首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Site fidelity refers to the restriction of dispersal distance of an animal and its tendency to return to a stationary site. To our knowledge, the homing ability of freshwater turtles and their fidelity is reportedly very low in Asia. We examined mark–recapture data spanning a 4‐year period in Diaoluoshan National Nature Reserve, Hainan Province, China, to investigate the site fidelity and homing behavior of big‐headed turtles Platysternon megacephalum. A total of 11 big‐headed turtles were captured, and all individuals were used in this mark–recapture study. The site fidelity results showed that the adult big‐headed turtles (n = 4) had a 71.43% recapture rate in the original site after their release at the same site, whereas the juveniles (n = 1) showed lower recapture rates (0%). Moreover, the homing behavior results showed that the adults (n = 5) had an 83.33% homing rate after displacement. Adult big‐headed turtles were able to return to their initial capture sites (home) from 150 to 2,400 m away and precisely to their home sites from either upstream or downstream of their capture sites or even from other streams. However, none of the juveniles (n = 4) returned home, despite only being displaced 25–150 m away. These results indicated that the adult big‐headed turtles showed high fidelity to their home site and strong homing ability. In contrast, the juvenile turtles may show an opposite trend but further research is needed.  相似文献   

2.
Point 1: Stereo‐video camera systems (SVCSs) are a promising tool to remotely measure body size of wild animals without the need for animal handling. Here, we assessed the accuracy of SVCSs for measuring straight carapace length (SCL) of sea turtles.Point 2: To achieve this, we hand captured and measured 63 juvenile, subadult, and adult sea turtles across three species: greens, Chelonia mydas (n = 52); loggerheads, Caretta caretta (n = 8); and Kemp''s ridley, Lepidochelys kempii (n = 3) in the waters off Eleuthera, The Bahamas and Crystal River, Florida, USA, between May and November 2019. Upon release, we filmed these individuals with the SVCS. We performed photogrammetric analysis to extract stereo SCL measurements (eSCL), which were then compared to the (manual) capture measurements (mSCL).Point 3: mSCL ranged from 25.9 to 89.2 cm, while eSCL ranged from 24.7 to 91.4 cm. Mean percent bias of eSCL ranged from −0.61% (±0.11 SE) to −4.46% (±0.31 SE) across all species and locations. We statistically analyzed potential drivers of measurement error, including distance of the turtle to the SVCS, turtle angle, image quality, turtle size, capture location, and species.Point 4: Using a linear mixed effects model, we found that the distance between the turtle and the SVCS was the primary factor influencing measurement error. Our research suggests that stereo‐video technology enables high‐quality measurements of sea turtle body size collected in situ without the need for hand‐capturing individuals. This study contributes to the growing knowledge base that SVCS are accurate for body size measurements independent of taxonomic clade.  相似文献   

3.
In western Canada, anthropogenic disturbances resulting from resource extraction activities are associated with habitat loss and altered predator–prey dynamics. These habitat changes are linked to increased predation risk and unsustainable mortality rates for caribou (Rangifer tarandus caribou). To inform effective habitat restoration, our goal was to examine whether specific linear disturbance features were associated with caribou predation in central mountain caribou ranges. We used predation‐caused caribou mortalities and caribou GPS‐collar data collected between 2008 and 2015 to assess caribou predation risk within and outside of protected areas at four spatio‐temporal scales: habitat use during the (a) 30 days, (b) 7 days, and (c) 24 hours prior to caribou being killed, and (d) characteristics at caribou kill site locations. Outside of protected areas, predation risk increased closer to pipelines, seismic lines, and streams. Within protected areas, predation risk increased closer to alpine habitat. Factors predicting predation risk differed among spatio‐temporal scales and linear feature types: predation risk increased closer to pipelines during the 30 and 7 days prior to caribou being killed and closer to seismic lines during the 30 days, 7 days, and 24 hours prior, but decreased closer to roads during the 30 days prior to being killed. By assessing habitat use prior to caribou being killed, we identified caribou predation risk factors that would not have been detected by analysis of kill site locations alone. These results provide further evidence that restoration of anthropogenic linear disturbance features should be an immediate priority for caribou recovery in central mountain caribou ranges.  相似文献   

4.
Once widespread throughout the tropical forests of the Indian Subcontinent, the sloth bears have suffered a rapid range collapse and local extirpations in the recent decades. A significant portion of their current distribution range is situated outside of the protected areas (PAs). These unprotected sloth bear populations are under tremendous human pressures, but little is known about the patterns and determinants of their occurrence in most of these regions. The situation is more prevalent in Nepal where virtually no systematic information is available for sloth bears living outside of the PAs. We undertook a spatially replicated sign survey‐based single‐season occupancy study intending to overcome this information gap for the sloth bear populations residing in the Trijuga forest of southeast Nepal. Sloth bear sign detection histories and field‐based covariates data were collected between 2 October and 3 December 2020 at the 74 randomly chosen 4‐km2 grid cells. From our results, the model‐averaged site use probability (ψ ± SE) was estimated to be 0.432 ± 0.039, which is a 13% increase from the naïve estimate (0.297) not accounting for imperfect detections of sloth bear signs. The presence of termite mound and the distance to the nearest water source were the most important variables affecting the habitat use probability of sloth bears. The average site‐level detectability (p ± SE) of sloth bear signs was estimated to be 0.195 ± 0.003 and was significantly determined by the index of human disturbances. We recommend considering the importance of fine‐scale ecological and anthropogenic factors in predicting the sloth bear‐habitat relationships across their range in the Churia habitat of Nepal, and more specifically in the unprotected areas.  相似文献   

5.
The mitochondrial genome is now widely used in the study of phylogenetics and molecular evolution due to its maternal inheritance, fast evolutionary rate, and highly conserved gene content. To explore the phylogenetic relationships of the tribe Aeromachini within the subfamily Hesperiinae at the mitochondrial genomic level, we sequenced and annotated the complete mitogenomes of 3 skippers: Ampittia virgata, Halpe nephele, and Onryza maga (new mitogenomes for 2 genera) with a total length of 15,333 bp, 15,291 bp, and 15,381 bp, respectively. The mitogenomes all contain 13 protein‐coding genes (PCGs), 22 transfer RNAs (tRNAs), 2 ribosomal RNAs (rRNAs), and a noncoding A + T‐rich region and are consistent with other lepidopterans in gene order and type. In addition, we reconstructed the phylogenetic trees of Hesperiinae using maximum likelihood (ML) and Bayesian inference (BI) methods based on mitogenomic data. Results show that the tribe Aeromachini in this study robustly constitute a monophyletic group in the subfamily Hesperiinae, with the relationships Coeliadinae + (Euschemoninae + (Pyrginae + ((Eudaminae + Tagiadinae) + (Heteropterinae + ((Trapezitinae + Barcinae) + Hesperiinae))))). Moreover, our study supports the view that Apostictopterus fuliginosus and Barca bicolor should be placed out of the subfamily Hesperiinae.  相似文献   

6.
Recent studies have demonstrated a marked decrease in peripheral lymphocyte levels in patients with coronavirus disease 2019 (COVID‐19) caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2). Few studies have focused on the changes of NK, T‐ and B‐cell subsets, inflammatory cytokines and virus‐specific antibodies in patients with moderate COVID‐19. A total of 11 RT‐PCR‐confirmed convalescent patients with COVID‐19 and 11 patients with non‐SARS‐CoV‐2 pneumonia (control patients) were enrolled in this study. NK, CD8+ T, CD4+ T, Tfh‐like and B‐cell subsets were analysed using flow cytometry. Cytokines and SARS‐CoV‐2‐specific antibodies were analysed using an electrochemiluminescence immunoassay. NK cell counts were significantly higher in patients with COVID‐19 than in control patients (P = 0.017). Effector memory CD8+ T‐cell counts significantly increased in patients with COVID‐19 during a convalescent period of 1 week (P = 0.041). TIM‐3+ Tfh‐like cell and CD226+ Tfh‐like cell counts significantly increased (P = 0.027) and decreased (P = 0.022), respectively, during the same period. Moreover, ICOS+ Tfh‐like cell counts tended to decrease (P = 0.074). No abnormal increase in cytokine levels was observed. The high expression of NK cells is important in innate immune response against SARS‐CoV‐2. The increase in effector memory CD8+ T‐cell counts, the up‐regulation of inhibitory molecules and the down‐regulation of active molecules on CD4+ T cells and Tfh‐like cells in patients with COVID‐19 would benefit the maintenance of balanced cellular and humoural immune responses, may prevent the development of severe cases and contribute to the recovery of patients with COVID‐19.  相似文献   

7.
This study aimed to explore the function of IFN‐γ+IL‐17+Th17 cells on fibrosis in systemic scleroderma (SSc). Blood and skin samples were collected from 20 SSc cases and 10 healthy individuals. The percentage of IFN‐γ+IL‐17+Th17 cells was detected using flow cytometry. The in vitro induction of IFN‐γ+IL‐17+Th17 cells was performed adopting PHA and rIL‐12. Gene expression was detected via quantitative real‐time polymerase chain reaction (qRT‐PCR), whereas western blot analysis was adopted for protein analysis. The distribution of IFN‐γ+IL‐17+Th17 cells was significantly increased in SSc cases and positively correlated with SSc stages (P = .031), disease duration (P = .016), activity (P = .025) and skin scores (P < .001). In vitro, IFN‐γ+IL‐17+Th17 cells could promote the expressions of α‐SMA and COL1A1, revealing increased fibroblasts’ proliferation and enhanced collagen‐secreting capacity. In addition, IL‐21 expression was significantly increased in co‐culture medium of IFN‐γ+IL‐17+Th17 cells and fibroblasts (P < .001). IL‐21 neutralizer treatment resulted in the down‐regulation of α‐SMA and COL1A1. IL‐21 was confirmed as an effector of IFN‐γ+IL‐17+Th17 cells in fibrosis process. The distribution of IFN‐γ+IL‐17+Th17 cells was significantly increased in SSc cases and positively correlated with disease activity. IFN‐γ+IL‐17+Th17 cells could promote fibroblast proliferation and enhance collagen‐secreting ability via producing IL‐21, thus contributing to fibrosis in SSc.  相似文献   

8.
Movement patterns and habitat selection of animals have important implications for ecology and evolution. Darwin''s finches are a classic model system for ecological and evolutionary studies, yet their spatial ecology remains poorly studied. We tagged and radio‐tracked five (three females, two males) medium ground finches (Geospiza fortis) to examine the feasibility of telemetry for understanding their movement and habitat use. Based on 143 locations collected during a 3‐week period, we analyzed for the first time home‐range size and habitat selection patterns of finches at El Garrapatero, an arid coastal ecosystem on Santa Cruz Island (Galápagos). The average 95% home range and 50% core area for G. fortis in the breeding season was 20.54 ha ± 4.04 ha SE and 4.03 ha ± 1.11 ha SE, respectively. For most of the finches, their home range covered a diverse set of habitats. Three finches positively selected the dry‐forest habitat, while the other habitats seemed to be either negatively selected or simply neglected by the finches. In addition, we noted a communal roosting behavior in an area close to the ocean, where the vegetation is greener and denser than the more inland dry‐forest vegetation. We show that telemetry on Darwin''s finches provides valuable data to understand the movement ecology of the species. Based on our results, we propose a series of questions about the ecology and evolution of Darwin''s finches that can be addressed using telemetry.  相似文献   

9.
Obesity is a significant risk factor for atrial fibrillation (AF), which is the most common sustained arrhythmia with increased mortality and morbidity. High‐fat diet (HFD)‐induced obesity is associated with the activation of endoplasmic reticulum stress (ERS). However, the role of ERS in HFD‐induced AF remains elusive. Human atrium samples were examined for the ERS activation test. C57BL/6J mice were divided into four groups, including the control group, the HFD group, the 4‐phenylbutyric acid (4‐PBA) group, and the HFD + 4‐PBA group. At the age of 4 weeks, the HFD group and the HFD + 4‐PBA group were given HFD to construct the obesity model, while the other two groups were given a normal diet (ND). Transesophageal programmed electrical stimulation was conducted to evaluate the AF inducibility and duration. Atrial fibrosis and ERS activation were also investigated.We found that CHOP and GRP‐78 protein were significantly higher in overweight patients than the controls (both P < 0.05). AF inducibility and duration of the HFD group were significantly higher than the other groups (both P < 0.05), while there was no difference between those groups (P > 0.05). The mice of the HFD group had significantly higher collagen volume fraction (CVF%) than the other groups (P < 0.05). ERS marker protein of GRP78, p‐PERK, ATF6 and CHOP protein expression level was increased in the HFD group, which were significantly mitigated in the HFD + 4‐PBA group. In summary, HFD‐induced ERS activation facilitates atrial fibrosis and AF. The inhibition of ERS might alleviate atrial fibrosis and reduce the incidence of AF‐associated obesity.  相似文献   

10.
Fossil pollen believed to be related to extant Hagenia abyssinica were discovered in the early Miocene (21.73 Ma) Mush Valley paleoflora, Ethiopia, Africa. Both the fossil and extant pollen grains of H. abyssinica were examined with combined light microscopy, scanning electron microscopy, and transmission electron microscopy to compare the pollen and establish their relationships. Based on this, the fossil pollen grains were attributed to Hagenia. The presence of Hagenia in the fossil assemblage raises the questions if its habitat has changed over time, and if the plants are/were wind pollinated. To shed light on these questions, the morphology of extant anthers was also studied, revealing specialized hairs inside the anthers, believed to aid in insect pollination. Pollen and anther morphology are discussed in relation to the age and origin of the genus within a molecular dated phylogenetic framework, the establishment of complex topography in East Africa, other evidence regarding pollination modes, and the palynological record. The evidence presented herein, and compiled from the literature, suggests that Hagenia was an insect‐pollinated lowland rainforest element during the early Miocene of the Mush Valley. The current Afromontane habitat and ambophilous (insect and wind) pollination must have evolved in post‐mid‐Miocene times.  相似文献   

11.
The application of species distribution models (SDMs) to areas outside of where a model was created allows informed decisions across large spatial scales, yet transferability remains a challenge in ecological modeling. We examined how regional variation in animal‐environment relationships influenced model transferability for Canada lynx (Lynx canadensis), with an additional conservation aim of modeling lynx habitat across the northwestern United States. Simultaneously, we explored the effect of sample size from GPS data on SDM model performance and transferability. We used data from three geographically distinct Canada lynx populations in Washington (n = 17 individuals), Montana (n = 66), and Wyoming (n = 10) from 1996 to 2015. We assessed regional variation in lynx‐environment relationships between these three populations using principal components analysis (PCA). We used ensemble modeling to develop SDMs for each population and all populations combined and assessed model prediction and transferability for each model scenario using withheld data and an extensive independent dataset (n = 650). Finally, we examined GPS data efficiency by testing models created with sample sizes of 5%–100% of the original datasets. PCA results indicated some differences in environmental characteristics between populations; models created from individual populations showed differential transferability based on the populations'' similarity in PCA space. Despite population differences, a single model created from all populations performed as well, or better, than each individual population. Model performance was mostly insensitive to GPS sample size, with a plateau in predictive ability reached at ~30% of the total GPS dataset when initial sample size was large. Based on these results, we generated well‐validated spatial predictions of Canada lynx distribution across a large portion of the species'' southern range, with precipitation and temperature the primary environmental predictors in the model. We also demonstrated substantial redundancy in our large GPS dataset, with predictive performance insensitive to sample sizes above 30% of the original.  相似文献   

12.
Invasive species are one of the main causes of biodiversity loss worldwide. As introduced, populations increase in abundance and geographical range, so does the potential for negative impacts on native communities. As such, there is a need to better understand the processes driving range expansion as species become established in recipient landscapes. Through an investigation into capacity for population growth and range expansion of introduced populations of a non‐native lizard (Podarcis muralis), we aimed to demonstrate how multi‐scale factors influence spatial spread, population growth, and invasion potential in introduced species. We collated location records of P. muralis presence in England, UK through data collected from field surveys and a citizen science campaign. We used these data as input for presence‐background models to predict areas of climate suitability at a national‐scale (5 km resolution), and fine‐scale habitat suitability at the local scale (2 m resolution). We then integrated local models into an individual‐based modeling platform to simulate population dynamics and forecast range expansion for 10 populations in heterogeneous landscapes. National‐scale models indicated climate suitability has restricted the species to the southern parts of the UK, primarily by a latitudinal cline in overwintering conditions. Patterns of population growth and range expansion were related to differences in local landscape configuration and heterogeneity. Growth curves suggest populations could be in the early stages of exponential growth. However, annual rates of range expansion are predicted to be low (5–16 m). We conclude that extensive nationwide range expansion through secondary introduction is likely to be restricted by currently unsuitable climate beyond southern regions of the UK. However, exponential growth of local populations in habitats providing transport pathways is likely to increase opportunities for regional expansion. The broad habitat niche of P. muralis, coupled with configuration of habitat patches in the landscape, allows populations to increase locally with minimal dispersal.  相似文献   

13.
The subphylum Myriapoda included four extant classes (Chilopoda, Symphyla, Diplopoda, and Pauropoda). Due to the limitation of taxon sampling, the phylogenetic relationships within Myriapoda remained contentious, especially for Diplopoda. Herein, we determined the complete mitochondrial genome of Polydesmus sp. GZCS‐2019 (Myriapoda: Polydesmida) and the mitochondrial genomes are circular molecules of 15,036 bp, with all genes encoded on + strand. The A+T content is 66.1%, making the chain asymmetric, and exhibits negative AT‐skew (−0.236). Several genes rearrangements were detected and we propose a new rearrangement model: “TD (N\R) L + C” based on the genome‐scale duplication + (non‐random/random) loss + recombination. Phylogenetic analyses demonstrated that Chilopoda and Symphyla both were monophyletic group, whereas Pauropoda was embedded in Diplopoda to form the Dignatha. Divergence time showed the first split of Myriapoda occurred between the Chilopoda and other classes (Wenlock period of Silurian). We combine phylogenetic analysis, divergence time, and gene arrangement to yield valuable insights into the evolutionary history and classification relationship of Myriapoda and these results support a monophyletic Progoneata and the relationship (Chilopoda + (Symphyla + (Diplopoda + Pauropoda))) within myriapod. Our results help to better explain the gene rearrangement events of the invertebrate mitogenome and lay the foundation for further phylogenetic study of Myriapoda.  相似文献   

14.
The Lesser White‐fronted Goose (Anser erythropus), smallest of the “gray” geese, is listed as Vulnerable on the IUCN Red List and protected in all range states. There are three populations, with the least studied being the Eastern population, shared between Russia and China. The extreme remoteness of breeding enclaves makes them largely inaccessible to researchers. As a substitute for visitation, remotely tracking birds from wintering grounds allows exploration of their summer range. Over a period of three years, and using highly accurate GPS tracking devices, eleven individuals of A. erythropus were tracked from the key wintering site of China, to summering, and staging sites in northeastern Russia. Data obtained from that tracking, bolstered by ground survey and literature records, were used to model the summer distribution of A. erythropus. Although earlier literature describes a patchy summer range, the model suggests a contiguous summer habitat range is possible, although observations to date cannot confirm A. erythropus is present throughout the modeled range. The most suitable habitats are located along the coasts of the Laptev Sea, primarily the Lena Delta, in the Yana‐Kolyma Lowland, and smaller lowlands of Chukotka with narrow riparian extensions upstream along major rivers such as the Lena, Indigirka, and Kolyma. The probability of A. erythropus presence is related to areas with altitude less than 500 m with abundant wetlands, especially riparian habitat, and a climate with precipitation of the warmest quarter around 55 mm and mean temperature around 14°C during June‐August. Human disturbance also affects site suitability, with a gradual decrease in species presence starting around 160 km from human settlements. Remote tracking of animal species can bridge the knowledge gap required for robust estimation of species distribution patterns in remote areas. Better knowledge of species'' distribution is important in understanding the large‐scale ecological consequences of rapid global change and establishing conservation management strategies.  相似文献   

15.
SARS‐CoV‐2 vaccines are highly efficient against severe forms of the disease, hospitalization and death. Nevertheless, insufficient protection against several circulating viral variants might suggest waning immunity and the need for an additional vaccine dose. We conducted a longitudinal study on the kinetics and persistence of immune responses in healthcare workers vaccinated with two doses of BNT162b2 mRNA vaccine with or without prior SARS‐CoV‐2 infection. No new infections were diagnosed during follow‐up. At 6 months, post‐vaccination or post‐infection, despite a downward trend in the level of anti‐S IgG antibodies, the neutralizing activity does not decrease significantly, remaining higher than 75% (85.14% for subjects with natural infection, 88.82% for vaccinated after prior infection and 78.37% for vaccinated only). In a live‐virus neutralization assay, the highest neutralization titres were present at baseline and at 6 months follow‐up in persons vaccinated after prior infection. Anti‐S IgA levels showed a significant descending trend in vaccinated subjects (p < 0.05) after 14 weeks. Cellular immune responses are present even in vaccinated participants with declining antibody levels (index ratio 1.1–3) or low neutralizing activity (30%–40%) at 6 months, although with lower T‐cell stimulation index (p = 0.046) and IFN‐γ secretion (p = 0.0007) compared to those with preserved humoral responses.  相似文献   

16.
Complete documentation on the status of mammals is indispensable for appropriate conservation measures in protected areas. However, there is inadequate information on mammalian resources in the ecosystem of Gibe Sheleko National Park (GSNP). Thus, the study aimed to assess species diversity, abundance, and habitat association of medium‐ and large‐sized mammals in GSNP. We stratified the study area into five dominant habitat types, namely dense forest, wooded grassland, grassland, riverine forest, and farmland habitat types based on land cover and vegetation structures and further employed stratified random sampling technique across each habitat type. The sample transects covered 20% of the study area. Transect width ranged from 50 m to 400 m based on vegetation cover and visibility of mammals. The main data were collected via direct observation. Data were analyzed via chi‐square test and species diversity indexes. We recorded the total of 20 mammals species'' those belong to 10 families of which 8 species were large‐sized and 12 species medium‐sized mammals. There were two IUCN vulnerable species, namely Hippopotamus amphibious and Panthera pardus, and two globally near‐threatened species, particularly Litocranius walleri and Caracal caracal in the study area. Dense forest held the highest species diversity of medium‐ and large‐sized mammals (H′ = 2.28) with the highest evenness index (J = 0.84). Riverine forest had the least diversity with uneven population distribution. Papio anubis was the most abundance species, whereas Caracal caracal was the least abundant in the study area. GSNP is home for threatened and spectacular mammals species''; hence, an appropriate conservation measure is mandatory to keep existing mammals species''.  相似文献   

17.
AimWe incorporated genetic structure and life history phase in species distribution models (SDMs) constructed for a widespread spiny lobster, to reveal local adaptations specific to individual subspecies and predict future range shifts under the RCP 8.5 climate change scenario.LocationIndo‐West Pacific.MethodsMaxEnt was used to construct present‐day SDMs for the spiny lobster Panulirus homarus and individually for the three genetically distinct subspecies of which it comprises. SDMs incorporated both sea surface and benthic (seafloor) climate layers to recreate discrete influences of these habitats during the drifting larval and benthic juvenile and adult life history phases. Principle component analysis (PCA) was used to infer environmental variables to which individual subspecies were adapted. SDM projections of present‐day habitat suitability were compared with predictions for the year 2,100, under the RCP 8.5 climate change scenario.ResultsIn the PCA, salinity best explained P. h. megasculptus habitat suitability, compared with current velocity in P. h. rubellus and sea surface temperature in P. h. homarus. Drifting and benthic life history phases were adapted to different combinations of sea surface and benthic environmental variables considered. Highly suitable habitats for benthic phases were spatially enveloped within more extensive sea surface habitats suitable for drifting larvae. SDMs predicted that present‐day highly suitable habitats for P. homarus will decrease by the year 2,100.Main conclusionsIncorporating genetic structure in SDMs showed that individual spiny lobster subspecies had unique adaptations, which could not be resolved in species‐level models. The use of sea surface and benthic climate layers revealed the relative importance of environmental variables during drifting and benthic life history phases. SDMs that included genetic structure and life history were more informative in predictive models of climate change effects.  相似文献   

18.
Mammals have experienced a massive decline in their populations and geographic ranges worldwide. The sloth bear, Melursus ursinus (Shaw, 1791), is one of many species facing conservation threats. Despite being endangered in Nepal, decades of inattention to the situation have hindered their conservation and management. We assessed the distribution and patterns of habitat use by sloth bears in Chitwan National Park (CNP), Nepal. We conducted sign surveys from March to June, 2020, in 4 × 4 km grids (n = 45). We collected detection/non‐detection data along a 4‐km trail that was divided into 20 continuous segments of 200 m each. We obtained environmental, ecological, and anthropogenic covariates to understand determinants of sloth bear habitat occupancy. The data were analyzed using the single‐species single‐season occupancy method, with a spatially correlated detection. Using repeated observations, these models accounted for the imperfect detectability of the species to provide robust estimates of habitat occupancy. The model‐averaged occupancy estimate for the sloth bear was 69% and the detection probability was 0.25. The probability of habitat occupancy by sloth bears increased with the presence of termites and fruits and in rugged, dry, open, undisturbed habitats. Our results indicate that the sloth bear is elusive, functionally unique, and widespread in CNP. Future conservation interventions and action plans aimed at sloth bear management must adequately consider their habitat requirements.  相似文献   

19.
Studying social‐behavior and species associations in ecological communities is challenging because it is difficult to observe the interactions in the field. Animal behavior is especially difficult to observe when selection of habitat and activities are linked to energy costs of long‐distance movement. Migrating communities tend to be resource specific and prefer environments that offer more suitability for coexisting in a shared space and time. Given the recent advances in digital technologies, digital video recording systems are gaining popularity in wildlife research and management. We used digital video recording cameras to study social interactions and species–habitat linkages for wintering waterbirds communities in shared habitats. Examining over 8,640 hr of video footages, we built tetrapartite social‐behavioral association network of wintering waterbirds over habitat (n = 5) selection events in sites with distinct management regimes. We analyzed these networks to identify hub species and species role in activity persistence, and to explore the effects of hydrological regime on these network characteristics. Although the differences in network attributes were not significant at treatment level (p = .297) in terms of network composition and keystone species composition, our results indicated that network attributes were significantly different (p = .000, r 2 = .278) at habitat level. There were evidences suggesting that the habitat quality was better at the managed sites, where the formed networks had more species, more network nodes and edges, higher edge density, and stronger intra‐ and inter‐species interactions. In addition, we also calculated the species interaction preference scores (SIPS) and behavioral interaction preference scores (BIPS) of each network. The results showed that species synchronize activities in shared space for temporal niche partitioning in order to avoid or minimize any potential competition for shared space. Our social network analysis (SNA) approach is likely to provide a practical use for ecosystem management and biodiversity conservation.  相似文献   

20.
Severe respiratory viral infectious diseases such as influenza and COVID‐19 especially affect the older population. This is partly ascribed to diminished CD8+ T‐cell responses a result of aging. The phenotypical diversity of the CD8+ T‐cell population has made it difficult to identify the impact of aging on CD8+ T‐cell subsets associated with diminished CD8+ T‐cell responses. Here we identify a novel human CD8+ T‐cell subset characterized by expression of Killer‐cell Immunoglobulin‐like Receptors (KIR+) and CD45RA (RA+). These KIR+RA+ T cells accumulated with age in the blood of healthy individuals (20–82 years of age, n = 50), expressed high levels of aging‐related markers of T‐cell regulation, and were functionally capable of suppressing proliferation of other CD8+ T cells. Moreover, KIR+RA+ T cells were a major T‐cell subset becoming activated in older adults suffering from an acute respiratory viral infection (n = 36), including coronavirus and influenza virus infection. In addition, older adults with influenza A infection showed that higher activation status of their KIR+RA+ T cells associated with longer duration of respiratory symptoms. Together, our data indicate that KIR+RA+ T cells are a unique human T‐cell subset with regulatory properties that may explain susceptibility to viral respiratory disease at old age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号