首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Previous studies examining the regulation of the synthesis of G6PDH and 6PGDH in rat liver and adipose tissue have focused on the induction of these enzymes by different diets and some hormones. In rat liver these enzymatic activities seem to be regulated by a mechanism involving changes in the NADPH requirements. In this paper we have studied the effect of changes in the flux through different NADPH-consuming pathways on G6PDH and 6PGDH levels in adipose tissue and on the NADPH/NADP ratio. The results show that: I) an increase in the consumption of NADPH, caused by the activation of either fatty acid synthesis or detoxification systems which consume NADPH, is paralleled by an increase in the levels of these enzymes; II) when the increase in consumption of NADPH is prevented, the G6PDH and 6PGDH levels do not change.Abbreviations G6PDH Glucose-6-Phosphate Dehydrogenase - 6PGDH 6-Phosphogluconate Dehydrogenase - GR Glutathione Reductase - ME Malic Enzyme - tBHP t-Butyl Hydroperoxide - NF Nitrofurantoin - CumOOH Cumene Hydroperoxide  相似文献   

2.
The phosphoglucose isomerase mutant of the respiratory yeast Kluyveromyces lactis (rag2) is forced to metabolize glucose through the oxidative pentose phosphate pathway and shows an increased respiratory chain activity and reactive oxygen species production. We have proved that the K. lactis rag2 mutant is more resistant to oxidative stress (OS) than the wild type, and higher activities of glutathione reductase (GLR) and catalase contribute to this phenotype. Resistance to OS of the rag2 mutant is reduced when the gene encoding GLR is deleted. The reduction is higher when, in addition, catalase activity is inhibited. In K. lactis, catalase activity is induced by peroxide-mediated OS but GLR is not. We have found that the increase of GLR activity is correlated with that of glucose-6-phosphate dehydrogenase (G6PDH) activity that produces NADPH. G6PDH is positively regulated by an active respiratory chain and GLR plays a role in the reoxidation of the NADPH from the pentose phosphate pathway in these conditions. Cytosolic NADPH is also used by mitochondrial external alternative dehydrogenases. Neither GLR overexpression nor induction of the OS response restores growth on glucose of the rag2 mutant when the mitochondrial reoxidation of cytosolic NADPH is blocked.  相似文献   

3.
Hemoglobin rates, hematocrit and glucose-6-phosphate dehydrogenase (G6PD) and glutathione reductase activities were measured in 38 patients with paracoccidioidomycosis treated with ketoconazole or sulfadoxin, and in 13 normal individuals.Ketoconazole-treated patients showed reduced G6PD and glutathione reductase activities. One of these patients was found to be G6PD-deficient and suffered a hemolytic episode during treatment, which, however, did not require interruption of therapy.The authors suggest that patients showing an erythrocyte enzyme defect should be monitored hematologically during treatment with ketoconazole. They also suggest that ketoconazole is an oxidant drug in addition to being a possible inhibitor of antioxidant erythrocyte enzymes.  相似文献   

4.
Summary Previous studies examining regulation of synthesis of Glucose-6-Phosphate and 6-Phosphogluconate dehydrogenase in rat liver have focussed on the induction of these enzymes by different diets and some hormones. However, the precise mechanism regulating increases in the activities of these enzymes is unknown and the factors involved remain unidentified. Considering that many of these metabolic conditions occur simultaneously with the increase of some NADPH consuming pathway, in particular fatty acid synthesis, we suggest that the activities of Glucose-6-Phosphate and 6-Phosphogluconate dehydrogenase could be regulated through a mechanism involving changes in the NADPH requirement. Here, we have studied the effect of changes in the flux through different NADPH consuming pathways on the NADPH/NADP ratio and on Glucose-6-Phosphate and 6-Phosphogluconate levels. The results show that: i) an increase in consumption of NADPH, caused by activation of fatty acid synthesis or the detoxification system which consumes NADPH, is paralleled by an increase in levels of these enzymes; ii) when increase in consumption of NADPH is prevented, Glucose-6-Phosphate and 6-Phosphogluconate dehydrogenase levels do not change.Abbreviations G6PDH Glucose-6-Phosphate Dehydrogenase - 6PGDH 6-Phosphogluconate Dehydrogenase - ME Malic Enzyme - NF Nitrofurantoin - CumOOH Cumene Hydroperoxide - t-BHP t-Butyl hydroperoxide - BCNU 1,3,-Bis (2-chloroethyl)-1-nitrosourea - GR Glutathione Dehydrogenase - 2-ME 2-Mercaptoethanol - DTT Dithiothreitol - NADP B-Nicotinamide-Adenine Dinucleotide Phosphate - NADPH B-Nicotinamide-Adenine Dinucleotide Phosphate Reduced - EDTA Ethylenediaminetetraacetic Acid - GSH Glutathione Reduced Form - GSSG Glutathione Oxidized Form  相似文献   

5.
NADPH is an important molecule in the redox balance of the cell. In this paper, using olive tissue cultures as a model of the function of the NADPH-generating dehydrogenases in the mechanism of oxidative stress induced by severe salinity conditions was studied. When olive (Olea europaea) plants were grown with 200 mM NaCl, a 40% reduction in leaf fresh weight was produced. The content of non-enzymatic antioxidants such as ascorbate and glutathione was diminished between 20% to 39%, whereas the H2O2 content was increased threefold. In contrast, the analysis of the activity and protein contents of the main antioxidative enzymes showed a significant increase of catalase, superoxide dismutase and glutathione reductase. Overall, these changes strongly suggests that NaCl induces oxidative stress in olive plants. On the other hand, while the content of glucose-6-phosphate was increased almost eightfold in leaves of plants grown under salt stress, the content of NAD(P)H (reduced and oxided forms) did not show significant variations. Under salt stress conditions, the activity and protein contents of the main NADPH-recycling enzymes, glucose-6-phosphate dehydrogenase (G6PDH), isocitrate dehydrogenase (ICDH), malic enzyme (ME) and ferrodoxin-NADP reductase (FNR) showed an enhancement of 30-50%. In leaves of olive plants grown with 200 mM NaCl, analysis of G6PDH by immunocytochemistry and confocal laser scanning microscopy showed a general increase of this protein in epidermis, palisade and spongy mesophyll cells. These results indicate that in olive plants, salinity causes reactive oxygen species (ROS)-mediated oxidative stress, and plants respond to this situation by inducing different antioxidative enzymes, especially the NADPH-producing dehydrogenases in order to recycle NADPH necessary for the protection against oxidative damages. These NADP-dehydrogenases appear to be key antioxidative enzymes in olive plants under salt stress conditions.  相似文献   

6.
Alzheimer's disease may arise from or produce oxidative damage in the brain. To assess the responses of the Alzheimer's brain to possible oxidative challenges, we assayed for glutathione, glucose-6-phosphate dehydrogenase, catalase and superoxide dismutase in twelve regions of Alzheimer's disease and aged control brains. In addition, we determined levels of malondialdehyde to evaluate lipid peroxidation in these brain regions. Most brain regions showed evidence of a response to an oxidative challenge, but the cellular response to this challenge differed among brain regions. These data suggest that the entire Alzheimer's brain may be subject to an oxidative challenge, but that some brain areas may be more vulnerable than others to the consequent neural damage that characterizes the disease.  相似文献   

7.
Intermediary metabolites have a crucial impact on basic cell functions. There is a relationship between cellular metabolism and redox balance. To maintain redox homoeostasis, the cooperation of both glutathione and nicotine adenine dinucleotides is necessary. Availability of nicotinamide adenine dinucleotide phosphate (NADPH) as a major electron donor is critical for many intracellular redox reactions. The activity of glucose-6-phosphate dehydrogenase (Zwf1p) and 6-phosphogluconate dehydrogenase (Gnd1p and Gnd2p) is responsible for NADPH formation in a pentose phosphate (PP) pathway. In this study, we examine the impact of redox homoeostasis on cellular physiology and proliferation. We have noted that the Δzwf1 mutant lacking the rate-limiting enzyme of the PP pathway shows changes in the cellular redox status caused by disorders in NADPH generation. This leads to a decrease in reproductive potential but without affecting the total lifespan of the cell. The results presented in this paper show that nicotine adenine dinucleotides play a central role in cellular physiology.  相似文献   

8.
Redox state of pyridine nucleotides of the endoplasmic reticulum (ER) lumen was determined in different nutritional conditions. NADPH-dependent cortisone reduction and NADP+-dependent cortisol oxidation were measured in rat liver microsomes, by utilizing the luminal 11β-hydroxysteroid dehydrogenase type 1 activity. Cortisone reduction decreased, while cortisol oxidation increased during onward starvation, showing that the luminal NADPH/NADP+ ratio was substantially decreased. Cortisone or metyrapone addition caused a smaller decrease in NADPH fluorescence in microsomes from starved rats. The results demonstrate that nutrient supply is mirrored by the redox state of ER luminal pyridine nucleotides.  相似文献   

9.
The involvement of reactive oxygen species in chromate-induced genotoxicity has been postulated. Because intracellular antioxidants help in eliminating the reactive species of oxygen, we have investigated both the prooxidant and antioxidant status of human leukemic T-lymphocyte MOLT4 cells exposed to nontoxic levels of chromium(VI) in culture. The cells treated with 0 200 M potassium chromate in a salts/glucose medium for 2 h were found to contain significantly lower levels of both small molecular weight and macromolecular antioxidants. In particular, the levels of glutathione and ascorbate were found to decrease with increased doses of chromate exposure in a dose-dependent manner. As little as 10 M chromate was found to decrease these small molecular weight antioxidants significantly (p<0.01). The macromolecular antioxidants, such as glutathione peroxidase, catalase, glutathione reductase, glucose-6-phosphate dehydrogenase and superoxide dismutase were also significantly (p<0.01) decreased by exposing the cells to as little as 10 M chromate. Concomitantly there was a dose-dependent increase in intracellular H2O2 accumulation in cells exposed to chromium(VI). These results indicate that chromate-induced genotoxicity may be due, at least in part, to decreased levels of intracellular antioxidants in conjunction with an increased production of the reactive oxygen species.  相似文献   

10.
In this study, the in vitro effects of some sulfonamide derivatives, which are carbonic anhydrase inhibitors, on the enzymes activities of glucose-6-phosphate dehydrogenase, 6-phospho gluconate dehydrogenase and glutathione reductase were investigated. For this purpose, these three enzymes were purified from human erythrocytes. Purification procedure composed of four steps; preparation of the hemolysate, ammonium sulfate precipitation, 2′,5′-ADP Sepharose 4B affinity chromatography, and gel filtration chromatography on Sephadex G-200. 5-(3α-Hydroxy-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (1), 5-(3α,12α-Dihydroxy-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (2), 5-(3α,7α,12α-Trihydroxy-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (3), 5-(3α,Acetoxy-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (4), 5-(3α,7α,12α-Triacetoxy-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (5), 5-(3,7,12-Trioxo-5-β-cholanamido)-1,3,4-thiadiazole-2-sulfonamide (6), acetazolamide, and dorzolamide were tested in this experiment. Compounds 3, 5, and dorzolamide showed inhibitory effects on the activity of 6-phosphogluconate dehydrogenase, and I50 values and Ki constants were calculated as 0.0601 mM, 0.00253 mM, and 1.41 mM and 0.0878 ± 0.0274 mM, 0.0042 ± 0.0009 mM, and 3.1446 ± 0.2081 mM, respectively. Glutathione reductase was also inhibited by 1 and 2. I50 values and Ki constants were 0.0471 mM and 0.0723 ± 0.0388 mM for 1 and 0.0045 mM and 0.0061 ± 0.0014 mM, for 2. If these sulfonamide derivatives are proposed as drugs, some of which are being used in glaucoma treatment such as acetazolamide and dorzolamide, these results should be taken into consideration concerning via these enzymes.  相似文献   

11.
Urig S  Lieske J  Fritz-Wolf K  Irmler A  Becker K 《FEBS letters》2006,580(15):3595-3600
The substrate spectrum of human thioredoxin reductase (hTrxR) is attributed to its C-terminal extension of 16 amino acids carrying a selenocysteine residue. The concept of an evolutionary link between thioredoxin reductase and glutathione reductase (GR) is presently discussed and supported by the fact that almost all residues at catalytic and substrate recognition sites are identical. Here, we addressed the question if a deletion of the C-terminal part of TrxR leads to recognition of glutathione disulfide (GSSG), the substrate of GR. We introduced mutations at the putative substrate binding site to enhance GSSG binding and turnover. However, none of these enzyme species accepted GSSG as substrate better than the full length cysteine mutant of TrxR, excluding a role of the C-terminal extension in preventing GSSG binding. Furthermore, we show that GSSG binding at the N-terminal active site of TrxR is electrostatically disfavoured.  相似文献   

12.
To increase the NAD(P)H-dependent xylitol production in recombinant Saccharomyces cerevisiae harboring the xylose reductase gene from Pichia stipitis, the activity of glucose 6-phosphate dehydrogenase (G6PDH) encoded by the ZWF1 gene was amplified to increase the metabolic flux toward the pentose phosphate pathway and NADPH regeneration. Compared with the control strain, the specific G6PDH activity was enhanced approximately 6.0-fold by overexpression of the ZWF1 gene. Amplification in the G6PDH activity clearly improved the NAD(P)H-dependent xylitol production in the recombinant S. cerevisiae strain. With the aid of an elevated G6PDH level, maximum xylitol concentration of 86 g/l was achieved with productivity of 2.0 g/l h in the glucose-limited fed-batch cultivation, corresponding to 25% improvement in volumetric xylitol productivity compared with the recombinant S. cerevisiae strain containing the xylose reductase gene only.  相似文献   

13.
Ageing-induced changes in glutathione system of sunflower seeds   总被引:2,自引:1,他引:2  
The glutathione system is thought to be involved in defence mechanisms present in plant tissues. The efficacy of this system was evaluated in large seeds of sunflower ( Helianthus annuus L. cv. Peredovik) in response to accelerated ageing (43°C/75% relative humidity from 1 to 11 days). Differences between the embryo axis and cotyledons in relation to the glutathione system were also investigated. Additionally, lipid peroxidation was determined by measuring the malondialdehyde (MDA) content. All assays were performed using dry seeds and seeds subsequently hydrated by imbibition in distilled water for 12 h at 25°C. Accelerated ageing caused a marked decrease in seed viability, accompanied by an increase in mean germination time. There were no changes in total glutathione in dry seeds. However, the distribution in its reduced (GSH) and oxidized (GSSG) forms revealed that ageing produced a slow conversion from GSH to GSSG. As the ageing period increased, this effect was accompanied by a decrease in glutathione reductase (GR, EC 1.6.4.2) activity. The results also indicated that the GSH system exerts a different response in the embryo axis as compared with the cotyledon: (1) the GSH levels decreased less in the cotyledons than in axes of aged seeds, and (2) the GSSG level in cotyledons was independent of ageing, while its amount increased in aged embryo axes. These different responses, in conjunction with the lower MDA levels in large as compared with small seeds, indicate a possible protective role of the reserve lipids. The efficacy of the GSH system in aged seeds was associated with seed viability, as revealed by multiple regression analysis. Upon imbibition, aged seeds were able to restore their GSH levels, reaching values approximating those of unaged seeds.  相似文献   

14.
The methemoglobin reductase system plays a vital role in maintaining the equilibrium between hemoglobin and methemoglobin in blood. Exposure of red blood cells to oxidative stress (pathological/physiological) may cause impairment to this equilibrium. We studied the status of erythrocytic methemoglobin and the related reductase system during Plasmodium yoelii nigeriensis infection in mice and P. berghei infection in mastomys. Malaria infection was induced by intraperitoneal inoculation with 106 infected erythrocytes. The present investigation revealed a significant decrease in the activity of methemoglobin reductase, with a concomitant rise in methemoglobin content during P. yoelii nigeriensis infection in mice erythrocytes. This was accompanied with a significant increase in reduced glutathione and ascorbate levels. The activity of lactate dehydrogenase, glucose 6-phosphate dehydrogenase and glutathione reductase increased with a progressive rise in parasitemia. However, no methemoglobin or associated reductase activity was detected in normal and P. berghei-infected mastomys. P. berghei infection in mastomys resulted in an increase in the level of reduced glutathione and ascorbate in erythrocytes, and also in the activity of lactate dehydrogenase, glucose 6-phosphate dehydrogenase and glutathione reductase. These results suggest that antioxidants/antioxidant enzymes may prevent or reduce the formation of methemoglobin in the host and thereby protect the host from methemoglobinemia.  相似文献   

15.
Effects of long-term sodium chloride salinity (100 and 200 mM NaCl; ECe = 6.85 and 12.3 dS m–1) were studied in tolerant (Kharchia 65, KRL 19) and susceptible (HD 2009, HD 2687) wheat genotypes. NaCl decreased relative water content (RWC), chlorophyll content (Chl), membrane stability index (MSI) and ascorbic acid (AA) content, and increased the contents of hydrogen peroxide, thiobarbituric acid reactive substances (TBARS), and activities of superoxide dismutase (SOD), ascorbate peroxidase (APOX) and glutathione reductase (GR). Kharchia 65 showed lowest decline in RWC, Chl, MSI and AA content, lowest increase in H2O2 and TBARS contents and higher increase in SOD and its isozymes, APOX and GR, while HD2687 showed the highest decrease in AA content, highest increase in H2O2 and TBARS contents and smallest increase in activities of antioxidant enzymes. KRL 19 and HD 2009 showed intermediate response both in terms of oxidative stress and antioxidant activity.  相似文献   

16.
The present study demonstrates the expression of hexose-6-phosphate dehydrogenase and 11 beta-hydroxysteroid dehydrogenase type 1 in human neutrophils, and the presence and activity of these enzymes in the microsomal fraction of the cells. Their concerted action together with the previously described glucose-6-phosphate transporter is responsible for cortisone-cortisol interconversion detected in human neutrophils. Furthermore, the results suggest that luminal NADPH generation by the cortisol dehydrogenase activity of 11 beta-hydroxysteroid dehydrogenase type 1 prevents neutrophil apoptosis provoked by the inhibition of the glucose-6-phosphate transporter. In conclusion, the maintenance of the luminal NADPH pool is an important antiapoptotic factor in neutrophil granulocytes.  相似文献   

17.
The effect of oxidants (hydrogen peroxide and juglone) on the growth, respiration, and naphthoquinone synthesis in the fungus Fusarium decemcellulare was studied. The addition of the oxidants to the exponential-phase fungus inhibited cell respiration (either partially or completely, depending on the oxidant concentration), culture growth, and naphthoquinone synthesis. The treatment of fungal cells with nonlethal concentrations of H2O2 (below 0.25 mM) and juglone (below 0.1 mM) induced the resistance of cell respiration to cyanide. The residual respiration in the presence of cyanide could be inhibited by benzohydroxamic acid, indicating the occurrence of alternative oxidase. Increased concentrations of oxidants (0.25 mM juglone and 0.5 mM H2O2) rapidly and irreversibly inhibited cell respiration. These observations suggest that the mitochondrial respiratory chain of fungal cells exposed to oxidative stress is subject to the action of active oxygen species. The treatment of fungal cells with nonlethal concentrations of H2O2 and juglone activated cellular glutathione reductase and glucose-6-phosphate dehydrogenase, which are protective enzymes against oxidative stress.  相似文献   

18.
葡萄糖-6-磷酸脱氢酶(G6PD)在人皮肤黑色素瘤A375细胞中处于高表达与高活性状态, 但G6PD在黑色素瘤发生发展过程中的作用及其具体机制尚不明确.本文在前期运用 siRNA方法构建G6PD敲减的黑色素瘤A375稳转细胞(A375-G6PDΔ)基础上,构建表达载体pBabe-puro-G6PDWT在A375-G6PDΔ细胞中过表达野生型的G6PD基因,从而构建G6PD表达恢复的稳转细胞(A375-G6PDΔ-G6PDWT).3株细胞A375-WT、A375-G6PDΔ和 A375-G6PDΔ-G6PDWT经G6PD酶活性测定、MTT测定、克隆形成实验、流式细胞仪分析细胞周期和Western 印迹检测.结果显示,A375-G6PDΔ-G6PDWT细胞的G6PD蛋白表达量 (0.847 ± 0.080)及其活性(0.394 ± 0.029)分别是A375-G6PDΔ的3.28倍(P<0.01) 和7.34倍(P<0.01),分别是A375-WT细胞的91-57%和2.12倍(P<0.05).与A375-WT细 胞相比,A375-G6PDΔ细胞G0/G1期细胞数增加,S期细胞数减少,增殖指数PI降低了25-70%(P<0.05),细胞周期蛋白D1/D2、细胞周期蛋白E表达分别下降37.4%、54.3% (P<0.01)和17.3%;而A375-G6PDΔ-G6PDWT细胞呈现G1/S期阻滞解除,细胞周期蛋白D1/D2蛋白分别恢复到A375-WT细胞的89.5%和87.6%,细胞周期蛋白E表达未见 恢复,呈现生长增殖和克隆形成率的恢复并接近于A375-WT细胞. 结果提示,G6PD通 过细胞周期蛋白D1/D2调控人皮肤黑色素瘤A375细胞G1期向S期转换的进程,这为黑色 素瘤发病机制的研究提供了新的思路.  相似文献   

19.
Hyperglycemia is associated with metabolic disturbances affecting cell redox potential, particularly the NADPH/NADP+ ratio and reduced glutathione levels. Under oxidative stress, the NADPH supply for reduced glutathione regeneration is dependent on glucose-6-phosphate dehydrogenase. We assessed the effect of different hyperglycemic conditions on enzymatic activities involved in glutathione regeneration (glucose-6-phosphate dehydrogenase and glutathione reductase), NADP(H) and reduced glutathione concentrations in order to analyze the relative role of these enzymes in the control of glutathione restoration. Male Sprague-Dawley rats with mild, moderate and severe hyperglycemia were obtained using different regimens of streptozotocin and nicotinamide. Fifteen days after treatment, rats were killed and enzymatic activities, NADP(H) and reduced glutathione were measured in liver and pancreas. Severe hyperglycemia was associated with decreased body weight, plasma insulin, glucose-6-phosphate dehydrogenase activity, NADPH/NADP+ ratio and glutathione levels in the liver and pancreas, and enhanced NADP+ and glutathione reductase activity in the liver. Moderate hyperglycemia caused similar changes, although body weight and liver NADP+ concentration were not affected and pancreatic glutathione reductase activity decreased. Mild hyperglycemia was associated with a reduction in pancreatic glucose-6-phosphate dehydrogenase activity. Glucose-6-phosphate dehydrogenase, NADPH/NADP+ ratio and glutathione level, vary inversely in relation to blood glucose concentrations, whereas liver glutathione reductase was enhanced during severe hyperglycemia. We conclude that glucose-6-phosphate dehydrogenase and NADPH/NADP+ were highly sensitive to low levels of hyperglycemia. NADPH/NADP+ is regulated by glucose-6-phosphate dehydrogenase in the liver and pancreas, whereas levels of reduced glutathione are mainly dependent on the NADPH supply.  相似文献   

20.
In the bivalve mollusksCrenomytilus grayanus, Mizuhopecten yessoensis, Mercenaria stimpsoni, andPeronidia venulosa, the activity of hexokinase (HK) and pyruvate kinase (PK), the key enzymes of glycolysis, and of glucose-6-phosphate dehydrogenase (G6PhDH), the main enzyme of the pentose phosphate path, was determined in the presence of heightened cadmium concentrations (500 mg/l). Under the effect of cadmium, the enzyme activity either decreased immediately or underwent an initial increase and decreased later. Such a response is consistent with the general theory of stress and suggests a difference in the adaptive capacities of the mollusks studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号