首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The importance of the cynomolgus monkey as a model for human reproductive medicine prompted this examination of epididymal sperm morphology. Computer-aided sperm morphological analysis was used for the first time to provide morphometric data on sperm heads as they traversed the epididymal duct of Macaca fascicularis. The duct was divided into six regions, starting close to the testis (proximal) and ending close to the vas deferens (distal). To determine the androgen-dependence of the changes, one group of animals received a GnRH-antagonist (Cetrorelix, Asta Medica, Frankfurt, Germany) to induce testicular regression and lower epididymal androgens, while a control group received only vehicle. Epididymides were removed 16 and 25 days after treatment, and sperm heads were analysed by a computer-assisted morphometric analyser. Cluster analysis revealed swollen sperm head cells in proximal regions 1 and 2 of the epididymis, but fewer such forms distally. Normal head shapes became the majority in region 4 and these underwent a gradual but statistically significant decrease in size (area, perimeter, length, width) and shape as they reached the distal regions. In the animals given Cetrorelix, sperm with swollen heads were found more distally than in the controls, although they were also never present in the distal cauda (region 6). Normal heads still became predominant in region 4 after 16 days treatment, and in region 6 after 25 days. The normal forms in the cauda epididymidis of treated animals were significantly larger than cells from control animals. We conclude that epididymal sperm maturation in the monkey is characterised by both a loss of sensitivity to distortion on air-drying, and by a decrease in sperm head size. The former, but not the latter, is attained by sperm in androgen-deficient epididymides from GnRH-antagonist-treated monkeys.  相似文献   

2.
The bat Corynorhinus mexicanus provides an interesting experimental model for the study of epididymal sperm maturation because after spermatogenesis and the regression of the testes, this bat stores sperm in the epididymal cauda for several months. Earlier research conducted by our group suggested that sperm maturation in this species must be completed in the caudal region of the epididymis. One of the major signal transduction events during sperm maturation is the tyrosine phosphorylation of sperm proteins. The aim of the present study was to comparatively evaluate tyrosine phosphorylation in spermatozoa obtained from the caput, corpus and cauda of the epididymis during the sperm storage period. The maturation status of the sperm was determined by the percentage of capacitation and tyrosine phosphorylation in sperm obtained from the epididymis. The highest proportion of tyrosine phosphorylation was registered after the sperm had reached the cauda epididymis during the middle of the storage period. In conclusion, in Corynorhinus mexicanus and most likely in other chiropteran species with an asynchronous male reproductive pattern, epididymal sperm maturation ends in the caudal region of the epididymis and is related to the time that the sperm remains in the epididymis before mating activity.  相似文献   

3.
Recently, a new head-to-head sperm association was described in the rat during epididymal transit. This association was called a rosette and a filamentous and PAS-positive material was also described joining the sperm heads. The begining of rosette formation in the epididymis and the linking material between heads have remained unclear. Epididymides of adult rats were fixed by vascular perfussion and thin sections of the principal regions were studied by transmission electron microscopy (TEM). The first evidence of rosette formation was observed in the distal corpus. Rosettes were isolated from the distal corpus and processed for immunogold and immunofluorescence microscopy to detect an epididymal glycoprotein called DE. This glycoprotein is secreted by the corpus epididymis and appears to be involved in sperm maturation. Colloidal gold marks and fluorescence were observed in the linking material between the sperm heads. The results presented here show that rosettes begin to appear following the sites of DE secretion and permit us to postulate that DE is involved in rosette formation and constitutes another example of gamete-epididymal interaction. © 1994 Wiley-Liss, Inc.  相似文献   

4.
Mammalian spermatozoa undergo maturation as they pass through the epididymis. Maturation is accompanied by the oxidation of thiols to disulfides. Disulfides are probably involved in sperm chromatin condensation and tail structure stabilization. In this work, we used the fluorescent thiol-labeling agent monobromobimane to determine the changes occurring in thiols and disulfides in rat sperm heads and tails during maturation. Spermatozoa were obtained from testis, epididymis (caput, corpus, cauda, and vas deferens), and ejaculate. Intact spermatozoa were labeled with monobromobimane, with or without pretreatment with dithiothreitol. Labeling was evaluated microscopically, and quantitative analysis was carried out spectrofluorimetrically with labeled globin used as a standard. Samples were also analyzed by gel electrophoresis. The total amount of thiols and disulfides remained the same during the entire period of sperm maturation (26 +/- 0.5 nmoles thiols + disulfides/10(6) spermatozoa). However, the reactive thiols decreased markedly between the corpus and the cauda (from greater than 90% of total in testis and 75% in corpus to about 25% in cauda), with little or no further change in vas deferens and ejaculated sperm. Trypsin treatment followed by sucrose gradient was used to separate the heads from the tails. Thiols comprised 84% of the total SH + SS in the heads and 74% in the tails of caput spermatozoa, decreasing to 14% and 45%, respectively, in cauda sperm. Thus, the decrease in reactive thiols involved both heads and tails-oxidation to disulfides being very marked in the head. Electrophoresis revealed that oxidation of thiols to disulfides occurred in many protein fractions during maturation in the epididymis.  相似文献   

5.
Seasonal changes in epididymal weight and histology were studied in relation to testicular function in the adult spiny-tailed lizard, Uromastix hardwicki, over a period of 1 year. The eipdidymal weights, tubular diameter, and epithelial height increased in March, reaching a peak in April. This peak coincided with sperm maturation, elevated plasma testosterone levels, and release of sperm into the epididymis. The epididymal weights decreased in May following a sudden regression of the testis early in the month. The epididymal weights decreased further during June and remained low until February. The diameter of the duct and the height of the epithelial cells also decreased in May and the epididymal epithelium maintained a low histological profile from June to February. The fall testicular recrudescence was not accompanied by a change either in the weight or the histological structure of the epididymis. Administration of oFSH (0.1 mg) daily for 7 days during the sexually quiescent period induced a significant increase in the weight of the epididymis and epithelial height of the duct. Administration of testosterone alone, (2.0 mg) daily for the same period and under identical conditions, did not induce a change in the weight of epididymis or its histology. A possible permissive role of gonadotrophin in the hormonal regulation of the lizard epididymis has been suggested.  相似文献   

6.
Changes in the number and distribution of spermatozoa in the epididymis of the adult brown marsupial mouse were examined during July/August in mated and unmated males. The effects of mating on epididymal sperm populations were studied in 2 groups of males each mated 3 times and compared with the number and distribution of spermatozoa in the epididymides of 4 unmated control groups. One testis and epididymis were removed from each animal (hemicastration) either before or early in the mating season to provide information on initial sperm content and distribution. The contralateral side was removed later in the mating season to examine the effects of mating or sexual abstinence on epididymal sperm distribution. Epididymal sperm number peaked in both the distal caput and distal corpus/proximal cauda epididymidis in late July. The total number of spermatozoa, including those remaining in the testis, available to each male at the beginning of the mating season in early August was approximately 4.4 x 10(6)/side. Although recruitment of spermatozoa into the epididymis from the testis continued until mid-August, sperm content of the epididymis reached a peak of about 3.5 x 10(6)/epididymis in early August. At this time approximately 0.9 x 10(6) spermatozoa remained in the testis which had ceased spermatogenic activity. Throughout the mating season, epididymal spermatozoa were concentrated in the distal corpus/proximal cauda regions of the epididymis and were replenished by spermatozoa from upper regions of the duct. Relatively few spermatozoa were found in the distal cauda epididymidis, confirming a low sperm storage capacity in this region. A constant loss of spermatozoa from the epididymis, probably via spermatorrhoea, occurred throughout the mating season and very few spermatozoa remained in unmated males in late August before the annual male die-off. Mating studies showed that an average of 0.23 x 10(6) spermatozoa/epididymis were delivered per mating in this species, but the number of spermatozoa released at each ejaculation may be as few as 0.04 x 10(6)/epididymis when sperm loss via spermatorrhoea is taken into account. We suggest that the unusual structure of the cauda epididymidis, which has a very restricted sperm storage capacity, may function to limit the numbers of spermatozoa available at each ejaculation and thus conserve the dwindling epididymal sperm reserves in order to maximize the number of successful matings which are possible during the mating season.  相似文献   

7.
Spermatozoa leave the testis in an immature functional state and are devoid of self defense mechanisms. They will become motile and ready to fertilize only after their descent and their progressive maturation within the epididymal tubule. The epididymis also ensures the survival and the protection of male gametes while they go through the epididymis and during their storage in between two ejaculations. Amongst common stresses that concern spermatozoa, oxidative stress occupies a peculiar and dual position. While the events of epididymal sperm maturation necessitate a given level of oxidation, spermatozoa are particularly sensitive to oxidative damage. A fine balance between beneficial oxidation versus detrimental oxidative damage has to be maintained in the epididymal environment. Antioxidant enzymes of the glutathione peroxidase family play a key role in controling such a situation in the epididymis.  相似文献   

8.
ADAM2 (fertilin β) is a sperm surface protein reported in several mammalian species. However, the presence of ADAM2 in the male reproductive system and sperm of the camel is not well known. The present study was to clarify the localization and expression of ADAM2 in the dromedary camel testis, epididymis and spermatozoa during rutting season using immunohistochemistry (IHC) and the quantitative real-time polymerase chain reaction (qPCR). Tissue samples were obtained from the testis (proximal and distal) and epididymis (caput, corpus, and cauda) from eight mature male camels. Epididymal and ejaculated sperms were collected from four other fertile camels. IHC analysis clearly showed the localization of ADAM2 protein in the spermatocytes and the round and elongated spermatids of the testis, in the epithelial cells along the epididymis tract, on the posterior head of the sperm within the cauda epididymis, and on the acrosomal cap of both the epididymal and ejaculated sperm. The expression of camel ADAM2 mRNA was significantly higher (P < 0.05) in the testis when compared with the epididymis. These findings may suggest an important role of ADAM2 in the fertility of male dromedary camels.  相似文献   

9.
Proacrosin from guinea pig cauda epididymal sperm has a lower molecular weight compared with the testicular zymogen. In this study, we have examined the structural basis of this change and where the conversion in proacrosin molecular weight occurs during sperm maturation. Immunoblotting of trifluoromethanesulfonic acid-deglycosylated testicular and cauda epididymal sperm extracts with antibody to guinea pig testicular proacrosin demonstrated that the polypeptide backbones of proacrosins from the testis and cauda epididymal sperm had the same molecular weights (approximately 44,000). Keratanase, an endo-beta-galactosidase specific for lactosaminoglycans, partially digested testicular proacrosin but had no effect on proacrosin from cauda epididymal sperm. In extracts of testis, caput epididymis, and corpus epididymis analyzed by immunoblotting, anti-proacrosin recognized a major antigen with an apparent molecular weight (Mr) of 55,000, although a 50,000-Mr minor antigen began to appear in the corpus epididymis. By contrast, extracts of cauda epididymis, vas deferens, and cauda epididymal sperm had the 50,000 Mr protein as the only immunoreactive antigen. By enzymography following electrophoresis, the major bands of proteolytic activity in extracts of testis, caput epididymis, and corpus epididymis had 55,000 Mr. A band of protease activity with 55,000 Mr also appeared in extracts of the corpus epididymis. However, the most prominent bands of proteolytic activity in cauda epididymis, vas deferens, and cauda epididymal sperm had 50,000 Mr. In addition, two other major protease activities were detected with 32,000 and 34,000 Mr; the relationships of these proteases to proacrosin are unclear. From these results, we conclude that the oligosaccharides of proacrosin are altered during epididymal transit and that this modification occurs in the corpus epididymis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Maturation of spermatozoa in the epididymis of the Chinese hamster   总被引:4,自引:0,他引:4  
Chinese hamster spermatozoa gain their ability to move when they descend from the testis to the distal part of the caput epididymis, but it is not until they enter the corpus epididymis that they become capable of fertilizing eggs. The maturation of the spermatozoa proceeds as they further descend the tract and perhaps continues even in the vas deferens. During transit between the distal caput and proximal cauda epididymides, small membrane-limited vesicles (and tubules) appear on the plasma membrane over the acrosomes of the spermatozoa. The number of vesicles appearing on the sperm brane reaches a maximum when the spermatozoa are in the proximal cauda epididymis. It declines sharply in the distal cauda epididymis. Spermatozoa in the vas deferens are free of the vesicles. The origin, chemical nature, and functional role of the vesicles that appear on the sperm surface during epididymal transit must be the subject of further investigation.  相似文献   

11.
The epididymis has been understudied, in part due to its cancer resistance and the development of effective technologies for sperm injection and in vitro fertilization. However, it is worthy of study because--absent advanced reproductive technology--its proper function is essential for conceiving children: sperm leaving the testis are immature and nonfertile. Epididymal functions can be divided into several general categories (1) concentration of sperm; (2) functional maturation; (3) storage in a quiescent state until ejaculation; (4) removal of degenerating sperm; (5) provision of appropriate conditions for survival; (6) transport by the myoid cells; (7) protection; (8) maintenance of the blood epididymal barrier. In the past decade investigators have focused on those maturational changes of the integral proteins of the sperm plasma membrane which are directly related to sperm-ova interactions. It has traditionally been thought that changes in the sperm plasma membrane proteins were limited to simple binding or removal of proteins or interactions with the proteases, glycosylases and glycotransferases present. However, the epididymis can also release secretory products in bulk through apical blebs and inject integral membrane proteins with epididymosomes which fuse with the plasma membrane. The epididymis also activates and cleaves enzymes present on the sperm surface (e.g., germ cell angiotensin converting enzyme), thus enabling them to modify proteins on the sperm membrane. Aside from the need to understand epididymal function relative to the sperm, basic science on epididymal physiology is warranted because it may help us understand the functioning of androgens, protection of tissues from oxidative damage, and resistance to cancer and benign hyperplasic growth.  相似文献   

12.
We found an intra-acrosomal antigen of about 155,000 daltons (155 kDa) in a survey using the monoclonal antibody MC101 raised against mouse cauda epididymal spermatozoa. Morphological studies by means of indirect immunofluorescence and immunogold electron microscopy localized the antigen to the cortex region of the anterior acrosome. Avidin biotin complex immunocytochemistry initially demonstrated a faint signal at the anterior acrosome in the testis spermatozoa that increased in intensity as the sperm moved toward the distal epididymis. This incremental immunoreactivity was also confirmed by immunoblotting following one-dimensional SDS-PAGE. The 155 kDa protein band was immunostained, and it was much more intense in the cauda epididymal than in the caput and corpus epididymal spermatozoa. Only a trace or no immunostain was evident in the caput or testis spermatozoa. The antigen localization did not change during passage through the epididymis, being confined at the cortex region of the anterior acrosome. The epididymal epithelial cells were not immunostained. These findings suggested that the 155 kDa protein is biochemically modified, further implying that the biochemical alteration of intra-acrosomal material is involved in sperm maturation in the epididymis. © 1995 wiley-Liss, Inc.  相似文献   

13.
Lactoferrin has been for the first time purified from the porcine cauda epididymal fluid as a 70 kDa protein. Both Western and Northern blot analyses show that lactoferrin is synthesized in the regions from the distal caput to the cauda epididymis and secreted into the luminal fluid. Lactoferrin is first secreted as a 75 kDa glycoprotein and its carbohydrate moieties are gradually digested to form 70 kDa protein in the cauda epididymis. Lactoferrin has already bound to the surface of the epididymal sperm because the anti-lactoferrin antiserum induces the mature sperm tail-to-tail agglutination. These results strongly suggest new physiological functions of lactoferrin on the sperm maturation in the epididymis. Mol. Reprod. Dev. 47:490–496, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

14.
In previous studies we identified an epididymal gene that exhibits homology to the cystatin family of cysteine protease inhibitors. The expression of this gene, termed CRES (cystatin-related epididymal and spermatogenic), was shown to be highly restricted to the proximal caput epididymal epithelium with less expression in the testis and no expression in the 24 other tissues examined. In this report, studies were carried out to examine CRES gene expression in the testis as well as to characterize the CRES protein in the testis and epididymis. In situ hybridization experiments revealed that within the testis CRES gene expression is stage-specific during spermatogenesis and is exclusively expressed by the round spermatids of Stages VII-VIII and the early elongating spermatids of Stages IX and X. Immunohistochemical studies demonstrated that CRES protein was transiently expressed in both the testis and epididymis. Within the testis the protein was localized to the elongating spermatids, whereas within the epididymis CRES protein was exclusively synthesized by the proximal caput epithelium and then secreted into the lumen. Surprisingly, the secreted CRES protein had completely disappeared from the epididymal lumen by the distal caput epididymidis. Western blot analysis of testicular and epididymal proteins showed that the CRES antibody specifically recognized a predominant 19 kDa CRES protein and a less abundant 14 kDa form. These observations suggest that the CRES protein performs a specialized role during sperm development and maturation. © 1995 Wiley-Liss, Inc.  相似文献   

15.
The role of the excurrent duct system in producing and/or eliminating morphologically abnormal spermatozoa may modify the semen parameters and interfere with sperm fertilizing capacity. To study this process, changes in the morphology of spermatozoa during their transit through the reproductive tract in sexually mature rabbits were investigated. The incidence of head, midpiece and tail abnormalities as well as of multiple defects in a single spermatozoon, and the position of the cytoplasmic droplet along the sperm midpiece were evaluated in samples from the testis, 6 regions of the epididymis and the vas deferens. Spermatozoa were characterized by rapid migration of the cytoplasmic droplet when passing from the proximal to the distal caput of the epididymis, and spermatozoa with no droplet predominated in the distal epididymis and vas deferens. In passing from the testis to the proximal caput of the epididymis, the incidence of spermatozoa with an abnormal midpiece and those with multiple defects decreased significantly. The proportion of spermatozoa with abnormal heads was also lower in the testis, but no statistically significant differences were found, whereas there was no change in the proportion of those with abnormal tails. These results indicate that there must be a mechanism for the disposal of defective spermatozoa. No evidence of spermiophagy by luminal macrophages was observed in the extracts, although a few spermatozoa exhibited signs of degeneration, suggesting, that although intraepithelial phagocytosis has not been clearly demonstrated in the nonexperimental rabbit, sperm cells may undergo a form of autolysis within the lumen of the duct.  相似文献   

16.
Changes of chromosomal basic proteins of rats have been followed during transformation of spermatids into spermatozoa in the testis and during maturation of spermatozoa in the epididymis. Rat testis chromatin has been fractionated on the basis of differing sensitivity to shearing, yielding a soluble fraction and a condensed fraction. The sperm histone is found in the condense fraction. Somatic-type histones are found in both fractions. The somatic-type histones in the condensed fraction contains much more lysine-rich histone I, than does the somatic-type histones in the soluble fraction. This may suggest that the lysine-rich histone I is the last histone to be displaced during the replacement of somatic-type histones by sperm histone. After extensive shearing followed by sucrose centrifugation, the condensed portion of testis chromatin can be further fractionated into two morphologically distinctive fractions. One is a heavy fraction possessing an elongated shape typical of the head of late spermatids. The other is a light fraction which is presumably derived from spermatids at earlier stages of chromatin condensation and which is seen as a beaded structure in the light microscope. Sperm histone of testis chromatin can be extractable completely by guanidinium chloride without a thiol, wheras 2-mercaptoethanol is required for extraction of sperm histone from caput and cauda epididymal spermatozoa. The light fraction of the condensed testis chromatin contains unmodified and monophospho-sperm histone. The sperm histones of the heavy fraction is mainly of monophospho and diphospho species, whereas unmodified and monophosphosperm histones are found in caput and cauda epididymal spermatozoa. Labeling of cysteine sulfhydryl groups of sperm histone releases by 2-mercaptoethanol treatment shows that essentially all of the cysteine residues of sperm histone in testis chromatin are present as sulfhydryl groups, while those of sperm histone isolated from mature (cauda epididymal) spermatozoa are present as disulfide forms and approximately 50% of the cysteine residues of sperm histone obtained from caput epididymal spermatozoa are in disulfide forms. These results suggest that phosphorylation of sperm histone is involved in the process of chromatin condensation during transformation of spermatozoa in the epididymis.  相似文献   

17.
In mammals, the epididymis has numerous interrelated functions including absorptive and secretory activity that affect luminal environment and cell membrane, and the maturation and storage of sperm. Spermatozoa acquire their motility and fertilizing ability during their passage through the epididymis and the motility of epididymal spermatozoa should be a balance between the maturation of flagellum and the inhibition of the flagellar machinery. In this study maturational change in sperm characteristics were evaluated in the epididymis of donkey. Spermatozoa collected from four portions of the epididymis (head, cranial corpus, caudal corpus, tail) were compared before and after ejaculation for viability, mitochondrial activity, kinetic parameters, and morphology. A significant increase in the mitochondrial activity along the epididymis was reported, suggesting a possible involvement in the motion mechanism. This should be corroborated by the significant correlation between mitochondrial activity and the total and progressive motility and the increase in velocities of spermatozoa recorded by computer-assisted sperm analysis. The percentage of most of the abnormal spermatozoa were similar in all tracts, with a great variability between jackasses. Only the bent midpiece percentage decreased significantly along epididymis. A significant increase in the percentage of distal cytoplasmic droplets (DCD), and a simultaneous decrease in the proximal cytoplasmic droplets (PCD), was found. The DCD fell down after ejaculation suggesting the late loss of the cytoplasmic residual (DCD) in the donkey, as hypothesized in the stallion. Because the prevalence of PCD were similar in both tail epididymal and ejaculated spermatozoa, a defect of the maturative process in the PCD sperm should be speculated.  相似文献   

18.
The epididymis is a long, tightly coiled tube within the lumen of which sperm matures. Sperm maturation involves morphological and biochemical changes in the sperm plasma membrane in response to epididymal secretions and their various proteins. Some of these proteins become outer membrane components while others become integral membrane proteins; transfer of some proteins to the sperm plasma membrane may be mediated by epididymosomes. Nevertheless, the molecular pathways by which spermatozoa acquire fertilizing capacity during their transit through the epididymis remain ambiguous. In a recent study of stallion epididymal sperm, we found that sperm harvested from different parts of the epididymis (caput, corpus and cauda) had a varying, but generally poor, ability to undergo the acrosome reaction in vitro. At ejaculation, however, sperm mix with seminal plasma which contains various components, including the small membranous vesicles known as prostasomes, that may enable the sperm to undergo physiological activation. Seminal plasma components may have a 'washing' effect and help to remove 'de-capacitation' factors that coat the sperm during storage in the cauda epididymis; alternatively seminal plasma and prostasomes may contain factors that more directly promote sperm activation. This article reviews current information on the roles of epididymal and accessory gland fluids on the acquisition of fertilizing capacity by stallion sperm.  相似文献   

19.
The testis produces male gametes in the germinal epithelium through the development of spermatogonia and spermatocytes into spermatids and immature spermatozoa with the support of Sertoli cells. The flow of spermatozoa into the epididymis is aided by testicular secretions. In the epididymal lumen, spermatozoa and testicular secretions combine with epididymal secretions that promote sperm maturation and storage. We refer to the combined secretions in the epididymis as the sperm-milieu. With two-dimensional-PAGE matrix-assisted laser desorption ionization time-of-flight MS analysis of healthy testes from fertile accident victims, 725 unique proteins were identified from 1920 two-dimensional-gel spots, and a corresponding antibody library was established. This revealed the presence of 240 proteins in the sperm-milieu by Western blotting and the localization of 167 proteins in mature spermatozoa by ICC. These proteins, and those from the epididymal proteome (Li et al. 2010), form the proteomes of the sperm-milieu and the spermatozoa, comprising 525 and 319 proteins, respectively. Individual mapping of the 319 sperm-located proteins to various testicular cell types by immunohistochemistry suggested that 47% were intrinsic sperm proteins (from their presence in spermatids) and 23% were extrinsic sperm proteins, originating from the epididymis and acquired during maturation (from their absence from the germinal epithelium and presence in the epididymal tissue and sperm-milieu). Whereas 408 of 525 proteins in the sperm-milieu proteome were previously identified as abundant epididymal proteins, the remaining 22%, detected by the use of new testicular antibodies, were more likely to be minor proteins common to the testicular proteome, rather than proteins of testicular origin added to spermatozoa during maturation in the epididymis. The characterization of the sperm-milieu proteome and testicular mapping of the sperm-located proteins presented here provide the molecular basis for further studies on the production and maturation of spermatozoa. This could be the basis of development of diagnostic markers and therapeutic targets for infertility or targets for male contraception.  相似文献   

20.
Axnér E 《Theriogenology》2006,66(1):14-24
The epididymis is essential for sperm development and maturation, and, subsequently, the ability of spermatozoa to penetrate and fertilize the female gamete. Functional differences in segments of the long tubule are reflected by histological differences among epididymal regions. The feline epididymis can be divided into six different regions according to their histological differences. A marked increase in sperm concentration occurs between regions 2 and 3, indicating resorption of fluid in region 2, a concept supported by the histological characteristics of the epithelium. At the transition between regions 4 and 5, located between the caput and corpus epididymides, histological characteristics change from being that of a maturation function to being typical of a storage function. Migration of the cytoplasmic droplet and induction of motility occur in this same region. Proteins are secreted from epithelial cells in the feline epididymis by merocrine and apocrine secretion, although the functions of different feline epididymal proteins have not been determined. Hypotaurine, taurine and, probably, alkaline phosphatase are produced by the feline epididymis. During epididymal transit the percentage of immature, unviable and morphologically abnormal spermatozoa decreases, indicating the existence of a mechanism that removes abnormal spermatozoa. In contrast, the percentage of spermatozoa with abnormal tails increases slightly during epididymal transit. Most of the distal droplets present on spermatozoa in the cauda epididymis are lost at or after ejaculation. Additional knowledge of the feline epididymis should be beneficial for developing sperm preservation protocols and advance the prospects for effective male contraceptive methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号