首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
室管膜下区(subventricular zone,SVZ)存在着神经干细胞(nueral stem cells,NSCs),是成年哺乳动物脑内重要的神经发生区域。神经发生过程极为复杂,包括一系列的生物学事件。在病理状态下,SVZ区的细胞增殖,新生的神经细胞迁移到病灶处,取代或修复受损的细胞,起到保护脑组织的作用。该文就SVZ区的神经干细胞、神经发生过程及病理状态下神经发生的相关研究做一综述。  相似文献   

2.
Thyroid hormone exhibits profound effects on neural progenitor turnover, survival, maturation, and differentiation during perinatal development. Studies over the past decade have revealed that thyroid hormone continues to retain an important influence on progenitors within the neurogenic niches of the adult mammalian brain. The focus of the current review is to critically examine and summarize the current state of understanding of the role of thyroid hormone in regulating adult neurogenesis within the major neurogenic niches of the subgranular zone in the hippocampus and the subventricular zone lining the lateral ventricles. We review in depth the studies that highlight a role for thyroid hormone, in particular the TRα1 receptor isoform, in regulating progenitor survival and commitment to a neuronal fate. We also discuss putative models for the mechanism of action of thyroid hormone/TRα1 on specific stages of subgranular zone and subventricular zone progenitor development, and highlight potential thyroid hormone responsive target genes that may contribute to the neurogenic effects of thyroid hormone. The effects of thyroid hormone on adult neurogenesis are discussed in the context of a potential role of these effects in the cognitive‐ and mood‐related consequences of thyroid hormone dysfunction. Finally, we detail hitherto unexplored aspects of the effects of thyroid hormone on adult neurogenesis that provide impetus for future studies to gain a deeper mechanistic insight into the neurogenic effects of thyroid hormone.

  相似文献   


3.
4.
5.
6.
Adult neural stem cells (NSCs) are able to self-renew and generate new neural cells. Identifying regulators of NSCs is significant for the development of NSC-based therapies for neurodegenerative diseases and brain injuries. Recently, circular RNAs (circRNAs) have been characterized in various cell lines and brain tissues, and found to participate in multiple biological processes. However, the expression pattern of circRNAs in adult NSCs is still unknown. Here, the subventricular zone (SVZ) of the lateral ventricle was isolated as the niche of NSCs in adult rat brain for RNA sequencing and the characteristics of circRNAs profiling in both SVZ and cerebral cortex were also investigated. As a result, 29 049 and 31 975 circRNAs were identified in SVZ and cortex, respectively. Among them, 41 were SVZ-specific and 48 were cortex-specific. 467 circRNAs were also found to express predominately in SVZ, while the cortex had other 423 circRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that the SVZ-specific circRNAs have close relationship with the regulation of NSC expansion and NSC-niche interaction, while the other differentially expressed circRNAs might be involved in neural cellular construction and nerve system function. Furthermore, the interactions between circRNAs and microRNAs were also explored, and the result showed that one SVZ-specific circRNA was capable to competitively bind miR-138-5p as a potential derepressive regulator in NSCs proliferation. Hence, our work has laid the foundations to decipher regulation mechanisms of circRNAs in adult NSCs and to develop circRNAs as novel biomarkers for adult NSCs.  相似文献   

7.
According to the current consensus, murine neural stem cells (NSCs) apically contacting the lateral ventricle generate differentiated progenitors by rare asymmetric divisions or by relocating to the basal side of the ventricular–subventricular zone (V‐SVZ). Both processes will ultimately lead to the generation of adult‐born olfactory bulb (OB) interneurons. In contrast to this view, we here find that adult‐born OB interneurons largely derive from an additional NSC‐type resident in the basal V‐SVZ. Despite being both capable of self‐renewal and long‐term quiescence, apical and basal NSCs differ in Nestin expression, primary cilia extension and frequency of cell division. The expression of Notch‐related genes also differs between the two NSC groups, and Notch activation is greatest in apical NSCs. Apical downregulation of Notch‐effector Hes1 decreases Notch activation while increasing proliferation across the niche and neurogenesis from apical NSCs. Underscoring their different roles in neurogenesis, lactation‐dependent increase in neurogenesis is paralleled by extra activation of basal but not apical NSCs. Thus, basal NSCs support OB neurogenesis, whereas apical NSCs impart Notch‐mediated lateral inhibition across the V‐SVZ.  相似文献   

8.
神经干细胞的定向迁移是胚胎神经系统发育的先决条件,同时在成体组织的许多生理、病理过程中也起着重要作用;研究发现,许多神经退行性疾病都与神经干细胞迁移的缺陷相关。近年来,越来越多的证据表明,无论是内源性的还是移植的神经干细胞都有向大脑损伤部位迁移的特性,显示出神经干细胞用于神经再生及损伤修复治疗的潜能。该文着重在神经干细胞的基本特性以及神经干细胞定向迁移的细胞与分子机制研究等方面进行了综述。  相似文献   

9.
Neural stem cells and neuro‐oncology: Quo vadis?   总被引:10,自引:0,他引:10  
Conventionally, gliomas are assumed to arise via transformation of an intraparenchymal glial cell that forms a mass that then expands centrifugally, eventually invading surrounding tissues. We propose an alternative model in which gliomas arise via initiation and promotion of cells within the brain's subependymal layer or subventricular zone, the source of a recently characterized pool of neural cells with the properties of self-renewal and multipotentiality (i.e., stem cells) that persists into adulthood. In this model, the particular histological subtype of glioma would represent the effects of temporal and spatial environmental influences rather than the particular cell of origin and the disease's centrifugal point would be the subependymal layer. The implications of such a model are discussed.  相似文献   

10.
(1)
Metabolic rate (MR), thermal neutral zone (TNZ), body temperature (Tb), and thermal conductance were measured in striped hamsters (Cricetulus barabensis) that were live-trapped in winter and summer.  相似文献   

11.
Maximum likelihood and maximum parsimony are two key methods for phylogenetic tree reconstruction. Under certain conditions, each of these two methods can perform more or less efficiently, resulting in unresolved or disputed phylogenies. We show that a neural network can distinguish between four-taxon alignments that were evolved under conditions susceptible to either long-branch attraction or long-branch repulsion. When likelihood and parsimony methods are discordant, the neural network can provide insight as to which tree reconstruction method is best suited to the alignment. When applied to the contentious case of Strepsiptera evolution, our method shows robust support for the current scientific view, that is, it places Strepsiptera with beetles, distant from flies.  相似文献   

12.
13.
Glioblastoma usually recurs after therapy consisting of surgery, radiotherapy, and chemotherapy. Recurrence is at least partly caused by glioblastoma stem cells (GSCs) that are maintained in intratumoral hypoxic peri-arteriolar microenvironments, or niches, in a slowly dividing state that renders GSCs resistant to radiotherapy and chemotherapy. Because the subventricular zone (SVZ) is a major niche for neural stem cells (NSCs) in the brain, we investigated whether GSCs are present in the SVZ at distance from the glioblastoma tumor. We characterized the SVZ of brains of seven glioblastoma patients using fluorescence immunohistochemistry and image analysis. NSCs were identified by CD133 and SOX2 but not CD9 expression, whereas GSCs were positive for all three biomarkers. NSCs were present in all seven samples and GSCs in six out of seven samples. The SVZ in all samples were hypoxic and expressed the same relevant chemokines and their receptors as GSC niches in glioblastoma tumors: stromal-derived factor-1α (SDF-1α), C-X-C receptor type 4 (CXCR4), osteopontin, and CD44. In conclusion, in glioblastoma patients, GSCs are present at distance from the glioblastoma tumor in the SVZ. These findings suggest that GSCs in the SVZ niche are protected against radiotherapy and chemotherapy and protected against surgical resection due to their distant localization and thus may contribute to tumor recurrence after therapy.  相似文献   

14.
15.
Understanding the mechanisms that regulate neurogenesis is a prerequisite for brain repair approaches based on neuronal precursor cells. One important regulator of postnatal neurogenesis is polysialic acid (polySia), a post-translational modification of the neural cell adhesion molecule NCAM. In the present study, we investigated the role of polySia in differentiation of neuronal precursors isolated from the subventricular zone of early postnatal mice. Removal of polySia promoted neurite induction and selectively enhanced maturation into a calretinin-positive phenotype. Expression of calbindin and Pax6, indicative for other lineages of olfactory bulb interneurons, were not affected. A decrease in the number of TUNEL-positive cells indicated that cell survival was slightly improved by removing polySia. Time lapse imaging revealed the absence of chain migration and low cell motility, in the presence and absence of polySia. The changes in survival and differentiation, therefore, could be dissected from the well-known function of polySia as a promoter of precursor migration. The differentiation response was mimicked by exposure of cells to soluble or substrate-bound NCAM and prevented by the C3d-peptide, a synthetic ligand blocking NCAM interactions. Moreover, a higher degree of differentiation was observed in cultures from polysialyltransferase-depleted mice and after NCAM exposure of precursors from NCAM-knockout mice demonstrating that the NCAM function is mediated via heterophilic binding partners. In conclusion, these data reveal that polySia controls instructive NCAM signals, which direct the differentiation of subventricular zone-derived precursors towards the calretinin-positive phenotype of olfactory bulb interneurons.  相似文献   

16.
The subventricular zone is one of the 2 germinal niches of the adult brain where neural stem cells (NSC) generate new neurons and glia throughout life. NSC behavior is controlled by the integration of intrinsic signals and extrinsic cues provided by the surrounding microenvironment, or niche. Within the niche, the vasculature has emerged as a critical compartment, to which both neural stem cells and transit-amplifying progenitors are closely associated. A key function of the vasculature is to deliver blood-borne and secreted factors that promote proliferation and lineage progression of committed neural progenitors. We recently found that, in contrast to the established role of soluble cues, juxtacrine signals on vascular endothelial cells maintain neural stem cells in a quiescent and undifferentiated state through direct cell-cell interactions. In this perspective, we discuss how, through these apparently opposing signals, the vascular niche might coordinate stem cell decisions between maintenance and proliferation.  相似文献   

17.
通过研究Sonic hedgehog(Shh)信号通路成分在局灶缺血性脑卒中大鼠侧脑室下带(subventricular zone,SVZ)的动态表达,初步探讨该通路在局灶性缺血性脑卒中后神经再生的调控作用.将84只健康成年雄性SD大鼠随机分为正常组(n=12)、假手术组(n=12)、缺血6、12、24 h和3、7 d,共7组(n=12).采用线栓法制备大鼠右侧大脑中动脉阻断(middle cerebral artery occlussion,MCAO)模型.分别应用逆转录聚合酶链反应(RT-PCR)、免疫组化、免疫印迹法检测局灶脑缺血大鼠侧脑室下带Shh、Gli1 mRNA和蛋白变化.与正常组比较,Shh、Gli1mRNA和蛋白在假手术组表达变化不明显(P>0.05),模型组6 h表达增高(P<0.01),24 h达峰值(P<0.01),3 d时接近正常水平(P>0.05),7 d表达又升高(P<0.01).缺血性脑卒中可以上调Shh信号通路成分在SVZ区的表达,提示Shh信号通路可能参与卒中后神经再生机制的调控.  相似文献   

18.
Relatively quiescent somatic stem cells support life-long cell renewal in most adult tissues. Neural stem cells in the adult mammalian brain are restricted to two specific neurogenic niches: the subgranular zone of the dentate gyrus in the hippocampus and the ventricular-subventricular zone (V-SVZ; also called subependymal zone or SEZ) in the walls of the lateral ventricles. The development of in vivo gene transfer strategies for adult stem cell populations (i.e. those of the mammalian brain) resulting in long-term expression of desired transgenes in the stem cells and their derived progeny is a crucial tool in current biomedical and biotechnological research. Here, a direct in vivo method is presented for the stable genetic modification of adult mouse V-SVZ cells that takes advantage of the cell cycle-independent infection by LVs and the highly specialized cytoarchitecture of the V-SVZ niche. Specifically, the current protocol involves the injection of empty LVs (control) or LVs encoding specific transgene expression cassettes into either the V-SVZ itself, for the in vivo targeting of all types of cells in the niche, or into the lateral ventricle lumen, for the targeting of ependymal cells only. Expression cassettes are then integrated into the genome of the transduced cells and fluorescent proteins, also encoded by the LVs, allow the detection of the transduced cells for the analysis of cell autonomous and non-autonomous, niche-dependent effects in the labeled cells and their progeny.  相似文献   

19.
20.
Most of our current knowledge on the tissue and cellular basis of neurulation in amniotes has been gained using the chick embryo as an experimental model system. Gene manipulation during chick neurulation has been difficult, greatly limiting our ability to assess the contribution of gene products to the tissue and cellular behaviors of neurulation. Using electroporation, we have developed a simple and reliable method for expressing transgenes in the ectoderm of the neural folds of chick embryos developing in whole-embryo culture. Sense- or antisense-expressing plasmids are electroporated, resulting in gain or loss of gene function, respectively. The morphogenesis of transgenic tissues was compared to the morphogenesis of contralateral wildtype tissues as neurulation was taking place. As a proof of principle, we present a functional analysis of the chick gene encoding Cartilage Linking Protein 1 (CRTL1), identified as a candidate neurulation gene using subtractive hybridization. This experimental approach provides a much-needed innovation for studying the mechanisms by which genes influence neurulation and reveals here important contributions of CRTL1 to the formation of the neural folds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号