首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The combination of quantum mechanics and molecular mechanics (QM/MM) methods is one of the most promising approaches to study the structure, function and properties of proteins. The number of QM/MM applications on metalloproteins is steadily increasing, especially studies with density functional methods on redox-active metal centres. Recent developments include new parameterised methods to treat covalent bonds between the quantum and classical systems, methods to obtain free energy from QM/MM results, and the combination of quantum chemistry and protein crystallography.  相似文献   

2.
3.
4.
We have determined the three-dimensional structure of a non-self-complementary oligodeoxynucleotide duplex that contains a model abasic site. The duplex contains six GC base pairs plus the abasic site at the center of one strand and corresponds to an abasic frameshift. Two-dimensional NMR studies on the nonexchangeable protons show that the guanine bases on either side of the abasic site are stacked over each other and that the abasic site is rotated out of the helix. Close proton-proton interactions are observed between the H4' proton of the abasic site and sugar protons of the guanosine in the 5' direction, which allows the position of the free sugar to be well-defined. NOE buildup curves from NOESY spectra recorded at very short mixing times were used to calculate a set of interproton distances. This data set was incorporated into the refinement of the oligonucleotide structure by molecular mechanics calculations. Two conformations that differ in the sugar conformation of the guanosine next to the abasic site in the 3' direction were necessary to fit all the NMR data. One of these two conformations could only be stabilized by addition of counterions at specific sites.  相似文献   

5.
6.
A novel CCK8 derivative bearing a chelating agent at its N- end and its oxo-rhenium(V) complex have been synthesized and characterized. The chelating agent N-[N-13-(diphenylphosphino)propionyl]glycyl]cysteine (PN2S) ligand, the coordination set of which is made by the phosphorus atom of phosphine, the nitrogen atoms of the two amido groups and the sulphur atom of cysteine, has been used due to its high affinity towards the oxo-rhenium(V) moiety. Molecular modelling studies indicate that the CCK8 peptide adopts the right conformation for cholecystokinin receptor binding, and that modifications on the N-terminal side of CCK8 obtained by introducing chelating agents and its metal complexes should not affect the interaction with CCK(A) receptor.  相似文献   

7.
We have determined the three-dimensional structure of a non-selfcomplementary nonanucleotide duplex which contains an abasic (apyrimidinic) site in the centre, i.e. a deoxyribose residue opposite an adenosine. The majority of the base and sugar proton resonances were assigned by NOESY, COSY and 2DQF spectra in D2O and H2O. We have measured the initial slope of buildup of NOEs in NOESY spectra at very short mixing times (25 to 50 ms), and from these were able to establish interproton distances for the central part of the duplex. We propose a different strategy for proton-proton distance determinations which takes into account the observed variations in correlation times for particular proton-proton vectors. A set of 31 measured interproton distances was incorporated into the refinement of the oligonucleotide structure by molecular mechanics calculations. Two structures were obtained which retain all aspects of a classical B DNA in which the unpaired adenine and the abasic deoxyribose lie inside the helix. We observe that the non-hydrogen bonded adenine is held well in the helix, the Tm of this base being the same as that of the A.T base pairs in the same duplex.  相似文献   

8.
Thiostrepton is a highly complex cyclic thiazoyl peptide antibiotic and is active against Gram-positive bacteria. Molecular mechanics, semi-empirical and ab initio studies were utilized to further understand the structural and electronic properties of this antibiotic.  相似文献   

9.
Methylation of phosphate groups in oligo-dT strands leads to a parallel duplex with T · T base pairs. Molecular mechanics calculations on parallel d(TTTTTT)2 show it to be a symmetric right-handed helix with B-DNA conformational characteristics. Phosphate methylation stabilizes the duplex by ca. 41 kcal/mol, due to removal of the interstrand phosphate electrostatic repulsions. The chirality introduced with phosphate methylation is important for the molecular geometry, since RP methylation predominantly influences the conformation around the ζ bond (P? O3′), while SP methylation mostly changes the α conformation (P? O5′). This is also true in antiparallel helices with methylated phosphates, as is shown by molecular mechanics calculations on d(GCGCGC)2. These results may be of relevance to protein–DNA interactions, where phosphate charges are also shielded. As the pro-SP oxygen is most available in a right-handed helix, we suggest changes around the α bond to occur upon protein complexation, leading to a widening of the major groove in the d(GCGCGC)2 duplex (from 12 to 13 Å) and reduced minor groove (from 6 to 5 Å).  相似文献   

10.
Bioorthogonal ‘click’ reactions have recently emerged as promising tools for chemistry and biological applications. By using a combination of two different ‘click’ reactions, ‘double-click’ strategies have been developed to attach multiple labels onto biomacromolecules. These strategies require multi-step modifications of the biomacromolecules that can lead to heterogeneity in the final conjugates. Herein, we report the synthesis and characterization of a set of three trifunctional linkers. The linkers having alkyne and cyclooctyne moieties that are capable of participating in sequential copper(I)-catalyzed and copper-free cycloaddition reactions with azides. We have also prepared a linker comprised of an alkyne and a 1,2,4,5-terazine moiety that allows for simultaneous cycloaddition reactions with azides and trans-cyclooctenes, respectively. These linkers can be attached to synthetic or biological macromolecules to create a platform capable of sequential or parallel ‘double-click’ labeling in biological systems. We show this potential using a generation 5 (G5) polyamidoamine (PAMAM) dendrimer in combination with the clickable linkers. The dendrimers were successfully modified with these linkers and we demonstrate both sequential and parallel ‘double-click’ labeling with fluorescent reporters. We anticipate that these linkers will have a variety of application including molecular imaging and monitoring of macromolecule interactions in biological systems.  相似文献   

11.
神经元迁移的细胞和分子机制   总被引:1,自引:0,他引:1  
在脑的发育过程中,神经元的正确迁移是正常脑组织发生的一个必不可少的环节。在过去的几十年中,通过不同的学科方法,对于神经元迁移的机制有了较好的理解。在细胞水平上,神经元迁移需要3个重复事件的精确调控;在分子水平,与神经元迁移相关的胞外信号分子已经被鉴定,而且大量的胞内信号通路也已经被阐明。  相似文献   

12.
The conformation of the GM3 ganglioside, Neu5Ac alpha 2-3Gal beta 1-4Glc beta 1-1 Cer, and its analogs containing the Neu5Gc or Neu4Ac5Gc residues (Gc = glycolyl, CH2OHCO) was investigated in Me2SO-d6 solution with the aid of a distance-mapping procedure based on rotating-frame NOE contacts, with hydroxyl protons being used as long-range sensors defining the distance constraints. A pronounced flexibility found for both the Neu-Gal and Gal-Glc linkages was confirmed by 1000-ps molecular dynamics simulations. Similar results, although based on a smaller number of NOE constraints, were obtained for GM3 gangliosides anchored in mixed D2O/dodecylphosphocholine-d38 micelles and for the Neu5Ac-, Neu5Gc-, and Neu5,9Ac2-sialyllactoses dissolved in D2O. No noteworthy differences in conformational behavior of the glycan chains of the three gangliosides or sialyllactoses were observed in either of the media.  相似文献   

13.
The solvation of cis and trans N-methylformamide (NMF) by water was investigated using a combination of 17O-nmr spectroscopy, classical molecular mechanics [MM2(77) and MM2(87)] force field, and ab initio 4-31G* gradient optimization calculations. In dilute aqueous solution, the 17O-nmr spectra of NMF indicate strong shielding by 66.9 and 66.1 ppm for the cis and trans amide oxygens, respectively, compared to those values obtained in dilute toluene solution. This demonstrates that both isomers are equally solvated by molecules of water, which are further hydrogen bonded to molecules of water of the bulk solvent. Molecular mechanics simulations were carried out for cis and trans NMF in a cluster of water molecules. Radial distribution functions show structural contacts by several water molecules at the amide CO and NH group, which are significantly more pronounced with MM2 (87) calculations. Ab initio 4-31G* gradient optimization calculations on the supermolecule trans NMF-(H2O)3 indicates the presence of more than two hydrogen-bond contacts at the carbonyl oxygen. This is in agreement with MM2 calculations and provides further evidence for multiple acceptor properties of the amide oxygen and an out of the amide plane arrangement of the bound molecules of water. Comparison of the integration data to the first radial distribution function (rdf) minima shows that the local solvation of the CO and NH groups is very similar for both cis and trans isomers. The intermolecular geometric parameters of the supermolecule trans NMA–(H2O)3 and the first rdf maxima resulting from MM2 (87) and MM2 (77) calculations are compared with distribution of water molecules around the CO and NH groups of peptides and proteins resulting from x-ray and neutron diffraction experiments. The rdfs involving the methyl group of NMF demonstrate the nonrandom distribution of solvent sites with first maxima in reasonable agreement with distribution of water molecules around the apolar side chain of amino acid residues in proteins. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
15.
Exploring biomolecule behavior, such as proteins and nucleic acids, using quantum mechanical theory can identify many life science phenomena from first principles. Fragment molecular orbital (FMO) calculations of whole single particles of biomolecules can determine the electronic state of the interior and surface of molecules and explore molecular recognition mechanisms based on intermolecular and intramolecular interactions. In this review, we summarized the current state of FMO calculations in drug discovery, virology, and structural biology, as well as recent developments from data science.  相似文献   

16.
H Monoi 《Biophysical journal》1995,69(3):1130-1141
A search was made in terms of molecular mechanics calculation for tubular, or pore-forming, single-stranded helices of poly-L-amino acids. Such a helix was found in the vicinity of (phi, psi, omega) = 81 degrees, 98 degrees, 170 degrees) in the conformational space. It was the 6.2(20) helix of right-handedness. The 6.2(20) helix, here named the "mu helix," had a cylindrical pore along its helical axis. The diameter of the pore was 6.6 A on the basis of the atom centers of carbonyl carbons and amino nitrogens. The left-handed mu helix was less stable than the right-handed counterpart. The conformation energy of the mu helix, expressed relative to that of the alpha helix of the same polypeptide, depended to a great extent on amino acid composition. It varied over a range of a few kilocalories per mol per residue above and below the conformation energy of the alpha helix of the same polypeptide. This marked diversity in the relative conformation energy of the mu helix can be ascribed primarily to the difference in the relative position of alpha-carbons between the mu and the alpha helices. The conformational entropy made only a small contribution, if any, to the relative stability of the mu helix. There was a hydrogen-bonded network of side chains in the mu helices of poly-L-glutamine and poly-L-asparagine.  相似文献   

17.
A combined 1H-NMR and molecular mechanics study of [Cpp1, Sar7]AVP was performed in order to select the most probable conformations in DMSO solutions. The NMR constraints obtained were employed in the selection of starting conformations of the cyclic moiety of the analog. In particular, the diminished accessibility of the Asn5 NH proton to solvent and the close contact between Cpp1 and Cys6 C alpha H protons suggests a beta-turn conformation at the Phe3-Gln4 residues. Energy minimization was carried out both in the ECEPP/2 (rigid-valence geometry) and in the AMBER (flexible-valence geometry) force fields. Comparison of the experimental and calculated values of NMR characteristics has revealed that conformations containing type I, II, and III beta-turns at the Phe3-Gln4 residues are in reasonable agreement with the experimental data, with a dynamic equilibrium between the beta I (beta III) and beta II type structures of the cyclic part being the most probable. All of these conformations prefer the negative chirality of the disulfide bridge (theta 3 approximately -90 degrees). Five representative conformations were chosen for the acyclic tail: one with a beta I, one with a beta II'-turn at the Sar7-Arg8 residues, two extended-type conformations, and a conformation with a gamma-turn at Sar7. Because only high-energy extended conformations were in agreement with NMR data, it was concluded that the acyclic tail has considerable conformational flexibility in solution. The conformations obtained are discussed in terms of the structure-function relationship of the neurohypophyseal hormone analogs.  相似文献   

18.
An internal coordinate molecular mechanics study of unfolding peptide chains by external stretching has been carried out to predict the type of force spectra that may be expected from single-molecule manipulation experiments currently being prepared. Rather than modeling the stretching of a given protein, we have looked at the behavior of simple secondary structure elements (alpha-helix, beta-ribbon, and interacting alpha-helices) to estimate the magnitude of the forces involved in their unfolding or separation and the dependence of these forces on the way pulling is carried out as well as on the length of the structural elements. The results point to a hierarchy of forces covering a surprisingly large range and to important orientational effects in the response to external stress.  相似文献   

19.
Conformational energies for inulobiose [beta-D-fructofuranosyl-(2----1)-beta-D-fructofuranoside], a model for inulin, were computed with the molecular mechanics program MMP2(85). The torsion angles of the three linkage bonds were driven in 20 degree increments, and the steric energy of all other parameters was minimized. The linkage torsion angles defined by C-1'-C-2'-O-C-1 (phi) and O-C-1-C-2-O-2 (omega) have minima at +60 degrees and -60 degrees, respectively, regardless of side group orientation; accessible minima exist at other staggered conformations. The torsion angle at the central bond C-2'-O-1-C-1-C-2 (psi) was approximately 180 degrees in all the low-energy conformers. This appears to be generally true for rings linked by three bonds. The fructofuranose rings initially had low-energy 4/3T conformations (angle of pseudorotation, phi 2 = 265 degrees) that were retained except when the linkage conformations created severe inter-residue conflicts. In those cases, almost all puckerings of the furanose rings were found.  相似文献   

20.
Smooth muscle molecular mechanics in airway hyperresponsiveness and asthma   总被引:1,自引:0,他引:1  
Asthma is a respiratory disorder characterized by airway inflammation and hyperresponsiveness associated with reversible airway obstruction. The relative contributions of airway hyperresponsiveness and inflammation are still debated, but ultimately, airway narrowing mediated by airway smooth muscle contraction is the final pathway to asthma. Considerable effort has been devoted towards identifying the factors that lead to the airway smooth muscle hypercontractility observed in asthma, and this will be the focus of this review. Airway remodeling has been observed in severe and fatal asthma. However, it is unclear whether remodeling plays a protective role or worsens airway responsiveness. Smooth muscle plasticity is a mechanism likely implicated in asthma, whereby contractile filament rearrangements lead to maximal force production, independent of muscle length. Increased smooth muscle rate of shortening via altered signaling pathways or altered contractile protein expression has been demonstrated in asthma and in numerous models of airway hyperresponsiveness. Increased rate of shortening is implicated in counteracting the relaxing effect of tidal breathing and deep inspirations, thereby creating a contracted airway smooth muscle steady-state. Further studies are therefore required to understand the numerous mechanisms leading to the airway hyperresponsiveness observed in asthma as well as their multiple interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号