首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The aim of this work was to investigate the possibilities of simplification, and to outline the limits of application, of a vitrification method for cow embryos. Morulae and blastocysts were produced by in vitro fertilization of slaughterhouse-derived, in vitro matured oocytes with frozen-thawed bull semen, and subsequent culture on a granulosa cell monolayer. Vitrification was performed by equilibration of embryos with 12.5% ethylene glycol and 12.5% dimethylsulphoxide at 20–22°C for 60 s, then with 25% ethylene glycol and 25% dimethylsulphoxide at 4°C for another 60 s. Embryos were then loaded in straws, placed in liquid nitrogen vapour for 2 min, and then plunged. Straws were thawed in a 22°C water-bath, the embryos were directly rehydrated and further incubated in straw, and were then expelled and cultured in vitro for 72 h. In the first experiment, embryos of different age and developmental stage (Day 5 compacted morulae, Day 6 early blastocysts, Days 6 and 7 blastocysts, Day 7 expanded blastocysts and Day 8 hatched blastocysts) as well as Days 7 and 5 blastocysts previously subjected to partial zona dissection were vitrified. After thawing, the re-expansion rates of blastocysts and zona-dissected embryos did not differ (67 and 87%, respectively), and hatching was more frequent for blastocysts frozen in advanced developmental stages (34, 47 and 63% for early blastocysts, blastocysts and expanded blastocysts, respectively). The re-expansion rate of morulae was lower (10%) and no hatching of these embryos was observed. In the second experiment, Day 7 expanded blastocysts were vitrified using PBS, PBS + albumin, TCM199 and TCM199 + calf serum as holding media. No differences in re-expansion and hatching rates were seen. However, when incubation with the concentrated cryoprotectant solution was performed at 20–22°C, the embryo survival rate decreased (PBS + albumin) or no embryo survived (TCM199 + calf serum) the vitrification procedure. In the third experiment, Day 7 expanded blastocysts were vitrified, thawed, cultured for 1 day, and then re-expanded embryos were again vitrified and thawed. Out of the 87% that survived the first cycle, 73% re-expanded and 47% hatched following the second vitrification and thawing. These observations prove that the vitrification procedure described is relatively harmless, that it can be used for blastocysts of different developmental stages and that an intact zona is not required to obtain high survival rates.  相似文献   

2.
Different parameters likely to influence the survival of bovine oocytes after a vitrification procedure were evaluated: oocyte meiotic stage, cycloheximide treatment at the beginning or the end of maturation, and three vitrification procedures using conventional straws, open pulled straws (OPS), or microdrops. For each procedure a mixture of cryoprotectants (25% ethylene glycol and 25% glycerol) was used. After the oocytes were warmed and subjected to in vitro maturation and fertilization, the number that developed into blastocysts was determined. Results show that cryoprotectant exposure reduced embryo development and that cycloheximide treatment had no beneficial effect on oocytes vitrified in conventional straws. Among the three vitrification procedures, only the OPS method yielded blastocysts (approximately 3% of vitrified oocytes) irrespective of their initial meiotic stage. This result highlights the major influence of the cooling rate in an oocyte vitrification protocol.  相似文献   

3.
The present study investigated the effect of estrous cow serum (ECS) during culture of bovine embryos on blastocyst development and survival after cryopreservation by slow freezing or vitrification. Embryos were derived from in vitro maturation (IVM) and in vitro fertilization (IVF) of abbatoir-derived oocytes. At Day 3, embryos were cultured in three different media: Charles Ronsenkrans medium + amino acids (CR1aa; without bovine serum albumin (BSA)) + 5% estrous cow serum (CR1-ECS), CR1aa + 3 mg/mL BSA (CR1-BSA) or CR1aa + 5% ECS + 3 mg/mL BSA (CR1-ECS-BSA). At 7.5 d post-insemination (PI), blastocyst yield and quality were evaluated; blastocysts and expanded blastocysts from each media were cryopreserved by Open Pulled Straw (OPS) vitrification method or slow freezing (1.5 M ethylene glycol, EM). Total blastocyst yield did not differ among CR1-ECS, CR1-BSA and CR1-ECS-BSA (30.9, 33.1 and 32.9%, respectively, P < 0.05). Embryo survival (hatching rate) was higher in vitrified versus slow-frozen embryos (43% versus 12%, respectively, P < 0.01), and in embryos cultured in CR1-BSA (40.3%) compared with those cultured in serum-containing media (CR1-ECS, 21.5% and CR1-ECS-BSA, 19.8%; P < 0.01). In conclusion: (a) it was possible to produce in vitro bovine embryos in serum-free culture medium without affecting blastocyst yield and quality; (b) serum-free medium produced the best quality embryos (in terms of post-cryopreservation survival); and (c) vitrification yielded the highest post-cryopreservation survival rates, regardless of the presence of serum in the culture medium.  相似文献   

4.
Two experiments were designed to assess the effectiveness of cryopreserving bovine MII oocytes using cryotops as the carrier system for vitrification. In the first experiment, we examined the developmental competence of oocytes after: (i) vitrification in open-pulled straws (OPS method); or (ii) vitrification in <0.1 μl medium droplet on the surface of a specially constructed fine polypropylene strip attached to a plastic handle (Cryotop method). In the second experiment, warmed oocytes that had been vitrified in OPS or cryotops were fixed to analyze spindle and chromosome configuration. In all experiments both cow and calf oocytes were used. Significantly different fertilization rates were observed between the vitrification groups: 31.5% and 20.2% for the cow and calf oocytes vitrified in OPS, respectively, versus 46.1% and 46.4% for the oocytes vitrified using cryotops. After in vitro fertilization, 3.8% of the calf oocytes and 5.3% of the cow oocytes developed to the blastocyst stage. All blastocysts from vitrified oocytes resulted from the Cryotop method. A significantly lower percentage of the OPS-vitrified calf oocytes showed a normal spindle configuration (37.8%) compared to control fresh oocytes (69.9%), while normal spindle and chromosome configurations were observed in a significantly higher proportion of the cryotop-vitrified calf oocytes (60.2%). For the cow oocytes, 60.6% in the OPS group and 60.3% in the Cryotop group exhibited a normal morphology after warming. These findings suggest the cryotop system is a more efficient carrier for vitrification than OPS for the cryopreservation of bovine oocytes.  相似文献   

5.
Successful cryopreservation of mammalian oocytes would provide a steady source of materials for nuclear transfer and in vitro embryo production. Our goal was to develop an effective vitrification protocol to cryopreserve bovine oocytes for research and practice of parthenogenetic activation, in vitro fertilization, and nuclear transfer. Bovine oocytes matured in vitro were placed in 4% ethylene glycol (EG) in TCM 199 plus 20% fetal bovine serum (FBS) at 39 degrees C for 12-15 min, and then transferred to a vitrification solution (35% EG, 5% polyvinyl-pyrrolidone, 0.4 M trehalose in TCM 199 and 20% FBS). Oocytes were vitrified in microdrops on a precooled (-150 degrees C) metal surface (solid-surface vitrification). The vitrified microdrops were stored in liquid nitrogen and were either immediately thawed or were thawed after storage for 2-3 wk. Surviving oocytes were subjected to 1) parthenogenetic activation, 2) in vitro fertilization, or 3) nuclear transfer with cultured adult fibroblast cells. Treated oocytes were cultured in KSOM containing BSA or FBS for 9 to 10 days. Embryo development rates were recorded daily and morphologically high-quality blastocysts were cryopreserved for nuclear transfer-derived embryos at Day 7 or Day 8 of culture. Immediate survival of vitrified/thawed oocytes varied between 77% and 86%. Cleavage and blastocyst development rates of vitrified oocytes following in vitro fertilization or activation were lower than those of the controls. For nuclear transfer, however, vitrified oocytes supported embryonic development as equally well as fresh oocytes.  相似文献   

6.
We compare different vitrification protocols on the pregnancy and lambing rate of in vitro produced (IVP) and in vivo derived (IVD) ovine embryos. Ovine blastocysts were produced by in vitro maturation, fertilization and culture of oocytes collected from slaughtered ewes or superovulated and inseminated animals. Embryos were cryopreserved after exposure at room temperature either for 5 min in 10% glycerol (G), then for 5 min in 10% G + 20% ethylene glycol (EG), then for 30 s in 25% G + 25% EG (glycerol group), or for 3 min in 10% EG + 10% dimethyl sulphoxide (DMSO), then for 30s in 20% EG + 20% DMSO + 0.3 M sucrose (DMSO group). One group of in vitro produced embryos was cryopreserved similarly to the DMSO group, but with 0.75 M sucrose added to the vitrification solution (DMSO 0.75 group). Glycerol group embryos were then loaded into French straws or open pulled Straws (OPS) while the DMSO group embryos were all loaded into OPS and directly plunged into liquid nitrogen. Embryos were warmed with either a one step or three step process. In the one step process, embryos were placed in 0.5 M sucrose. The three-step process was a serial dilution in 0.5, 0.25 and 0.125 M sucrose. The embryos of DMSO 0.75 group were warmed directly by plunging them into tissue culture medium-199 (TCM-199) + 20% foetal bovine serum (FBS) in the absence of sucrose (direct dilution). Following these manipulations, the embryos were transferred in pairs into synchronised recipient ewes and allowed to go to term. The pregnancy and the lambing rate within each group of IVP and IVD embryos indicated that there was no statistical difference among the vitrification protocols.  相似文献   

7.
In 5 replicates a total of 719 immature oocytes recovered from 94 slaughterhouse-derived bovine ovaries were matured and fertilized in vitro, then cultured for 7 to 9 d on a granulosa cell monolayer in TCM 199 supplemented with calf serum. Of 338 blastocysts (47% of oocytes cultured), 301 were vitrified in Hepes/bicarbonate buffered TCM-199 medium, 20% calf serum and dimethylsulfoxide and ethylene glycol as the cryoprotectants. After thawing in 1 M sucrose and subsequent culture in vitro, 237 (79%) of the blastocysts re-expanded and 177 (59%) hatched. Re-expansion and hatching rates differed between the blastocysts vitrified on Day 7 and Day 8 (84 and 69% vs 70 and 41%, respectively). We conclude that the applied methods are relatively simple and inexpensive to use, with an overall efficiency of the in vitro production/vitrification procedure being 1.9 hatched blastocyst/ovary. Therefore, this system seems suitable for large-scale production of cryopreserved bovine embryos for various purposes.  相似文献   

8.
We determined the efficacy of a microdrop vitrification procedure for cryopreservation of bovine oocytes, using vitrified oocytes as cytoplasts for intraspecies and intergeneric somatic cell nucleus transfer (NT). In vitro matured bovine MII oocytes were vitrified in microdrops with a vitrification solution containing 35% ethylene glycol, 5% polyvinyl pyrrolidone, and 0.4 M trehalose. After warming, approximately 80% of the vitrified oocytes were morphologically normal, and their enucleation rate was similar to that of fresh oocytes. The NT embryos constructed with bovine cumulus cells and the vitrified oocytes developed similar to blastocysts constructed with fresh oocytes, although the cell number of NT blastocysts originating from vitrified oocytes was lower than that of the fresh control. In a second experiment, we examined the development of NT embryos constructed with vitrified bovine oocytes and bovine fibroblasts (intraspecies NT embryos) or swamp buffalo fibroblasts (intergeneric NT embryos). There were no differences between the intraspecies and intergeneric NT embryos in fusion, cleavage and development to blastocysts, except for lower cell numbers in the intergeneric NT blastocysts. In conclusion, the efficacy of this microdrop vitrification procedure and the production of swamp buffalo NT blastocysts using vitrified bovine oocytes was demonstrated.  相似文献   

9.
Experiments were conducted to investigate the factors affecting the survival of bovine blastocysts produced in vitro after cryopreservation by vitrification. Zygotes were obtained by in vitro maturation and fertilization of oocytes. Embryos used in this study were developed in vitro at Day 7 and 8 (Day 0 = insemination day) in modified synthetic oviduct fluid medium supplemented with calf serum or BSA. Embryos were cryopreserved in a two-step protocol consisting of exposure to 10% ethylene glycol for 5 min, followed by the original vitrification solution (designated as VS) consisting of 40% (v/v) ethylene glycol, 6% (w/v) polyethylene glycol and 0.5 M sucrose in phosphate-buffered saline for 1 min. After warming, embryos were cultured in modified TCM-199 for an in vitro survival assay. The highest survival rate was obtained from the warmed embryos developed at Day 7 in medium supplemented with BSA (82.6%), and there were significant differences between results with calf scrum and BSA treatment (42.4 and 70.7%, respectively; P < 0.01). However, there were no significant differences in the cell numbers of embryos among the treatments. These results suggest that the survival of embryos developed in medium with BSA is superior to that of embryos developed in medium containing calf serum, although the cell numbers of the embryos developed under both media were similar.  相似文献   

10.
A.N. Al Yacoub 《Theriogenology》2010,73(8):1018-1023
This investigation addresses the question whether it is possible to apply the open pulled straw (OPS) vitrification method, found to be effective for cryopreserving caprine (Capra aegagrus hircus) blastocysts, to other embryonal stages. Morulae, blastocysts and hatched blastocysts were cryopreserved by way of OPS vitrification and blastocysts and hatched blastocysts by conventional freezing. Morulae were not included with conventional freezing because in our experience the survival rate is very low. To assess the viability of the cryopreserved embryos, they were transferred to synchronized does; in most cases, two embryos per doe. After OPS vitrification, of nine does receiving morulae, not a single one became pregnant; of 11 does receiving blastocysts, nine (82%) became pregnant (all of which kidded and gave birth to, on average, 1.8 kids); and of nine does receiving hatched blastocysts, three (33%) became pregnant (two of which [22%] kidded, giving birth to a single kid each). After conventional freezing, of 10 does receiving blastocysts, five became pregnant (four of which [40%] carried to term and gave birth to a pair of twins each); and of nine does receiving hatched blastocysts, three (33%) became pregnant (and gave birth to a single kid each). Embryo survival (kids born/embryos transferred) after vitrification for morulae, blastocysts, and hatched blastocysts was 0, 70% (16 of 23), and 13% (2 of 16), respectively, and after conventional freezing for blastocysts and hatched blastocysts was 42% (8 of 19) and 19% (3 of 16), respectively. The difference in pregnancy and kidding rate between vitrified and conventionally frozen blastocysts was significant, and so was the difference in pregnancy rate between hatched and nonhatched blastocysts, regardless whether OPS-vitrified or conventionally frozen. The results of the current study indicate that OPS vitrification is a very effective means of cryopreserving caprine blastocysts. Unfortunately, the superiority of OPS vitrification over conventional freezing does not apply to caprine morulae and hatched blastocysts.  相似文献   

11.
Preservation by vitrification of Day 7 and Day 8 bovine blastocysts derived from nuclear transfer with cumulus cells was compared with preservation of in vitro fertilized blastocysts. In Experiment 1, embryos were vitrified in PBS containing 60% ethylene glycol. In Experiment 2, they were vitrified in combination with partial dehydration using a solution of 39% ethylene glycol + 0.7 M sucrose and 8.6% Ficoll. In Experiment 1, survival and hatching rates were 44 and 95% for nuclear transferred embryos, and 78 and 55% for in vitro fertilized embryos, respectively. In Experiment 2, survival and hatching rates were 93 and 95% for nuclear transfer embryos, and 77 and 85% for in vitro fertilized embryos, respectively. It is concluded that Day 7 and Day 8 bovine blastocysts derived from cumulus cells could be cryopreserved without the loss of viability by a simple and efficient method using a combination of partial dehydration and vitrification.  相似文献   

12.
This study was designed to establish the effects of the meiotic stage of bovine oocytes and of a prematuration treatment with roscovitine (ROS) on their resistance to cryopreservation. Oocytes from prepubertal calves at the stages of germinal vesicle breakdown (GVBD) or at metaphase II (MII) were vitrified by the open pulled straw (OPS) method. In another experiment, oocytes were kept under meiotic arrest with 50 microM ROS for 24 hr and vitrified at the GVBD stage. After warming, some oocyte samples were fixed, stained using specific fluorescent probes and examined under a confocal microscope. The remaining oocytes were fertilized, and cleavage and blastocyst rates recorded. Significantly lower cleavage rates were obtained for the vitrified GVBD and MII oocytes (9.9% and 12.6%, respectively) compared to control oocytes (73.9%). Significantly worse results in terms of cleavage rates were obtained when GVBD calf oocytes were exposed to cryoprotectants (CPAs: ethylene glycol plus dimethyl sulfoxide, DMSO) (13.1%) or vitrified (1.6%) after a prematuration treatment with ROS, when compared to untreated control oocytes (68.7%) or ROS-control oocytes (56.6%). None of the vitrification procedures yielded blastocysts, irrespective of the initial meiotic stage or previous prematuration treatment. Compared to the control oocytes, significantly fewer oocytes exhibited normal spindle configuration after being exposed to CPAs or after vitrification of either GVBD or MII calf oocytes. These results indicate that the vitrification protocol has a deleterious effect on the meiotic spindle organization of calf oocytes cryopreserved at both the GVBD and MII stage, which impairs the capacity for further development of the embryos derived from these vitrified oocytes. Prematuration treatment with ROS has no beneficial effect on the outcome of vitrification by the OPS method.  相似文献   

13.
The objective was to investigate the effects of developmental stage (fully-expanded or expanding blastocysts) and/or age (harvested on Days 7 or 8) on post-vitrification in vitro survival of bovine blastocysts derived from intracytoplasmic sperm injection (ICSI) or in vitro fertilization (IVF). Post-warming survival (re-expansion of blastocoele within 24 h) of ICSI-derived fully-expanded blastocysts (80%) was similar to that of their IVF-derived counterparts (88%). However, the ability of ICSI-derived expanding blastocysts to survive vitrification procedures (61%) was lower than that of IVF-derived blastocysts (85%; P < 0.05), although the ICSI- and IVF-derived fresh blastocysts were of similar quality. The age of the blastocysts before vitrification did not affect cryotolerance for either ICSI-derived (73 and 59% for Days 7 and 8 embryos, respectively) or IVF-derived blastocysts (86% for both Days 7 and 8 embryos). At 24 h of post-warming culture, ICSI-derived blastocysts surviving vitrification contained a higher proportion of dead cells than their IVF-derived counterparts (5-13% vs. 2-4%; P < 0.05), but these proportions were not different from those of fresh control embryos. There was an adverse effect of vitrification on the ability of blastocysts to hatch within 72 h of culture only in IVF-derived Day 8 blastocysts (41 and 70% in vitrified and fresh control groups, respectively). In conclusion, the proportion of blastocysts that survived vitrification procedures was similar for ICSI- and IVF-derived bovine blastocysts if the former were cultured to the fully-expanded stage prior to vitrification, with no significant difference between embryos harvested on Day 7 versus Day 8.  相似文献   

14.
The objectives of this study were to: (1) determine an optimal method and stage of development for vitrification of bovine zygotes or early embryos; and (2) use the optimal procedure for bovine embryos to establish equine pregnancies after vitrification and warming of early embryos. Initially, bovine embryos produced by in-vitro fertilization (IVF) were frozen and vitrified in 0.25 mL straws with minimal success. A subsequent experiment was done using two vitrification methods and super open pulled straws (OPS) with 1- or 8-cell bovine embryos. In Method 1 (EG-O), embryos were exposed to 1.5 M ethylene glycol (EG) for 5 min, 7 M ethylene glycol and 0.6 M galactose for 30 s, loaded in an OPS, and plunged into liquid nitrogen. In Method 2 (EG-DMSO), embryos were exposed to 1.1 M ethylene glycol and 1.1 M dimethyl sulfoxide (DMSO) for 3 min, 2.5 M ethylene glycol, 2.5 M DMSO and 0.5 M galactose for 30 s, and loaded and plunged as for EG-O. Cryoprotectants were removed after warming in three steps. One- and eight-cell bovine embryos were cultured for 7 and 4.5 d, respectively, after warming, and control embryos were cultured without vitrification. Cleavage rates of 1-cell embryos were similar (P > 0.05) for vitrified and control embryos, although the blastocyst rates for EG-O and control embryos were similar and higher (P < 0.05) than for EG-DMSO. The blastocyst rate of 8-cell embryos was higher (P < 0.05) for EG-O than EG-DMSO. Therefore, EG-O was used to cryopreserve equine embryos. Equine oocytes were obtained from preovulatory follicles. After ICSI, injected oocytes were cultured for 1-3 d. Two- to eight-cell embryos were vitrified, warmed and transferred into recipient's oviducts. The pregnancy rate on Day 20 was 62% (5/8) for equine embryos after vitrification and warming. In summary, a successful method was established for vitrification of early-stage bovine embryos, and this method was used to establish equine pregnancies after vitrification and warming of 2- to 8-cell embryos produced by ICSI.  相似文献   

15.
The Open Pulled Straw (OPS) method of vitrification has been used successfully for cryopreserving embryos of most domestic animal species. However, there is no report of a successful delivery of offspring after transfer of vitrified embryos in carnivores, even though vitrification has been a successful freezing method for species like swine whose embryos are known to be susceptible to chilling injury. Morulae and blastocysts of farmed European polecat (Mustela putorius) were vitrified and warmed before in vitro culture in modified synthetic oviductal fluid (SOF) for a period from a few hours up to 3 days before being transferred to recipients. Survival rate after vitrification, warming and in vitro culture was 51% (50/98). A total of 50 embryos were transferred surgically into the uteri of four anesthetized recipients. Two recipients delivered a total of eight offspring (2 and 6 each) for an overall survival rate of 16% (eight live cubs/50 transferred embryos). According to our knowledge, these offspring are the first carnivores produced by transfer of in vivo embryos after vitrification by OPS. Based on the present results, we suggest that OPS vitrification can be used as an alternative cryopreservation method for mustelid embryos with pup results comparable to conventional slow freezing.  相似文献   

16.
牛体内,外受精胚胎玻璃化冷冻保存技术的研究初报   总被引:2,自引:0,他引:2  
利用3种培养液即输卵管合成液(SOF)、TCM199和CRlaa对牛体外受精后的卵母细胞进行培养,结果卵裂率分别达85%、67%和72%,囊胚发育率分别为37%、21%和30%。对所获得的囊胚利用EFS玻璃化溶液进行冷冻保存。在10%EG中预处理5min后再移入EFS40平衡30s二步法冷冻保存的胚胎,其1解冻后继续发育率高达86%,与对照组91%相比无显性差异(P>0.05)。而EFS30二步  相似文献   

17.
In vitro techniques for production of bovine embryos including in vitro oocyte maturation (IVM), fertilization (IVF) and culture (IVC) are becoming increasingly employed for a variety of research purposes. However, decreased viability following cryopreservation by conventional methods has limited commercial applications of these technologies. A practical alternative to facilitate transport would be to arrest development by chilling without freezing. The present research was undertaken to evaluate chilling sensitivity of IVM-IVF embryos at different stages of development, and to determine possible beneficial effects of cysteamine treatment during IVM, previously shown to enhance embryo development in culture, on survival following chilling at different stages. Embryos produced by standard IVM-IVF-IVC methods were chilled to 0 degrees C for 30 min at 2-cell (30-34 h post-insemination, hpi), 8-cell (48-52 hpi) or blastocyst (166-170 hpi) stages. Viability after chilling was assessed by IVC with development to expanded blastocyst stage determined on days 7 and 8 post-insemination (pi) and hatching blastocyst stage determined on days 9 and 10 pi. Control embryos at the same stages were handled similarly, but without chilling, and development during culture similarly assessed. The effect of cysteamine supplementation (100 microM) of the IVM medium was determined for both chilled and non-chilled (control) embryos. Cysteamine supplementation during IVM had no significant effect on oocyte maturation or fertilization, but increased the proportions of oocytes developing to blastocyst stage by day 7 (13.7+/-0.9% versus 7.2+/-0.9%; P<0.05), total blastocysts (20.5+/-0.9% versus 15.3+/-1.3%; P<0.05), and hatching blastocysts (16.8+/-1.6% versus 12.0+/-1.5%; P<0.05). The greater survival in terms of hatching (78.6+/-7.0) following chilling of blastocysts produced by IVM-IVF of oocytes matured in media supplemented with cysteamine offers promise for applications requiring short-term storage to facilitate transport of in vitro produced bovine embryos.  相似文献   

18.
Cryopreservation of equine embryos with conventional slow-cooling procedures has proven challenging. An alternative approach is vitrification, which can minimize chilling injuries by increasing the rates of cooling and warming. The open pulled straw (OPS) and cryoloop have been used for very rapid cooling and warming rates. The objective of this experiment was to compare efficacy of vitrification of embryos in OPS and the cryoloop to conventional slow cool procedures using 0.25 mL straws. Grade 1 or 2 morulae and early blastocysts (< or = 300 microm in diameter) were recovered from mares on Day 6 or 7 post ovulation. Twenty-seven embryos were assigned to three cryopreservation treatments: (1) conventional slow cooling (0.5 degrees C/min) with 1.8 M ethylene glycol (EG) and 0.1 M sucrose, (4) vitrification in OPS in 16.5% EG, 16.5% DMSO and 0.5 M sucrose, or (3) vitrification with a cryoloop in 17.5% EG, 17.5% DMSO, 1 M sucrose and 0.25 microM ficoll. Embryos were evaluated for size and morphological quality (Grade 1 to 4) before freezing, after thawing, and after culture for 20 h. In addition, propidium iodide (PI) and Hoechst 33342 staining were used to assess percent live cells after culture. There were no differences (P > 0.1) in morphological grade or percent live cells among methods. Mean grades for embryos after culture were 2.9 +/- 0.2, 3.1 +/- 0.1, and 3.3 +/- 0.2 for conventional slow cooling, OPS and cryoloop methods, respectively. Embryo grade and percent live cells were correlated, r = 0.66 (P < 0.004). Thus OPS and the cryoloop were similarly effective to conventional slow-cooling procedures for cryopreserving small equine embryos.  相似文献   

19.
Controlled slow freezing and vitrification have been successfully used for ovine embryo cryopreservation. Selection of embryos for transfer is based on stereomicroscopical embryo scoring after thawing, but the subjectivity inherent to this selection step has been demonstrated by ultrastructural studies of controlled slow frozen, in vivo produced ovine morulae and blastocysts. These studies have shown that certain abnormalities remain undetected by stereomicroscopy only. In the present study, using ovine in vivo produced morulae and blastocysts, we have studied the ultrastructural alterations induced by open pulled straw vitrification (OPS) and controlled slow freezing, compared stereomicroscopical embryo scoring with light microscopy evaluation of embryo's semithin sections, and related the ultrastructural cellular damage with the embryo classification by stereomicroscopical embryo scoring of embryos’ and semithin section evaluation by light microscopy. The ultrastructural lesions found for OPS-vitrified and controlled slow frozen embryos were similar, independently of embryo stage. A significant higher number of grade 3 embryos was found at stereomicroscopical scoring after controlled slow freezing (P = 0.02), and a significant higher number of grade 3 blastocysts was found at semithin sectioning after OPS vitrification (P = 0.037). The extension of ultrastructural damage, especially of mitochondria and cytoskeleton, was related to the semithin classification but not to stereomicroscopical scoring at thawing. This suggests that semithin scoring is a useful tool for predicting ultrastructural lesions and new improvements in cryopreservation and thawing methods of ovine embryos are still warranted, including in the case of blastocysts cryopreserved by OPS vitrification.  相似文献   

20.
Development of vitrified mouse oocytes after in vitro fertilization   总被引:5,自引:1,他引:4  
Mouse oocytes were cryopreserved by the vitrification method using vitrification solution (VSI) and the effects of dilution methods were examined on the rate of in vitro and in vivo development. Eighty-three percent and 75% of vitrified oocytes exhibited normal morphology when diluted in glycerol + sucrose and sucrose alone, respectively. In contrast, only 35% of the oocytes diluted by a stepwise method exhibited a normal appearance. A high proportion of vitrified oocytes was fertilized in vitro (84-94%), 80 to 87% of which were normal. Of the later embryos, 69 to 78% developed to blastocysts after 4 days of culture. Thirty-six live young (51%) were obtained when vitrified oocytes were transferred to recipient females. The overall rate of development to live young was 25% when vitrified oocytes were diluted with glycerol + sucrose solution. These results indicate that the simple and rapid procedure of vitrification and glycerol + sucrose dilution is suitable for the cryopreservation of mouse oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号