首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of insulin and glucose on parameters of metabolism were investigated in myoblast-like (MBL) cells, a human myoblast-like cell line derived from a Wilms' tumor. Insulin responses were studied after 4 hr pre-incubation in serum free media, with or without 5 mM glucose. Insulin was added during the last 2 hr. Glucose starvation markedly increased basal glucose transport (measured as 2-deoxyglucose uptake) as well as the net uptake of [14C]glucose and [14C]glucose incorporation into glycogen. Insulin stimulated net glucose uptake and incorporation into glycogen in a dose-dependent manner in glucose-fed and starved cells. These insulin responses were markedly enhanced in glucose-starved cells. Insulin accelerated 2-deoxyglucose transport in glucose-fed cells but did not further stimulate basal glucose transport in glucose-deprived cells. Insulin increased the incorporation of [3H]leucine into protein in glucose-fed or -starved MBL cells equally. The dose of insulin required for half-maximal insulin responses was similar for all parameters studied. Cycloheximide did not prevent the increased basal glucose incorporation in glucose-starved cells, but markedly inhibited the insulin response, while in glucose-fed cells, cycloheximide stimulated basal glucose incorporation. We conclude that MBL cells resemble fibroblasts in their insulin-independent stimulation of glucose transport in response to glucose-deprivation; when provided with glucose, they respond to insulin like fibroblasts. However, after brief glucose-starvation, the stimulated glucose transport system is no longer insulin-responsive in MBL cells, while pathways leading to the synthesis of macromolecules demonstrate preserved or enhanced stimulation by insulin, suggesting that these cells may serve as models to study the regulation of receptor-response coupling by the metabolic milieu.  相似文献   

2.
G-protein coupled Angiotensin II receptors (AT1A), mediate cellular responses through multiple signal transduction pathways. In AT1A receptor-transfected CHO-K1 cells (T3CHO/AT1A), angiotensin II (AII) stimulated a dose-dependent (EC50=3.3 nM) increase in cAMP accumulation, which was inhibited by the selective AT1, nonpeptide receptor antagonist EXP3174. Activation of protein kinase C, or increasing intracellular Ca2+ with ATP, the calcium ionophore A23187 or ionomycin failed to stimulate cAMP accumulation. Thus, AII-induced cAMP accumulation was not secondary to activation of a protein kinase C- or Ca2+/calmodulin-dependent pathway. Since cAMP has an established role in cellular growth responses, we investigated the effect of the AII-mediated increase in cAMP on cell number and [3H]thymidine incorporation in T3CHOA/AT1A cells. AII (1 M) significantly inhibited cell number (51% at 96 h) and [3H]thymidine incorporation (68% at 24 h) compared to vehicle controls. These effects were blocked by EXP3174, confirming that these responses were mediated through the AT1 receptor. Forskolin (10 M) and the cAMP analog dibutyryl-cAMP (1 mM) also inhibited [3H]thymidine incorporation by 55 and 25% respectively. We extended our investigation on the effect of AII-stimulated increases in cAMP, to determine the role for established growth related signaling events, i.e., mitogen-activated protein kinase activity and tyrosine phosphorylation of cellular proteins. AII-stimulated mitogen-activated protein kinase activity and phosphorylation of the 42 and 44 kD forms. These events were unaffected by forskolin stimulated increases in cAMP, thus the AII-stimulated mitogen-activated protein kinase activity was independent of cAMP in these cells. AII also stimulated tyrosine phosphorylation of a number of cellular proteins in T3CHO/AT1A cells, in particular a 127 kD protein. The phosphorylation of the 127 kD protein was transient, reaching a maximum at 1 min, and returning to basal levels within 10 min. The dephosphorylation of this protein was blocked by a selective inhibitor of cAMP dependent protein kinase A, H89-dihydrochloride and preexposure to forskolin prevented the AII-induced transient tyrosine phosphorylation of the 127 kD protein. These data suggest that cAMP, and therefore protein kinase A can contribute to AII-mediated growth inhibition by stimulating the dephosphorylation of substrates that are tyrosine phosphorylated in response to AII.  相似文献   

3.
Angiotensin peptides (AI, AII, AIII) increased the rate of Na+ accumulation by smooth muscle cells (SMC) cultured from rat aorta. The stimulatory effect of AII on Na+ uptake was observed when Na+ exodus via the Na+/K+ pump was blocked either by ouabain or by the removal of extracellular K+. AII was at least ten times more potent than AIII and about 100 times more potent than AI in stimulating Na+ uptake. Saralasin had little effect on Na+ uptake by itself but almost completely blocked the increase caused by AII. The stimulation of net Na+ entry by AI, but not AII, was prevented by protease inhibitors. The stimulation of Na+ uptake was almost completely blocked by amiloride. Tetrodotoxin, which prevented veratridine from increasing Na+ uptake, had no effect on the response to AII. Angiotensin increased the rate of ouabain-sensitive 86Rb+ uptake (Na+/K+ pump activity) but had no effect on ouabain-sensitive ATPase activity in frozen-thawed SMC or in microsomal membranes isolated from cultured SMC. The stimulation of ouabain-sensitive 86Rb+ uptake by AII was blocked by saralasin. Omitting Na+ from the external medium prevented AII from increasing 86Rb+ uptake. AII had no effect on cell volume or cyclic AMP levels in the cultured SMC. These results suggest that angiotensin peptides activate an amiloride-sensitive Na+ transporter which supplies the Na+/K+ pump with more Na+, its rate-limiting substrate.  相似文献   

4.
Cycloheximide, a potent inhibitor of protein synthesis, has been used to examine the relationship between recruitment of hexose carriers and the activation of glucose transport by insulin in rat adipocytes. Adipocytes were preincubated +/- cycloheximide for 90 min then +/- insulin for a further 30 min. We measured 3-O-methylglucose uptake in intact cells and in isolated plasma membrane vesicles. The concentration of glucose transporters in plasma membranes and low density microsomes was measured using a cytochalasin B binding assay. Cycloheximide had no affect on basal or insulin-stimulated 3-O-methylglucose uptake in intact cells or in plasma membrane vesicles. However, the number of glucose carriers in plasma membranes prepared from cells incubated with cycloheximide and insulin was markedly reduced compared to that from cells incubated with insulin alone (14 and 34 pmol/mg protein, respectively). Incubation of cells with cycloheximide alone did not change the concentration of glucose carriers in either plasma membranes or in low density microsomes compared to control cells. When isolated membranes were analyzed with an antiserum prepared against human erythrocyte glucose transporter, decreased cross-reactivity was observed in plasma membranes prepared from cycloheximide/insulin-treated cells compared to those from insulin cells. The present findings indicate that incubation of adipocytes with cycloheximide greatly reduces the number of hexose carriers in the plasma membrane of insulin-stimulated cells. Despite this reduction, insulin is still able to maximally stimulate glucose uptake. Thus, these data suggest an apparent dissociation between insulin stimulation of glucose transport activity and the recruitment of glucose carriers by the hormone.  相似文献   

5.
Bovine adrenal glomerulosa cells were incubated with 32PO4 and angiotensin II (AII), atrial natriuretic peptide (ANP) (rat[8-33]), N6,O2'-dibutyryl cyclic AMP, or elevated potassium (7.2 mM). Solubilized cells were analyzed by one-dimensional polyacrylamide gel electrophoresis, autoradiography, and laser densitometry. AII and dibutyryl cyclic AMP increased labeling of a 17.6 kd protein. Elevated potassium did not alter labeling of this protein. ANP inhibited labeling, whether basal or stimulated by AII, and to a lesser extent that stimulated by dibutyryl cyclic AMP. Similar dose-response curves were obtained for the effect of AII on labeling of the 17.6 Kd band and on aldosterone synthesis; ANP had a similar inhibitory effect on AII-stimulated phosphorylation and aldosterone synthesis. Effects of AII and ANP were apparent after 15 minutes of hormone treatment. Fractionation of labeled cells showed that the 17.6 Kd protein was not in cytosol, mitochondria, or endoplasmic reticulum, but was enriched in a crude nuclear fraction. These results suggest that AII and ANP affect aldosterone synthesis at the level of protein phosphorylation.  相似文献   

6.
7.
Glucose uptake is autoregulated in a variety of cell types and it is thought that glucose transport is the major step that is subjected to control by sugar availability. Here, we examined the effect of high glucose concentrations on the rate of glucose uptake by human ECV-304 umbilical vein-derived endothelial cells. A rise in the glucose concentration in the medium led a dose-dependent decrease in the rate of 2-deoxyglucose uptake. The effect of high glucose was independent of protein synthesis and the time-course analysis indicated that it was relatively slow. The effect was not due to inhibition of glucose transport since neither the expression nor the subcellular distribution of the major glucose transporter GLUT1, nor the rate of 3-O-methylglucose uptake was affected. The total in vitro assayed hexokinase activity and the expression of hexokinase-I were similar in cells treated or not with high concentrations of glucose. In contrast, exposure of cells to a high glucose concentration caused a marked decrease in phosphorylated 2-deoxyglucose/free 2-deoxyglucose ratio. This suggests the existence of alterations in the rate of in vivo glucose phosphorylation in response to high glucose. In summary, we conclude that ECV304 human endothelial cells reduce glucose utilization in response to enhanced levels of glucose in the medium by inhibiting the rate of glucose phosphorylation, rather than by blocking glucose transport. This suggests a novel metabolic effect of high glucose on cellular glucose utilization.  相似文献   

8.
Insulin activates certain protein kinase C (PKC) isoforms that are involved in insulin-induced glucose transport. In this study, we investigated the possibility that activation of PKCdelta by insulin participates in the mediation of insulin effects on glucose transport in skeletal muscle. Studies were performed on primary cultures of rat skeletal myotubes. The role of PKCdelta in insulin-induced glucose uptake was evaluated both by selective pharmacological blockade and by over-expression of wild-type and point-mutated inactive PKCdelta isoforms in skeletal myotubes. We found that insulin induces tyrosine phosphorylation and translocation of PKCdelta to the plasma membrane and increases the activity of this isoform. Insulin-induced effects on translocation and phosphorylation of PKCdelta were blocked by a low concentration of rottlerin, whereas the effects of insulin on other PKC isoforms were not. This selective blockade of PKCdelta by rottlerin also inhibited insulin-induced translocation of glucose transporter 4 (GLUT4), but not glucose transporter 3 (GLUT3), and significantly reduced the stimulation of glucose uptake by insulin. When overexpressed in skeletal muscle, PKCdelta and PKCdelta were both active. Overexpression of PKCdelta induced the translocation of GLUT4 to the plasma membrane and increased basal glucose uptake to levels attained by insulin. Moreover, insulin did not increase glucose uptake further in cells overexpressing PKCdelta. Overexpression of PKCdelta did not affect basal glucose uptake or GLUT4 location. Stimulation of glucose uptake by insulin in cells overexpressing PKCdelta was similar to that in untransfected cells. Transfection of skeletal myotubes with dominant negative mutant PKCdelta did not alter basal glucose uptake but blocked insulin-induced GLUT4 translocation and glucose transport. These results demonstrate that insulin activates PKCdelta and that activated PKCdelta is a major signaling molecule in insulin-induced glucose transport.  相似文献   

9.
We have examined the requirement for Ca2+ in the signaling and trafficking pathways involved in insulin-stimulated glucose uptake in 3T3-L1 adipocytes. Chelation of intracellular Ca2+, using 1,2-bis (o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra (acetoxy- methyl) ester (BAPTA-AM), resulted in >95% inhibition of insulin-stimulated glucose uptake. The calmodulin antagonist, W13, inhibited insulin-stimulated glucose uptake by 60%. Both BAPTA-AM and W13 inhibited Akt phosphorylation by 70-75%. However, analysis of insulin-dose response curves indicated that this inhibition was not sufficient to explain the effects of BAPTA-AM and W13 on glucose uptake. BAPTA-AM inhibited insulin-stimulated translocation of GLUT4 by 50%, as determined by plasma membrane lawn assay and subcellular fractionation. In contrast, the insulin-stimulated appearance of HA-tagged GLUT4 at the cell surface, as measured by surface binding, was blocked by BAPTA-AM. While the ionophores or ionomycin prevented the inhibition of Akt phosphorylation and GLUT4 translocation by BAPTA-AM, they did not overcome the inhibition of glucose transport. Moreover, glucose uptake of cells pretreated with insulin followed by rapid cooling to 4 degrees C, to promote cell surface expression of GLUT4 and prevent subsequent endocytosis, was inhibited specifically by BAPTA-AM. This indicates that inhibition of glucose uptake by BAPTA-AM is independent of both trafficking and signal transduction. These data indicate that Ca2+ is involved in at least two different steps of the insulin-dependent recruitment of GLUT4 to the plasma membrane. One involves the translocation step. The second involves the fusion of GLUT4 vesicles with the plasma membrane. These data are consistent with the hypothesis that Ca2+/calmodulin plays a fundamental role in eukaryotic vesicle docking and fusion. Finally, BAPTA-AM may inhibit the activity of the facilitative transporters by binding directly to the transporter itself.  相似文献   

10.
Effects of prolonged metabolic (glucose deprivation) and hormonal [insulin-like growth factor I (IGF-I)] challenge on regulation of glucose transporter (GLUT) expression, glucose transport rate and possible signaling pathways involved were studied in the neuroendocrine chromaffin cell. The results show that bovine chromaffin cells express both GLUT1 and GLUT3. Glucose deprivation and IGF-I activation led to an elevation of GLUT1 and GLUT3 mRNA, the strongest effect being that of IGF-I on GLUT3 mRNA. Both types of stimulus increased the GLUT1 protein content in a cycloheximide (CHX)-sensitive manner, and the glucose transport rate was elevated by 3- to 4-fold after 48 h under both experimental conditions. IGF-I-induced glucose uptake was totally suppressed by CHX. In contrast, only approximately 50% of transport activation in glucose-deprived cells was sensitive to the protein synthesis inhibitor. Specific inhibitors of mTOR/FRAP and p38 MAPK each partially blocked IGF-I-stimulated glucose transport, but had no effect on transport rate in glucose-deprived cells. The results are consistent with IGF-I-activated transport being completely dependent on new GLUT protein synthesis while the enhanced transport in glucose-deprived cells was partially achieved independent of new synthesis of proteins, suggesting a mechanism relying on preexisting transporters.  相似文献   

11.
Sphingosine and other protein kinase C inhibitors were tested for their ability to inhibit aldosterone synthesis by bovine adrenal glomerulosa cells. Sphingosine inhibited angiotensin (AII)-stimulated aldosterone synthesis (IC50 of 5 microM). At doses that totally blocked steroidogenesis, sphingosine did not affect protein synthesis or [125I]AII binding to cells. Sphingosine also inhibited dibutyryl cyclic AMP (dbcAMP)-stimulated aldosterone synthesis. Sphingosine inhibited pregnenolone synthesis from cholesterol, but not the conversion of progesterone or 20 alpha-hydroxycholesterol to aldosterone. These results suggest that sphingosine inhibits steroidogenesis at a locus close to that where stimulation occurs by AII and dbcAMP. Other protein kinase C inhibitors were tested. Retinal, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H-7), and staurosporine inhibited aldosterone synthesis stimulated by AII and dbcAMP. Retinal and H-7 also inhibited progesterone conversion to aldosterone, and retinal blocked [125I]AII binding. Staurosporine was more specific, inhibiting AII-stimulated aldosteronogenesis at concentrations which had little effect on conversion of progesterone to aldosterone. Because they inhibited dbcAMP stimulation, none of the inhibitors was sufficiently specific to use as a probe of the role of protein kinase C. The IC50 of sphingosine suggests that this or related products of lipid hydrolysis could act as endogenous regulators of adrenal cell function.  相似文献   

12.
A glucose transport system, previously found in a bacterial grown strain of Entamoeba histolytica, is also present in a strain grown in axenic culture and in an atypical strain which can grow at room temperature. The last strain has a lower temperature coefficient for glucose transport than the two typical strains, which grow only above 33 C. The uptake of glucose by pinocytosis is much lower than the uptake through the specific transport system. The rate of glucose transport was equal to the rate of glucose consumption from the medium. No free glucose could be detected inside amoebal cells incubated with external glucose. All these observations are consistent with the idea that transport is a rate limiting step in the utilization of glucose by E. histolytica.  相似文献   

13.
Insulin's rapid action to increase glucose transport is believed to occur primarily through the translocation of glucose transporters from an intracellular pool to the plasma membrane. To better understand the mechanism involved, we studied the role of protein synthesis in glucose transporter translocation by using the protein synthesis inhibitor, cycloheximide. Isolated rat epididymal adipose cells were incubated in the presence or absence of cycloheximide (10 micrograms/ml) for a total of 120 min. Insulin (7 nM) was added to half of the cells from both groups for the final 30 min. Protein synthesis was inhibited by approximately 90%, as measured by [14C]leucine incorporation, in the cells exposed to cycloheximide. The 3-O-methylglucose uptake in intact cells was slightly increased in the basal state with cycloheximide treatment, but the insulin-stimulated 3-O-methylglucose uptake was unchanged by cycloheximide. The distribution of glucose transporters in the different subcellular membrane fractions, as measured by the cytochalasin B binding assay, was unchanged by cycloheximide. These results suggest that insulin's stimulation of glucose transport and translocation of glucose transporters can occur without acute protein synthesis.  相似文献   

14.
When adipocytes were exposed to [3H]leucine for times ranging from 5 to 180 s, leucine was found to enter cells rapidly and equilibrate with the cell interior within 5 s. After an additional 15-30 s [3H]leucine was incorporated into nascent protein, and the rate of incorporation was linear for up to 6 h in both control and insulin-treated cells. Since treatment of adipocytes with 10 ng/ml insulin enhanced the rate of leucine incorporation 2-3-fold with minimal or no effect on the rate of protein degradation or leucine uptake, we conclude that the predominant effect of insulin is on enhancement of protein synthesis. To assess the time required for insulin to stimulate protein synthesis, we preincubated cells with 10 ng/ml of insulin for various times from 2 to 30 min and then measured [3H]leucine incorporation into protein during a 4-min assay. These results revealed that the insulin stimulation of protein synthesis is rapid (t 1/2 of 4.4 min), but 9-fold slower than insulin activation of glucose transport (t 1/2 less than 0.5 min under identical conditions). In contrast to the rapidity of insulin activation, we found that deactivation proceeded at much slower rates (t 1/2 of 32 and 21 min for protein synthesis and glucose transport, respectively). Desensitization of the glucose transport system has previously been shown to occur after adipocytes are exposed to high glucose and insulin. To examine the specificity of desensitization, we treated cells for 6 h with 20 mM glucose and 25 ng/ml insulin and then examined insulin sensitivity and maximal insulin responsiveness of both the glucose transport and protein synthesis systems. After treatment, the glucose transport was markedly insulin-resistant (60% loss in maximal insulin responsiveness and a marked loss in insulin sensitivity), whereas the protein synthesis system exhibited neither diminished insulin responsiveness nor loss of insulin sensitivity. In fact, insulin sensitivity actually increased, as indicated by the finding that less insulin was required to stimulate protein synthesis (insulin ED50 values of 0.25 and 18 ng/ml at 0 and 6 h of treatment). From these studies we conclude that desensitization of the glucose transport system by glucose and insulin treatment appears to be specific for this particular effector system and does not reflect a state of generalized cellular insulin resistance.  相似文献   

15.
The mechanisms by which insulin deficiency affects muscle glucose transport were investigated. Epitrochlearis muscles from rats with streptozotocin-induced diabetes and from controls were incubated in vitro for 0.5-14 h. The incubation was shown not to impair muscle energy stores or tissue oxygenation. Diabetes decreased basal 3-O-methylglucose transport by 40% (p less than 0.01), and insulin-stimulated (20 milli-units/ml) glucose transport capacity by 70% (p less than 0.001). In vitro incubation gradually normalized insulin responsiveness (3.77 +/- 0.38 before versus 8.97 +/- 0.65 mumol X ml-1 X h-1 after 12 h of incubation). Basal glucose transport remained significantly reduced. The reversal of the insulin responsiveness did not require the presence of rat serum and, furthermore, took place even in the absence of insulin. In fact, insulin responsiveness was higher after incubation (14 h) with no insulin than with 100 microunits/ml insulin (9.85 +/- 0.59 versus 8.06 +/- 0.59 mumol X ml-1 X h-1, p less than 0.05). Glucose at 30 mM did not affect the normalization of the insulin-stimulated glucose transport capacity, whereas incubation in serum from diabetic rats resulted in a slightly (26%) blunted reversal (7.60 +/- 0.39 versus 8.89 +/- 0.45 mumol X ml-1 X h-1 with diabetic versus control serum for 14 h, p less than 0.05; before incubation the value was 3.87 +/- 0.40). Inhibition of protein synthesis by cycloheximide blocked the normalization by 80%. These results suggest the presence in diabetic serum of some labile factor that might inhibit the glucose transport system. The results indicate that the decreased insulin-stimulated glucose transport capacity, in the insulin-deficient diabetic muscle, is not a direct consequence of the lack of insulin or of high glucose concentrations.  相似文献   

16.
Myostatin is a member of the transforming growth factor (TGF)-beta superfamily, known for its ability to inhibit muscle growth. It can also regulate metabolism and glucose uptake in a number of tissues. To determine the mechanism of myostatin's effect on glucose uptake, we evaluated its actions using choriocarcinoma cell lines that are widely used as models for placental cells. Protein and mRNA were determined using immunoblotting and RT-PCR/PCR, respectively. Glucose uptake was assessed by uptake of radiolabeled deoxyglucose in vitro. All choriocarcinoma cell lines tested i.e., BeWo, JEG, and Jar, are used as models of placental cells, and all expressed myostatin protein and mRNA. Treatment of BeWo cells with myostatin resulted in inhibition of glucose uptake in a concentration-dependent manner (P < 0.01). At all concentrations tested, follistatin, a functional inhibitor of myostatin, completely blocked the inhibitory effect of myostatin (40 nM) on glucose uptake by BeWo cells (0.4 nM, P < 0.05). Follistatin treatment alone also increased glucose uptake (0.4 and 4 nM, P < 0.001; 40 nM, P < 0.05). Because BeWo cells proliferated and greater cell densities were achieved, glucose uptake declined irrespective of treatment. Myostatin treatment of BeWo cells did not alter the levels of myostatin receptor, ActRII A/B proteins. The levels of glucose transport proteins also remained unaltered in BeWo cells with myostatin treatment. This study has shown that myostatin specifically inhibits glucose uptake into BeWo cells, suggesting that locally produced myostatin may control glucose metabolism within the placenta.  相似文献   

17.
This study examines the relationship between insulin-stimulated glucose transport and insulin-induced translocation of glucose transporters in isolated rat adipocytes. Adipose cells were incubated with or without cycloheximide, a potent inhibitor of protein synthesis, for 60 min and then for an additional 30 min with or without insulin. After the incubation we measured 3-O-methylglucose transport in the adipose cells, and subcellular membrane fractions were prepared. The numbers of glucose transporters in the various membrane fractions were determined by the cytochalasin B binding assay. Basal and insulin-stimulated 3-O-methylglucose uptakes were not affected by cycloheximide. Furthermore, cycloheximide affected neither Vmax. nor Km of insulin-stimulated 3-O-methylglucose transport. In contrast, the number of glucose transporters in plasma membranes derived from cells preincubated with cycloheximide and insulin was markedly decreased compared with those from cells incubated with insulin alone (10.5 +/- 0.8 and 22.2 +/- 1.8 pmol/mg of protein respectively; P less than 0.005). The number of glucose transporters in cells incubated with cycloheximide alone was not significantly different compared with control cells. SDS/polyacrylamide-gel-electrophoretic analysis of [3H]cytochalasin-B-photolabelled plasma-membrane fractions revealed that cycloheximide decreases the amount of labelled glucose transporters in insulin-stimulated membranes. However, the apparent molecular mass of the protein was not changed by cycloheximide treatment. The effect of cycloheximide on the two-dimensional electrophoretic profile of the glucose transporter in insulin-stimulated low-density microsomal membranes revealed a decrease in the pI-6.4 glucose-transporter isoform, whereas the insulin-translocatable isoform (pI 5.6) was decreased. Thus the observed discrepancy between insulin-stimulated glucose transport and insulin-induced translocation of glucose transporters strongly suggests that a still unknown protein-synthesis-dependent mechanism is involved in insulin activation of glucose transport.  相似文献   

18.
Angiotensin II (AII) regulates the secretion of aldosterone from adrenal glomerulosa cells by a calcium-dependent mechanism which involves both the uptake of calcium from the extracellular pool, and the release of calcium from a dantrolene-sensitive intracellular pool. In the present study, it was shown that AII induces the rapid (10 s) hydrolysis of phosphatidylinositol 4-phosphate and -4,5-bisphosphate, leading to the sustained production of inositol bis- and trisphosphate (Ins-P3), and diacylglycerol rich in arachidonic acid. Saponin-permeabilized glomerulosa cells accumulate calcium into a nonmitochondrial pool by an ATP-dependent manner. Ins-P3 (0.5-5 microM) induces a release of Ca2+ from this pool. This release was blocked by dantrolene (10 microM). Adrenal glomerulosa cells were shown to contain the calcium-activated, phospholipid-dependent protein kinase (C-kinase). Perfusion of glomerulosa cells with combined 12-O-tetradecanoyl phorbol 13-acetate and A23187 induced an immediately developing, sustained, maximal secretory response similar to that induced by AII. These data are interpreted in terms of a model in which, after AII addition, there is a flow of information through two separate branches of the calcium messenger system, each with its unique temporal role: a calmodulin branch activated by the transient rise in the [Ca2+] in the cell cytosol, which is largely responsible for the initial transient cellular response; and a C-kinase branch activated by the increase in both cytosolic [Ca2+] and the diacylglycerol content of the plasma membrane, which is largely responsible for the sustained phase of the cellular response. The temporal integration of these two phases underlies the observed pattern of cellular response.  相似文献   

19.
AMP-activated protein kinase (AMPK) plays a critical role in the stimulation of glucose transport in response to hypoxia and inhibition of oxidative phosphorylation. In the present study, we examined the signaling pathway(s) mediating the glucose transport response following activation of AMPK. Using mouse fibroblasts of AMPK wild type and AMPK knockout, we documented that the expression of AMPK is essential for the glucose transport response to both azide and 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR). In Clone 9 cells, the stimulation of glucose transport by a combination of azide and AICAR was not additive, whereas there was an additive increase in the abundance of phosphorylated AMPK (p-AMPK). In Clone 9 cells, AMPK wild-type fibroblasts, and H9c2 heart cells, azide or hypoxia selectively increased p-ERK1/2, whereas, in contrast, AICAR selectively stimulated p-p38; phosphorylation of JNK was unaffected. Azide's effect on p-ERK1/2 abundance and glucose transport in Clone 9 cells was partially abolished by the MEK1/2 inhibitor U0126. SB 203580, an inhibitor of p38, prevented the phosphorylation of p38 and the glucose transport response to AICAR and, unexpectedly, to azide. Hypoxia, azide, and AICAR all led to increased phosphorylation of Akt substrate of 160 kDa (AS160) in Clone 9 cells. Employing small interference RNA directed against AS160 did not inhibit the glucose transport response to azide or AICAR, whereas the content of P-AS160 was reduced by approximately 80%. Finally, we found no evidence for coimmunoprecipitation of Glut1 and p-AS160. We conclude that although azide, hypoxia, and AICAR all activate AMPK, the downstream signaling pathways are distinct, with azide and hypoxia stimulating ERK1/2 and AICAR stimulating the p38 pathway.  相似文献   

20.
Glucose transport activity was found to increase over 5 h in rat epitrochlearis muscle in response to a moderate concentration (50-100 microunits/ml) of insulin. This process was examined using 3-methylglucose. The increase in permeability to 3-methylglucose was 2- to 4-fold greater after 5 h than after 1 h in muscles incubated with 50 microunits/ml of insulin and 1 or 8 mM glucose. The increase in permeability to 3-methylglucose during the period between 1 and 5 h of exposure to 50 microunits/ml of insulin and 1 mM glucose was due to an increase in the apparent Vmax of sugar transport. There were two components to this activation of glucose transport. One, which was not influenced by inhibition of protein synthesis, resulted in activation of sugar transport to the same extent by 50 microunits/ml as by 20,000 microunits/ml of insulin; however, this activation took approximately 20 times longer with 50 microunits/ml insulin. The other, which was blocked by cycloheximide, resulted in a further activation of sugar transport to a level higher than that attained in response to 20,000 microunits/ml of insulin. Glucose had no effect on activation of sugar transport during the first hour, but a high concentration (20-36 mM) of glucose prevented the further activation of glucose transport during prolonged treatment with 50 microunits/ml of insulin. It appears from these results that prolonged exposure to a moderate concentration of insulin has previously unrecognized effects that include: a progressive activation of glucose transport over a long time that eventually results in as great a response as a "supramaximal" insulin concentration, and in the presence of low glucose concentration, further activation of glucose transport by an additional, protein synthesis-dependent mechanism. The results also show that a high concentration of glucose can, under some conditions, inhibit stimulation of its own transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号