) or 298 μM O2 (air:O2). These cytotoxicity findings may be related to oxidative cell damage inasmuch as it was additionally demonstrated that lipid peroxidation (as measured by malondieldehyde equivalents) was consistantly lower in hepatocytes cultured in air:N2 as compared to air or air:O2. These results suggest that hepatocyte culture in low oxygen tension improves not only cell viability but also maintains other functional characteristics of the cell. This work was supported by a Biomedical Research Support Grant S-S07-RR 05448 awarded to the University of Minnesota School of Public Health by the Biomedical Research Grant Program, Division of Research and Resources, National Institutes of Health, Bethesda, MD.  相似文献   

5.
6.
The ability of bovine blastocysts to recover after cryopreservation and thawing procedures is often assessed by evaluating their re-expansion during in vitro co-culture. However, the influence of factors such as feeder cell type and gas atmosphere on blastocyst survival and evolution have never been considered. This study therefore compared two cell co-culture systems and two different gas atmospheres to assess survival of in vitro produced bovine blastocysts after vitrification. Day-7 blastocysts (n=181) were vitrified in a mixture of 25% glycerol/25% ethylene glycol. After warming and dilution, they were co-cultured either on Buffalo rat liver cells (BRL CC cell line) or on granulosa cells (GR CC primary culture) in TCM 199 supplemented with 10% FCS and under an atmosphere of 5% or 20% O2. Surviving and hatching rates were recorded at 24 h intervals for 3 days. After 72 h of culture, surviving blastocysts were treated for differential counting of inner cell mass (ICM) and trophectoderm cells. Blastocyst survival rates were higher when BRL and granulosa co-culture were performed under 20% oxygen as compared to 5% oxygen (20% O2: 62% vs. 5% O2: 25%, P<0.0001). However, the quality of blastocysts surviving in the granulosa co-culture condition was lower under 20% O2 than under 5% O2 as indicated by lower total and trophectoderm cell numbers (respectively 79±6 and 56±6 at 20% O2 vs. 100±10 and 74±10 at 5% O2, P<0.05), by an altered ICM/trophectoderm ratio (20% O2: 28% vs. 5% O2: 23%, P<0.05), by a higher total nuclear fragmentation (20% O2: 3.7% vs. 5% O2: 1.5%, P<0.05) and a trend to decreased hatching (20% O2: 32% vs. 5% O2: 81%, P=0.07). Whereas, for BRL co-culture, 20% O2 yielded higher quality blastocysts than 5% O2 as evaluated by higher ICM and trophectoderm cell numbers (19±1 and 71±5 at 20% O2 vs. 15±2 and 48±9 at 5% O2, respectively, P<0.05), by lower nuclear fragmentation in the ICM (20% O2: 2.2% vs. 5% O2: 6.7%, P<0.05). In conclusion, co-culture conditions may influence blastocysts survival and quality after cryopreservation. In our conditions, co-culture with BRL cells under 20% O2 seems to be the best combination to evaluate blastocyst survival and quality after vitrification.  相似文献   

7.
The time of the first cleavage of bovine zygotes during in vitro culture can affect the rate of development and cell number of the blastocysts. The aim of this work was to study the effect of the timing of first cleavage on the cryosurvival of the resulting blastocysts. Following standard IVM and IVF, zygotes were cultured in modified synthetic oviduct fluid (SOF), with 10% fetal calf serum (FCS) added 48 hr post insemination, in a humidified atmosphere of 5% CO2, 5% O2 and 90% N2. Embryos which cleaved by 24, 27 30, 33, or 36 hr after insemination (IVF) were harvested and further cultured to the blastocyst stage (day 7 or day 8 post IVF). All developing blastocysts on days 7 and 8 were classified into three groups and were cryopreserved by vitrification. Group A consisted of blastocysts (<150 μm, small blastocysts); group B consisted of expanded or hatching blastocysts (>150 μm, large blastocysts); and group C consisted of morphologically poor quality blastocysts. The vitrification solution consisted of 6.5 M glycerol and 6% bovine serum albumin in PBS (VS3a). Thawed embryos were cultured further and survival was defined as the re‐expansion and maintenance of the blastocoel over 24, 48, and 72 hr, respectively. Overall survival and hatching at 72 hr post‐thawing was higher in blastocysts formed by day 7 than those formed by day 8 (60% vs. 40% survival; 63% vs. 45% hatching). Large blastocysts from day‐7 and day‐8 groups survived significantly better than small or poor quality blastocysts (76% vs. 63% and 31%; 72% vs. 30% and 26%, respectively; P < 0.05). Day‐7 blastocysts from the 27‐ and 30‐hr cleavage groups survived significantly better than those from the 36‐hr group (63% and 66% vs. 25%, P < 0.05). Day‐8 blastocysts from later cleaved (30 hr) zygotes had a higher survival than the 27‐hr cleavage groups (52% vs. 26%, P < 0.05). These results indicate that the day of blastocyst appearance, developmental stage, and timing of the first cleavage post‐insemination can influence the cryosurvival of bovine blastocysts following vitrification. Mol. Reprod. Dev. 53:318–324, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

8.
《Free radical research》2013,47(9):1147-1155
Abstract

Background. Insulin protects cardiomyocytes from reactive oxygen species (ROS)-induced apoptosis after ischemic/reperfusion injury, but the mechanism is not clear. This study investigated the protective mechanism of insulin in preventing cardiomyocyte apoptosis from ROS injury. Methods. Rat cardiomyoblast H9c2 cells were treated with hydrogen peroxide (H2O2) or insulin at various concentrations for various periods of time, or with insulin and H2O2 for various periods of time. Cell viability was measured by the methylthiazolydiphenyl-tetrazolium bromide method. Cellular miR-210 levels were quantified using real-time RT-PCR. MiR-210 expression was also manipulated through lentivirus-mediated transfection. LY294002 was used to investigate involvement of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Results. The percentage of viable cells was significantly and inversely associated with H2O2 concentration, an effect that was seemingly attenuated by insulin pretreatment. Treatments with H2O2 or insulin were associated with a significant increase in miR-210 levels. Manipulation of miR-210 expression by gene transfection showed that miR-210 could attenuate H2O2-induced cellular injury. Inhibition of the PI3K/Akt pathway by the Akt inhibitor LY294002 was associated with a decrease in miR-210 expression. Conclusion. Insulin stimulated the expression of miR-210 through the PI3K/Akt pathway, resulting in a protective effect against cardiomyocyte injury that had been induced by H2O2/oxygen species. Our results provide novel evidence regarding the mechanism underlying the protective effect of insulin.  相似文献   

9.
《Theriogenology》2015,84(9):1408-1415
In vitro production of bovine embryos is a biotechnology of great economic impact. Epigenetic processes, such as histone remodeling, control gene expression and are essential for proper embryo development. Given the importance of IVP as a reproductive biotechnology, the role of epigenetic processes during embryo development, and the important correlation between culture conditions and epigenetic patterns, the present study was designed as a 2 × 2 factorial to investigate the influence of varying oxygen tensions (O2; 5% and 20%) and concentrations of fetal bovine serum (0% and 2.5%), during IVC, in the epigenetic remodeling of H3K9me2 (repressive) and H3K4me2 (permissive) in bovine embryos. Bovine oocytes were used for IVP of embryos, cleavage and blastocyst rates were evaluated, and expanded blastocysts were used for evaluation of the histone marks H3K9me2 and H3K4me2. Morulae and expanded blastocysts were also used to evaluate the expression of remodeling enzymes, specific to the aforementioned marks, by real-time polymerase chain reaction. Embryos produced in the presence of fetal bovine serum (2.5%) had a 10% higher rate of blastocyst formation. Global staining for the residues H3K9me2 and H3K4me2 was not affected significantly by the presence of serum. Notwithstanding, the main effect of oxygen tension was significant for both histone marks, with both repressive and permissive marks being higher in embryos cultured at the higher oxygen tension; however, expression of the remodeling enzymes did not differ in morulae or blastocysts in response to the varying oxygen tension. These results suggest that the use of serum during IVC of embryos increases blastocyst rate without affecting the evaluated histone marks and that oxygen tension has an important effect on the histone marks H3K9me2 and H3K4me2 in bovine blastocysts.  相似文献   

10.
11.
Oxygen-regulated gene expression in bovine blastocysts   总被引:4,自引:0,他引:4  
  相似文献   

12.
Changes in the integrity, ultrastructure, phagocytosis capacity, and production of H2O2, O2· −and NO2 were evaluated in cultured neutrophils. The activities of the antioxidant enzymes (catalase—CAT, superoxide dismutase—SOD and glutathione-dependent peroxidase—GSH-Px) were measured under similar conditions. The integrity of the cells remained unchanged up to 18 h. After 24 h, the number of viable cells in culture dropped by 16 per cent. The percentage of viable cells in culture was of 72 per cent even after 72 h. An ultrastructural analysis of the cells was carried out after 3, 6, 12, 24, 48, and 72 h in culture. Neutrophils started developing morphologic changes after 24 h: decreased cell volume, abundant vacuoles (mainly around the nucleus), and also the presence of autophagic vacuoles. This period was then chosen for the study of neutrophil function and antioxidant enzyme activities. Neutrophils cultured for 24 h presented reduced phagocytosis capacity. The rates of production of H2O2 and O2· − remained unchanged after 24 h in culture. Concomitantly, these cells were also able to produce NO in significant amounts. The production of O2·− in response to PMA stimulus was lowered in 24-h cultured cells. Possibly, the production of oxygen and nitrogen reactive species accomplished with a decrease in the activities of CAT and GSH-Px play a key role for the process of apoptosis which takes place in neutrophils under these conditions. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
Previous studies have demonstrated that oxygen environment is an important determinate factor of cell phenotypes and differentiation, although factors which affect pericellular oxygen concentration (POC) in murine chondrogenic cell culture remain unidentified. Oxygen concentrations in vivo were measured in rabbit musculoskeletal tissues, which were by far hypoxic compared to 20% O2 (ranging from 2.29 ± 1.16 to 4.36 ± 0.51%). Oxygen concentrations in murine chondrogenic cell (C3H10T1/2) culture medium were monitored in different oxygen concentrations (20% or 5%) in the incubator and in different medium volumes (3,700 or 7,400 μl) within 25-cm2 flasks. Chondrogenic differentiation was assessed by glycosaminoglycan production with quantitative evaluation of Alcian blue staining in 12-well culture dishes. Expression of chondrogenic genes, aggrecan, and type II collagen α1, was examined by quantitative real-time polymerase chain reaction. Oxygen concentrations in medium decreased accordingly with the depth from medium surface, and POC at Day 6 was 18.99 ± 0.81% in 3,700-μl medium (1,480-μm depth) and 13.26 ± 0.23% in 7,400-μl medium (2,960-μm depth) at 20% O2 in the incubator, which was 4.96 ± 0.08% (1,480-μm depth) and 2.83 ± 0.42% (2,960-μm depth) at 5% O2, respectively. The differences of POC compared by medium volume were statistically significant (p = 0.0003 at 20% and p = 0.001 at 5%). Glycosaminoglycan production and aggrecan gene expression were most promoted when cultured in moderately low POC, 1,000 μl (2,960-μm depth) at 20% O2 and 500 μl (1,480-μm depth) at 5% O2 in 12-well culture dishes. We demonstrate that medium volume and oxygen concentration in the incubator affect not only POC but also chondrogenic differentiation.  相似文献   

14.
Adipose tissue-derived stromal cells (ASCs) natively reside in a relatively low-oxygen tension (i.e., hypoxic) microenvironment in human body. Low oxygen tension (i.e., in situ normoxia), has been known to enhance the growth and survival rate of ASCs, which, however, may lead to the risk of tumourigenesis. Here, we investigated the tumourigenic potential of ASCs under their physiological condition to ensure their safe use in regenerative therapy. Human ASCs isolated from subcutaneous fat were cultured in atmospheric O2 concentration (21% O2) or in situ normoxia (2% O2). We found that ASCs retained their surface markers, tri-lineage differentiation potential, and self-renewal properties under in situ normoxia without altering their morphology. In situ normoxia displayed a higher proliferation and viability of ASCs with less DNA damage as compared to atmospheric O2 concentration. Moreover, low oxygen tension significantly up-regulated VEGF and bFGF mRNA expression and protein secretion while reducing the expression level of tumour suppressor genes p16, p21, p53, and pRb. However, there were no significant differences in ASCs telomere length and their relative telomerase activity when cultured at different oxygen concentrations. Collectively, even with high proliferation and survival rate, ASCs have a low tendency of developing tumour under in situ normoxia. These results suggest 2% O2 as an ideal culture condition for expanding ASCs efficiently while maintaining their characteristics.  相似文献   

15.
Lim HJ  Han J  Woo DH  Kim SE  Kim SK  Kang HG  Kim JH 《Molecules and cells》2011,31(2):123-132
The mammalian reproductive tract is known to contain 1.5–5.3% oxygen (O2), but human embryonic stem cells (hESCs) derived from preimplantation embryos are typically cultured under 21% O2 tension. The aim of this study was to investigate the effects of O2 tension on the long-term culture of hESCs and on cell-fate determination during early differentiation. hESCs and embryoid bodies (EBs) were grown under different O2 tensions (3, 12, and 21% O2). The expression of markers associated with pluripotency, embryonic germ layers, and hypoxia was analyzed using RTPCR, immunostaining, and Western blotting. Proliferation, apoptosis, and chromosomal aberrations were examined using BrdU incorporation, caspase-3 immunostaining, and karyotype analysis, respectively. Structural and morphological changes of EBs under different O2 tensions were comparatively examined using azan- and hematoxylineosin staining, and scanning and transmission electron microscopy. Mild hypoxia (12% O2) increased the number of cells expressing Oct4/Nanog and reduced BrdU incorporation and aneuploidy. The percentage of cells positive for active caspase-3, which was high during normoxia (21% O2), gradually decreased when hESCs were continuously cultured under mild hypoxia. EBs subjected to hypoxia (3% O2) exhibited well-differentiated microvilli on their surface, secreted high levels of collagen, and showed enhanced differentiation into primitive endoderm. These changes were associated with increased expression of Foxa2, Sox17, AFP, and GATA4 on the EB periphery. Our data suggest that mild hypoxia facilitates the slow mitotic division of hESCs in long-term culture and reduces the frequency of chromosomal abnormalities and apoptosis. In addition, hypoxia promotes the differentiation of EBs into extraembryonic endoderm.  相似文献   

16.
Hepatic hollow fiber (HF) bioreactors are being developed for use as bioartificial liver assist devices (BLADs). In general, BLADs suffer from O2 limited transport, which reduces their performance. This modeling study seeks to investigate if O2 carrying solutions consisting of mixtures of hemoglobin‐based oxygen carriers (HBOCs) and perfluorocarbons (PFCs) can enhance O2 transport to hepatocytes cultured in the extra capillary space (ECS) of HF bioreactors. We simulated supplementing the circulating cell culture media stream of the HF bioreactor with a mixture containing these two types of oxygen carriers (HBOCs and PFCs). A mathematical model was developed based on the dimensions and physical characteristics of a commercial HF bioreactor. The resulting set of partial differential equations, which describes fluid transport; as well as, mass transport of dissolved O2 in the pseudo‐homogeneous PFC/water phase and oxygenated HBOC, was solved to yield the O2 concentration field in the three HF domains (lumen, membrane and ECS). Our results show that mixtures of HBOC and PFC display a synergistic effect in oxygenating the ECS. Therefore, the presence of both HBOC and PFC in the circulating cell culture media dramatically improves transport of O2 to cultured hepatocytes. Moreover, the in vivo O2 spectrum in a liver sinusoid can be recapitulated by supplementing the HF bioreactor with a mixture of HBOCs and PFCs at an inlet pO2 of 80 mmHg. Therefore, we expect that PFC‐based oxygen carriers will be more efficient at transporting O2 at higher O2 levels (e.g., at an inlet pO2 of 760 mmHg, which corresponds to pure O2 in equilibrium with aqueous cell culture media at 1 atm). Biotechnol. Bioeng. 2010; 105: 534–542. © 2009 Wiley Periodicals, Inc.  相似文献   

17.
18.
19.
Various oxygen tensions are employed for in vitro embryo production. Since it is known that oxygen tension can influence the efficiency of embryo production and embryo quality, the aim of our study was to define an optimal oxygen concentration for bovine embryo production in vitro in synthetic oviduct fluid (SOF). Embryo quality criteria were hatching ability and the degree of apoptosis as assessed by TUNEL staining and Bax gene expression. In Experiment 1, the effects of 2, 5 and 20% O(2) tensions on embryo development were compared. The highest rate of eight-cell embryos (47%) at 72 hpi was obtained under 20% O(2). However, it seemed that 2 and 5% O(2) were also suitable as assessed by embryo survival rates at 144 hpi (29 and 30% at morula stage), 168 hpi (21 and 19% at blastocyst stage) and 216 hpi (14 and 17% at hatched blastocyst stage). In Experiment 2, comparisons were made between effects of 5, 20% and alternating O(2) (20% O(2) to 72 hpi and then changed to 5% O(2) up to 216 hpi) on embryo development. Alternating the O(2) tension significantly reduced the number of hatching blastocysts to 7%. Staining with TUNEL revealed that apoptosis occurred in all tested hatched blastocysts, but a significantly lower apoptotic cell ratio was found in embryos cultured under 5% O(2) (P<0.05). Total cell number of embryos cultured under 5% and alternating oxygen was significantly higher than that of other groups (P<0.05). Bax gene expression was detected by means of RT-PCR in only 2 of 66 hatched blastocysts. It can be concluded that 5% oxygen is optimal for bovine embryo culture in cell free media. Moreover, it is very likely that the apoptosis detected by TUNEL staining in this study is Bax-independent.  相似文献   

20.
This study compares the effects of reduced (5%) or normal (5% CO2 in air; 20% O2) oxygen tension on the in vitro maturation of early preantral ovarian follicles isolated from 14-day-old (C57BI/6J × CBAca) F1 mice. Intact follicles (100–130 μm) are singly cultured in 20 μl droplets α-MEM enriched with FCS and rFSH under mineral oil at 37°C and 100% humidity. In this culture system the follicles are allowed to attach to the bottom of the petri dishes. Follicle in vitro growth, hormone secretory capacity, and in vitro ovulation were studied under the two oxygen tensions. Spontaneous oocyte release from the follicle during a 16-day culture period was observed significantly more under 5% oxygen. Antrallike cavity formation was not observed under 5% O2. The follicles in the 5% O2 cultures reaching day 16 were stripped of their granulosa cell layers, and 83% of the retrieved oocytes had already undergone spontaneous germinal-vesicle breakdown (GVBD). Under 20% O2, the GV stage was maintained until day 16 in 77% of the oocytes. Under 5% O2, intact follicle survival up to day 12 was significantly reduced as compared to the 5% CO2 in air conditioning. The hCG stimulus on day 12 induced mucification in a significantly larger proportion of follicles cultured under 20% O2 (79% vs. 47%). Germinal-vesicle breakdown (20% O2:95%, 5%, O2:42%) and first polar body extrusion (20% O2:40%, 5% O2:15%) were significantly more prevalent under normal oxygen tension. A reduced secretory capacity of E2 and inhibin was demonstrated for follicles cultured under 5% O2. The histological study of serially sectioned follicles showed increased areas of centrally located granulosa cell necrosis and pyknosis in the cumulus cells. Gassing follicle cultures using 5% CO2 in air provided appropriate conditions for normal growth, enhanced whole-follicle survival, differentiation, and hormone production, and improved the yield of meiotic competent oocytes. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号