首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Because the neuronal membrane properties and firing characteristics are crucially affected by the depolarization-activated K(+) channel (Kv) subunits, data about the Kv distribution may provide useful information regarding the functionality of the neurons situated in the cochlear nucleus (CN). Using immunohistochemistry in free-floating slices, the distribution of seven Kv subunits was described in the rat CN. Positive labeling was observed for Kv1.1, 1.2, 1.6, 3.1, 3.4, 4.2, and 4.3 subunits. Giant and octopus neurons showed particularly strong immunopositivity for Kv3.1; octopus neurons showed intense Kv1.1- and 1.2-specific reactions also. In the latter case, an age-dependent change of the expression pattern was also documented; although both young and older animals produced definite labeling for Kv1.2, the intensity of the reaction increased in older animals and was accompanied with the translocation of the Kv1.2 subunits to the cell surface membrane. The granule cell layer exhibited strong Kv4.2-specific immunopositivity, and markedly Kv4.2-positive glomerular synapses were also seen. It was found that neither giant nor pyramidal cells were uniform in terms of their Kv expression patterns. Our data provide new information about the Kv expression of the CN and also suggest potential functional heterogeneity of the giant and pyramidal cells.  相似文献   

2.
Outward rectifier K+ channels have a characteristic structure with six transmembrane segments and one pore region. A new member of this family of transmembrane proteins has been cloned and called Kv8.1. Kv8.1 is essentially present in the brain where it is located mainly in layers II, IV and VI of the cerebral cortex, in hippocampus, in CA1-CA4 pyramidal cell layer as well in granule cells of the dentate gyrus, in the granule cell layer and in the Purkinje cell layer of the cerebellum. The Kv8.1 gene is in the 8q22.3-8q24.1 region of the human genome. Although Kv8.1 has the hallmarks of functional subunits of outward rectifier K+ channels, injection of its cRNA in Xenopus oocytes does not produce K+ currents. However Kv8.1 abolishes the functional expression of members of the Kv2 and Kv3 subfamilies, suggesting that the functional role of Kv8.1 might be to inhibit the function of a particular class of outward rectifier K+ channel types. Immunoprecipitation studies have demonstrated that inhibition occurs by formation of heteropolymeric channels, and results obtained with Kv8.1 chimeras have indicated that association of Kv8.1 with other types of subunits is via its N-terminal domain.  相似文献   

3.
目的研究生长休止蛋白7(Gas7)在大鼠海马和齿状回不同发育阶段的表达。方法采用免疫组织化学方法观察Gas7在SD大鼠胚胎第18d(E18)、新生(P0)、生后第7d(P7)、P14、P21和成年海马和齿状回中的表达和分布。结果在大鼠脑海马和齿状回部位的冠状切片上,Gas7免疫反应阳性产物主要表达在海马的锥体细胞、齿状回的颗粒细胞和门区的多形层细胞。随着发育的进程,在海马,Gas7较早表达在CA3区,其次是CA2和CA1区;在齿状回,Gas7在外臂的表达早于内臂,在颗粒细胞层的表达是按先外层后内层的顺序。在围生期,Gas7在海马和齿状回各区的表达逐渐增强,至P14达到高峰,后逐渐降低,至P21其表达强度和分布趋于恒定至成年水平。结论 Gas7在大鼠海马和齿状回发育过程中的动态表达具有时间和空间上的特异性,提示Gas7可能参与了海马和齿状回形态形成和功能成熟的调控。  相似文献   

4.
5.
Kim HS  Hwang SL  Oh S 《Neurochemical research》2000,25(8):1149-1154
We investigated the influence of centrally administered ginsenoside on the regulation of mRNA levels of the family of NMDA receptor subtypes (NR1, NR2A, NR2B, NR2C) by in situ hybridization histochemistry in the rat brain. The ginsenosides Rc and Rg1, the major components of ginseng saponin, differentially modulate NMDA receptor subunit mRNA levels in rat brain following prolonged i.c.v.-infusion. Ginsenosides Rc or Rg1 (10 g/10 l/hr for 7 days) was infused through preimplanted cannulae connected to osmotic mini-pumps. The level of NR1 mRNA is significantly increased in temporal cortex, caudate putamen, hippocampus, and granule layer of cerebellum in Rg1-infused rats as compared to control group. The level of NR2A mRNA is elevated in the frontal cortex. In contrast, it was decreased in CA1 area of hippocampus in Rg1-infused rats. However, there was no significant change of NR1 and NR2A mRNA levels in Rc-infused rats. The level of NR2B mRNA is elevated in cortex, caudate putamen, and thalamus in both Rc- and Rg-infused rats. In contrast, NR2B level is decreased in CA3 in Rg1-infused rats. The level of NR2C mRNA is increased in the granule layer of cerebellum in only Rg1 but not Rc infused rats. These results show that structure difference of ginsenoside may diversely affect the modulation of expression of NMDA receptor subunit mRNA after infusion into cerebroventricle in rats.  相似文献   

6.
目的探讨组蛋白去乙酰化酶2(HDAC2)在成年C57BL/6小鼠海马内的分布及其与突触后致密区(PSD)蛋白成员的共定位,为揭示HDAC2与PSD蛋白复合物之间的内在联系及在海马相关的学习记忆过程中可能起到的调控作用提供形态学依据。方法应用免疫组化方法观察HDAC2在C57BL/6小鼠海马各区的表达分布。应用免疫荧光双标技术研究HDAC2与PSD蛋白成员N-甲基-D-天冬氨酸(NMDA)受体亚单位1(NR1)、PSD-95之间是否存在共定位。结果 HDAC2在小鼠海马CA1~CA3区锥体细胞和齿状回颗粒细胞均具有明显表达,而在各区的始层、辐射层、腔隙-分子层以及齿状回多形细胞层表达均较少。免疫荧光双标染色图片的重叠表明,HDAC2与NR1、PSD-95在小鼠海马CA1~CA3区锥体细胞层和齿状回颗粒细胞层内均可见显著共表达现象,其他区域偶见散在分布的双染神经元。结论 HDAC2在小鼠海马锥体细胞层和颗粒细胞层表达丰富,并与PSD蛋白成员间存在共定位现象。本实验结果为探讨HDAC2对谷氨酸能突触后神经元依赖的突触可塑性的调节机制提供了形态学依据。  相似文献   

7.
High resolution light microscopic autoradiography was used, together with regional surveys and combined acridine orange staining, to define in rat hippocampus cellular and subcellular sites of concentration and retention of 3H dexamethasone and to compare the topographic pattern of labeling with that of 3H corticosterone. Nuclear uptake of 3H dexamethasone in the hippocampus is demonstrated for the first time in vivo. With 3H dexamethasone, strongest nuclear radioactive labeling was observed in certain glial cells throughout the hippocampus, followed by strong nuclear labeling in most neurons in area CA1 and in the adjacent dorsolateral subiculum and weak nuclear labeling in granule cells of the dentate gyrus. Neurons in areas CA2, CA3, CA4, and in the dorsomedial subiculum and indusium griseum showed little or no nuclear labeling after 3H dexamethasone. With 3H corticosterone, strongest nuclear labeling was observed in neurons in area CA2 and in the dorsomedial subiculum and indusium griseum, followed by area CA1, then CA3 and CA4; the dentate gyrus contained scattered strongly labeled cells among cells with intermediate nuclear labeling. At the subcellular level, evidence for both nuclear and cytoplasmic accumulation of label was found. The results indicate that dexamethasone and corticosterone have both nuclear and cytoplasmic binding sites and that particular patterns of target cell distribution exist, characteristic for each agent. This suggests a differential regulation of cellular functions for the two compounds. Corticosterone nuclear binding appears to be more extensive and encompasses regions with dexamethasone binding. Whether in certain of these common regions corticosterone binds to the same receptor as dexamethasone, which seems possible, or to different receptors, remains to be clarified.  相似文献   

8.
Activation of NMDA receptors has been shown to induce either neuronal cell death or neuroprotection against excitotoxicity in cultured cerebellar granule neurons in vitro. We have investigated the effects of pretreatment with NMDA on kainate-induced neuronal cell death in mouse hippocampus in vivo. The systemic administration of kainate (30 mg/kg), but not NMDA (100 mg/kg), induced severe damage in pyramidal neurons of the hippocampal CA1 and CA3 subfields 3-7 days later, without affecting granule neurons in the dentate gyrus. An immunohistochemical study using an anti-single-stranded DNA antibody and TdT-mediated dUTP nick end labeling analysis both revealed that kainate, but not NMDA, induced DNA fragmentation in the CA1 and CA3 pyramidal neurons 1-3 days after administration. Kainate-induced neuronal loss was completely prevented by the systemic administration of NMDA (100 mg/kg) 1 h to 1 day previously. No pyramidal neuron was seen with fragmented DNA in the hippocampus of animals injected with kainate 1 day after NMDA treatment. The neuroprotection mediated by NMDA was prevented by the non-competitive NMDA receptor antagonist MK-801. Taken together these results indicate that in vivo activation of NMDA receptors is capable of protecting against kainate-induced neuronal damage through blockade of DNA fragmentation in murine hippocampus.  相似文献   

9.
采用传统H.E 染色和Golgi-Cox 染色方法观察成年牦牛海马结构的形态和细胞构筑,并通过DCX - DAB免疫组化染色和DCX/ NeuN、GFAP / NeuN 双重免疫荧光标记等技术观察齿状回颗粒下层中的新生神经元和放射状胶质细胞。结果表明,牦牛海马结构主要包括齿状回和海马本部,二者分层清晰。海马的主要细胞为颗粒细胞、苔藓细胞和锥体细胞。CA3 区的锥体细胞胞体较CA1 区的大,但其顶树突的平均长度较短。CA1 区的锥体细胞明显分为两层,而CA3 区的则为一层。DCX 阳性细胞的胞体主要集中在齿状回颗粒下层靠近门区处,沿颗粒层内侧单个或少数聚集分布。沿齿状回颗粒下层分布着一层GFAP 阳性的放射状胶质细胞样细胞,其胞质和单极性的细长突起均呈GFAP 阳性,而胞核为阴性。在整个海马结构中均有大量星形GFAP 阳性细胞散在分布,特别是海马分子层和门区内靠近颗粒层部分的密度较其它部位大。牦牛海马的形态结构与绵羊的相似,而与大鼠、小鼠、家猫、兔子等小型哺乳动物有一定差别。两种DCX 免疫组化实验结果表明在牦牛海马中存在着新生神经元。GFAP 免疫荧光标记表明,牦牛海马结构中分布有星形胶质细胞;特别是放射状胶质细胞。  相似文献   

10.
The hippocampus is associated with learning and memory function and shows neurochemical changes in aging processes. Calbindin D-28k (CB) binds calcium ion with a fast association rate. We examined age-related changes in CB immunoreactivity and its protein level in the gerbil hippocampus during normal aging. In the hippocampal CA1 region (CA1) and CA2, CB immunoreaction was found in some neurons in the stratum pyramidale (SP) at postnatal month 1 (PM 1). CB immunoreactivity in neurons was markedly increased at PM 3. Thereafter, CB immunoreactivity was decreased with time: CB-immunoreactive (+) neurons were fewest at PM 24. In the CA3, a few CB+ neurons were found only in the SP at PM 1 and in the stratum radiatum at PM 18 and 24. In addition, mossy fibers were stained with CB at PM 1. CB immunoreactivity in mossy fibers was markedly increased at PM 3, thereafter it was decreased with time. In the dentate gyrus, many granule cells (GC) in the granule cell layer were stained with CB at PM 1. CB immunoreactivity in GC was markedly increased at PM 3, thereafter CB immunoreactivity was decreased with time. In Western blot analysis, CB protein level in the gerbil hippocampus was highest at PM 3, thereafter CB protein levels were decreased with time. This result indicates that CB in the gerbil hippocampus is abundant at PM 3 and is decreased with age.  相似文献   

11.
Summary High resolution light microscopic autoradiography was used, together with regional surveys and combined aeridine orange staining, to define in rat hippocampus cellular and subcellular sites of concentration and retention of 3H dexamethasone and to compare the topographic pattern of labeling with that of 3H corticosterone. Nuclear uptake of 3H dexamethasone in the hippocampus is demonstrated for the first time in vivo. With 3H dexamethasone, strongest nuclear radioactive labeling was observed in certain glial cells throughout the hippocampus, followed by strong nuclear labeling in most neurons in area CA1 and in the adjacent dorsolateral subiculum and weak nuclear labeling in granule cells of the dentate gyrus. Neurons in areas CA2, CA3, CA4, and in the dorsomedial subiculum and indusium griseum showed little or no nuclear labeling after 3H dexamethasone. With 3H corticosterone, strongest nuclear labeling was observed in neurons in area CA2 and in the dorsomedial subiculum and indusium griseum, followed by area CA1, then CA3 and CA4; the dentate gyrus contained scattered strongly labeled cells among cells with intermediate nuclear labeling. At the subcellular level, evidence for both nuclear and cytoplasmic accumulation of label was found. The results indicate that dexamethasone and corticosterone have both nuclear and cytoplasmic binding sites and that particular patterns of target cell distribution exist, characteristic for each agent. This suggests a differential regulation of cellular functions for the two compounds. Corticosterone nuclear binding appears to be more extensive and encompasses regions with dexamethasone binding. Whether in certain of these common regions corticosterone binds to the same receptor as dexamethasone, which seems possible, or to different receptors, remains to be clarified.  相似文献   

12.
Neurogenesis in the adult hippocampus is an important form of structural plasticity in the brain. Here we report a line of BAC transgenic mice (GAD67-GFP mice) that selectively and transitorily express GFP in newborn dentate granule cells of the adult hippocampus. These GFP+ cells show a high degree of colocalization with BrdU-labeled nuclei one week after BrdU injection and express the newborn neuron marker doublecortin and PSA-NCAM. Compared to mature dentate granule cells, these newborn neurons show immature morphological features: dendritic beading, fewer dendritic branches and spines. These GFP+ newborn neurons also show immature electrophysiological properties: higher input resistance, more depolarized resting membrane potentials, small and non-typical action potentials. The bright labeling of newborn neurons with GFP makes it possible to visualize the details of dendrites, which reach the outer edge of the molecular layer, and their axon (mossy fiber) terminals, which project to the CA3 region where they form synaptic boutons. GFP expression covers the whole developmental stage of newborn neurons, beginning within the first week of cell division and disappearing as newborn neurons mature, about 4 weeks postmitotic. Thus, the GAD67-GFP transgenic mice provide a useful genetic tool for studying the development and regulation of newborn dentate granule cells.  相似文献   

13.
Glycinergic inhibitory transmission has been described in spinal cord, but rather disregarded in the brain. The spatial-temporal characterization of glycine receptors (GlyR) in the hippocampus over development is herein reported. GlyR expression increases from late embryonic stage (E18) to 7 days postnatal (P7) and decreases from P7 on. Quantitative real-time PCR showed that GlyR subunit expression changes over neuronal maturation with a preponderance of α2 and α3, over α1 and β. In immature stages, GlyR delineate the cell body of neurons at the Dentate Gyrus and Cornus Ammonis 1 and 3 (CA1/CA3) and are composed of α2 and α3 subunits. At P7, synaptic GlyRα2β can already be observed in the dendritic areas of Dentate Gyrus and of CA1/CA3. In the mature hippocampus, synaptic GlyR decrease and, although a few synaptic GlyRα1β can still be detected in the dendritic layers, extrasynaptic α2/α3-containing GlyR and somatic localized GlyRα3 are the most abundant. Our results point towards an important function of a slow tonic activation of extrasynaptic GlyR, over a fast phasic activation of synaptic GlyRα1β. We clearly show that GlyR are widely expressed in hippocampus and that their subcellular localization and subunit composition change over development.  相似文献   

14.
Adverse experiences by the developing fetus and in early childhood are associated with profound effects on learning, emotional behavior, and cognition as a whole. In this study we investigated the effects of prenatal nicotine exposure (NIC), postnatal maternal deprivation (MD) or the combination of the two (NIC+MD) to determine if hippocampal neuron development is modulated by exposure to drugs of abuse and/or stress. Growth of rat offspring exposed to MD alone or NIC+MD was repressed until after weaning. In CA1 but not CA3 of postnatal day 14 (P14) pups, MD increased pyramidal neurons, however, in dentate gyrus (DG), decreased granule neurons. NIC had no effect on neuron number in CA1, CA3 or DG. Unexpectedly, NIC plus MD combined caused a synergistic increase in the number of CA1 or CA3 neurons. Neuron density in CA regions was unaffected by treatment, but in the DG, granule neurons had a looser packing density after NIC, MD or NIC+MD exposure. When septotemporal axes were analyzed, the synergism of stress and drug exposure in CA1 and CA3 was associated with rostral, whereas MD effects were predominantly associated with caudal neurons. TUNEL labeling suggests no active apoptosis at P14, and doublecortin positive neurons and mossy fibers were diminished in NIC+MD relative to controls. The laterality of the effect of nicotine and/or maternal deprivation in right versus left hippocampus was also analyzed and found to be insiginificant. We report for the first time that early life stressors such as postnatal MD and prenatal NIC exposure, when combined, may exhibit synergistic consequences for CA1 and CA3 pyramidal neuron development, and a potential antagonistic influence on developing DG neurons. These results suggest that early stressors may modulate neurogenesis, apoptosis, or maturation of glutamatergic neurons in the hippocampus in a region-specific manner during critical periods of neurodevelopment.  相似文献   

15.
The effects of continuous infusion of NMDA receptor antagonist MK-801 on the modulation of NMDA receptor subunits NR1, NR2A, NR2B, and NR2C were investigated by using in situ hybridization study. Differential assembly of NMDA receptor subunits determines their functional characteristics. Continuous intracerebroventricular (i.c.v.) infusion with MK-801 (1 pmol/10 l/h) for 7 days resulted in significant modulations in the NR1, NR2A, and NR2B mRNA levels without producing stereotypic motor syndromes. The levels of NR1 mRNA were significantly increased (9-20%) in the cerebral cortex, striatum, septum, and CA1 of hippocampus in MK-801-infused rats. The levels of NR2A mRNA were significantly decreased (11-16%) in the CA3 and dentate gyrus of hippocampus in MK-801-infused rats. In contrast to NR2A, NR2B subunit mRNA levels were increased (10-14%) in the cerebral cortex, caudate putamen, and thalamus. However, no changes of NR2C subunits in cerebellar granule layer were observed. Using quantitative ligand autoradiography, the binding of NMDA receptor ligand [3H]MK-801 was increased (12-25%) significantly in almost all brain regions except in the thalamus and cerebellum after 7 days infusion with MK-801. These results suggest that region-specific changes of NMDA receptor subunit mRNA and [3H]MK-801 binding are involved in the MK-801-infused adult rats.  相似文献   

16.
Distribution of two enzymes involved in the ectonucleotidase enzyme chain, ecto-nucleoside triphosphate diphosphohydrolase1 (NTPDase1) and ecto-5′-nucleotidase, was assessed by immunohistochemistry in the rat hippocampus. Obtained results have shown co-expression of the enzymes in the hippocampal region, as well as wide and strikingly similar cellular distribution. Both enzymes were expressed at the surface of pyramidal neurons in the CA1 and CA2 sections, while cells in the CA3 section were faintly stained. The granule cell layer of the dentate gyrus was moderately stained for NTPDase1, as well as for ecto-5′-nucleotidase. Glial association for ecto-5′-nucleotidase was also observed, and fiber tracts were intensively stained for both enzymes. This is the first comparative study of NTPDase1 and ecto-5′-nucleotidase distribution in the rat hippocampus. Obtained results suggest that the broad overlapping distribution of these enzymes in neurons and glial cells reflects the functional importance of ectonucleotidase actions in the nervous system.  相似文献   

17.
This study focuses on the role of the kinase BRaf in postnatal brain development. Mice expressing truncated, non-functional BRaf in neural stem cell-derived brain tissue demonstrate alterations in the cerebellum, with decreased sizes and fuzzy borders of the glomeruli in the granule cell layer. In addition we observed reduced numbers and misplaced ectopic Purkinje cells that showed an altered structure of their dendritic arborizations in the hippocampus, while the overall cornus ammonis architecture appeared to be unchanged. In male mice lacking BRaf in the hippocampus the size of the granule cell layer was normal at postnatal day 12 (P12) but diminished at P21, as compared to control littermates. This defect was caused by a reduced ability of dentate gyrus progenitor cells to differentiate into NeuN positive granule cell neurons. In vitro cell culture of P0/P1 hippocampal cells revealed that BRaf deficient cells were impaired in their ability to form microtubule-associated protein 2 positive neurons. Together with the alterations in behaviour, such as autoaggression and loss of balance fitness, these observations indicate that in the absence of BRaf all neuronal cellular structures develop, but neuronal circuits in the cerebellum and hippocampus are partially disturbed besides impaired neuronal generation in both structures.  相似文献   

18.
In the rat, neonatal gamma-irradiation of the hippocampus induces a selective destruction of dentate granule cells and prevents the development of the mossy fiber-CA3 pyramidal cell connection. In the absence of mossy fiber input, the CA3 pyramidal neurons exhibit morphological alterations and rats deprived of dentate granule cells fail to develop kainate-induced epileptic activity in the CA3 pyramidal neurons. Neonatal elimination of the granule cells also impairs learning and memory tasks in adult rats. In the present work, we assessed by in situ hybridization and semi-quantitative RT-PCR, whether in the pyramidal layers, the absence of mossy fiber input alters the expression of a number of genes involved in activity-dependent signal transduction, in GABAergic neurotransmitter signaling and in neurite development via microtubule organization. Surprisingly, we show that the expression and the developmentally regulated alternative splicing of the genes we examined in the developing hippocampus are not altered in the pyramidal neurons, whether the dentate granule afferents are present or absent. Our results suggest that in the CA3 pyramidal layer, the developmental expression patterns of the mRNAs we studied are independent of extrinsic cues provided by mossy fiber input.  相似文献   

19.
Zhang A  Lorke DE  Wu SX  Yew DT 《Neuro-Signals》2006,15(2):64-73
It has been shown that cytochrome-c-dependent caspase-3 activation is significantly elevated in the aging macaque brain. To assess the underlying age-related changes in the cellular distribution of caspase-3, we have examined the motor cortex, cerebellum and hippocampus of young (4-year-old, n = 4) and old (20-year-old, n = 4)rhesus monkeys by immunohistochemistry. Western blot analyses of brain homogenate showed that the antibody reacted only with inactive 32-kDa procaspase and its active 20- and 17-kDa subunits, formed after granzyme B exposure. In the motor cortex, pyramidal cells of layers III and V were moderately labeled; the underlying white matter contained weakly stained astrocytes. In the hippocampus, hilar neurons and pyramidal cells in CA3 showed the strongest immunoreaction, pyramidal cells in CA1 and granule cells of the dentate gyrus were also strongly labeled. In contrast, CA2 pyramidal cells were only weakly stained, and neurons of the molecular layer were unlabeled. Weak caspase-3 immunoreaction of CA2 neurons parallels known decreased susceptibility to apoptosis. In the cerebellar cortex, clusters of strongly labeled Purkinje cells were observed next to groups of weakly and unstained cells; granule cells were generally unstained. The brains of aging monkeys displayed a similar pattern of caspase-3 immunoreactivity. In neocortical layer V, however, scattered very strongly labeled pyramidal cells were regularly detected, which were not observed in younger animals. This clustering of caspase-3 indicates increased vulnerability of a subset of pyramidal cells in the aging brain.  相似文献   

20.
The developing brain is particularly sensitive to exposures to environmental contaminants. In contrast to the adult, the developing brain contains large numbers of dividing neuronal precursors, suggesting that they may be vulnerable targets. The postnatal day 7 (P7) rat hippocampus has populations of both mature neurons in the CA1–3 region as well as neural stem cells (NSC) in the dentate gyrus (DG) hilus, which actively produce new neurons that migrate to the granule cell layer (GCL). Using this well‐characterized NSC population, we examined the impact of low levels of methylmercury (MeHg) on proliferation, neurogenesis, and subsequent adolescent learning and memory behavior. Assessing a range of exposures, we found that a single subcutaneous injection of 0.6 µg/g MeHg in P7 rats induced caspase activation in proliferating NSC of the hilus and GCL. This acute NSC death had lasting impact on the DG at P21, reducing cell numbers in the hilus by 22% and the GCL by 27%, as well as reductions in neural precursor proliferation by 25%. In contrast, non‐proliferative CA1–3 pyramidal neuron cell number was unchanged. Furthermore, animals exposed to P7 MeHg exhibited an adolescent spatial memory deficit as assessed by Morris water maze. These results suggest that environmentally relevant levels of MeHg exposure may decrease NSC populations and, despite ongoing neurogenesis, the brain may not restore the hippocampal cell deficits, which may contribute to hippocampal‐dependent memory deficits during adolescence. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 936–949, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号