首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Besides its involvement in reproductive functions, estrogen protects against the development of cardiovascular diseases. The guanylate cyclase/cGMP system is known to exert potent effects on the regulation of blood pressure and electrolyte balance. We examined whether 17β-estradiol can affect soluble guanylate cyclase in PC12 cells. The results indicate that 17β-estradiol decreases cGMP levels in PC12 cells. 17β-Estradiol decreases sodium nitroprusside (SNP)-stimulated, but not atrial natriuretic factor-stimulated cGMP formation in PC12 cells, indicating that 17β-estradiol decreases cGMP levels by inhibiting the activity of soluble guanylate cyclase. 17β-Estradiol also stimulates protein tyrosine phosphatase activities in PC12 cells and dephosphorylates at least three proteins. Addition of sodium vanadate, a protein tyrosine phosphatase inhibitor, blocks the inhibitory effects of 17β-estradiol on soluble guanylate cyclase activity in PC12 cells. Furthermore, transfection of SHP-1, a protein tyrosine phosphatase, into PC12 cells inhibits both basal and SNP-stimulated guanylate cyclase activity. Amino acid analysis also reveals that the 70-kDa subunit of soluble guanylate cyclase contains the SHP-1 substrate consensus sequence. These results suggest that 17β-estradiol inhibits soluble guanylate cyclase activity through SHP-1.  相似文献   

2.
Maternal metabolic adaptations are essential to ensure proper fetal development. According to changes in insulin sensitivity, pregnancy can be divided into two periods: early pregnancy, characterized by an increase in maternal insulin sensitivity, and late pregnancy, in which there is a significant increase in insulin resistance. The aims of the present work were two-fold: firstly, the molecular mechanisms associated with the development of pregnancy-related insulin resistance in peripheral tissues, mainly retroperitoneal adipose tissue and skeletal muscle, were studied in pregnant rats at 6, 11, and 16 days gestation. Secondly, the role of 17β-estradiol in this process was elucidated in an animal model consisting of ovariectomized rats treated with 17β-estradiol to mimic plasma gestational levels. The results support the conclusion that retroperitoneal adipose tissue plays a pivotal role in the decrease in insulin sensitivity during pregnancy, through a mechanism that involves p85α redistribution to the insulin receptor and impairment of Glut4 translocation to the plasma membrane. Treatment with 17β-estradiol did not reproduce the molecular adaptations that occur during pregnancy, suggesting that other hormonal factors presents in gestation but absent in our experimental model are responsible for p85α redistribution to the insulin receptor.  相似文献   

3.
Activity of protein kinase C (PKC), and in particular the PKCγ‐isoform, has been shown to strongly affect and regulate Purkinje cell dendritic development, suggesting an important role for PKC in activity‐dependent Purkinje cell maturation. In this study we have analyzed the role of two additional Ca2+‐dependent PKC isoforms, PKCα and ‐β, in Purkinje cell survival and dendritic morphology in slice cultures using mice deficient in the respective enzymes. Pharmacological PKC activation strongly reduced basal Purkinje cell dendritic growth in wild‐type mice whereas PKC inhibition promoted branching. Purkinje cells from mice deficient in PKCβ, which is expressed in two splice forms by granule but not Purkinje cells, did not yield measurable morphological differences compared to respective wild‐type cells under either experimental condition. In contrast, Purkinje cell dendrites in cultures from PKCα‐deficient mice were clearly protected from the negative effects on dendritic growth of pharmacological PKC activation and showed an increased branching response to PKC inhibition as compared to wild‐type cells. Together with our previous work on the role of PKCγ, these data support a model predicting that normal Purkinje cell dendritic growth is mainly regulated by the PKCγ‐isoform, which is highly activated by developmental processes. The PKCα isoform in this model forms a reserve pool, which only becomes activated upon strong stimulation and then contributes to the limitation of dendritic growth. The PKCβ isoform appears to not be involved in the signaling cascades regulating Purkinje cell dendritic maturation in cerebellar slice cultures. © 2003 Wiley Periodicals, Inc. J Neurobiol 57: 95–109, 2003  相似文献   

4.
Sepsis is a common serious clinical infectious disease accompanied by more severe injuries and higher mortality rates in men than women. The much higher level of 17β-estradiol (E2) in female is one of the significant reasons for better sepsis resistance ability. Trained immunity is a novel way to fight against infection by improving innate immunity. However, whether β-glucan-induced trained immunity can promote macrophage phagocytosis to clear infections in early sepsis has not been clarified. And whether E2 involved in this process needs further investigation. Symptoms among male, female and ovariectomized (OVX) C57BL/6 mice in early sepsis were detected. The effect of trained immunity on macrophage LC3B-associated phagocytosis (LAP) and the mechanism of E2 functioned in this process have also been explored. We demonstrated compared with male mice, female has significantly more mild symptoms and more reactive oxygen species (ROS) production and stronger NADPH oxidase 2 (NOX2) expression in the macrophage of major organs. In contrary, these characteristics are disappeared in OVX mice. Furthermore, in macrophage cell lines and primary bone marrow- derived macrophages (BMDMs), β-glucan-induced trained immunity can increase ROS production by activating NOX2 to promote macrophage LAP. E2 can up-regulate RUBICON through estrogen receptor α (ERα) to further facilitate macrophage LAP. These results indicated that trained immunity can improve sepsis resistance ability by stimulating macrophage LAP. E2 can boost ROS production and RUBICON expression to further promote macrophage LAP, which can provide a new perspective to recognize the mechanism of trained immunity in gender differences when responding to sepsis.  相似文献   

5.
We have previously identified expression of multiple protein kinase C (PKC) isoforms in insulinoma-derived beta-cells and whole islets. Both PKC γ and PKC α appear to be the more abundantly expressed isoforms. In this report we studied the effects of arachidonic acid (AA) on the subcellular distribution of PKC α and PKC γ. AA has been reported to activate both PKC α and PKC γ and it is thought to be an important second messenger in beta-cells. Here we report that AA interacted with and altered beta-cell pools of PKC γ preferentially over PKC α. AA (100 μM) over the course of 45 min reduced cytosolic levels of PKC γ (to 40 ± 15%, compared to time zero control) leaving membrane-and cytoskeleton-associated levels near control levels. Analysis of whole cell homogenates showed a slight down-regulation of PKC γ indicating proteolysis. The down-regulation of cytosolic PKC γ appeared to be isoform specific since cytosolic PKC α remained at control levels over the time course. The response was dose-dependent and negligible at concentrations below 30 μM and occurred, at least partially, in the cytosolic compartment of the cell. Indomethacin also down-regulated cytosolic PKC γ preferentially over PKC α possibly through accumulation of AA. These findings suggest that cytosolic PKC γ may be a downstream target of this beta-cell second messenger. © 1996 Wiley-Liss, Inc.  相似文献   

6.
3β-Hydroxysteroid dehydrogenase (3β-HSD)/Δ5→4-isomerase activity in steroidogenic tissues is required for the synthesis of biologically active steroids. Previously, by use of dehydroepiandrosterone (3β-hydroxy-5-androsten-17-one, DHEA) as substrate, it was established that in addition to steroidogenic tissues 3β-HSD/Δ5→4-isomerase activity also is expressed in extraglandular tissues of the human fetus. In the present study, we attempted to determine whether the C-5,C-6-double bond of DHEA serves to influence 3β-HSD activity. For this purpose, we compared the efficiencies of a 3β-hydroxy-5-ene steroid (DHEA) and a 3β-hydroxy-5α-reduced steroid (5α-androstane-3β,17β-diol, 5α-A-diol) as substrates for the enzyme. The apparent Michaelis constant (Km) for 5α-A-diol in midtrimester placenta, fetal liver, and fetal skin tissues was at least one order of magnitude higher than that for DHEA, viz the apparent Km of placental 3β-HSD for 5α-A-diol was in the range of 18 to 40 μmol/l (n = 3) vs 0.45 to 4 μmol/l for DHEA (n = 3); for the liver enzyme, 17 μmol/l for 5α-A-diol and 0.60 μmol/l for DHEA, and for the skin enzyme 14 and 0.18 μmol/l, respectively. Moreover, in 13 human fetal tissues evaluated the maximal velocities obtained with 5α-A-diol as substrate were higher than those obtained with DHEA. A similar finding in regard to Kms and rates of product formation was obtained by use of purified placental 3β-HSD with DHEA, pregnenolone, and 3β-hydroxy-5α-androstan-17-one (epiandrosterone) as substrates: the Km of 3β-HSD for DHEA was 2.8 μmol/l, for pregnenolone 1.9 μmol/l, and for epiandrosterone 25 μmol/l. The specific activity of the purified enzyme with pregnenolone as substrate was 27 nmol/mg protein·min and, with epiandrosterone, 127 nmol/mg protein·min. With placental homogenate as the source of 3β-HSD, DHEA at a constant level of 5 μmol/l behaved as a competitive inhibitor when the radiolabeled substrate, [3H]5α-A-diol, was present in concentrations of 20 to 60 μmol/l, but a lower substrate concentrations the inhibition was of the mixed type; similar results were obtained with [3H]DHEA as the substrate at variable concentrations in the presence of a fixed concentration of 5α-A-diol (40 μmol/l). These findings are indicative that both steroids bind to a common site on the enzyme, however, the binding affinity for these steroids appear to differ markedly as suggested by the respective Kms. Studies of inactivation of purified placental 3β-HSD/Δ5→4-isomerase by an irreversible inhibitor, viz 5,10-secoestr-4-yne-3,10,17-trione, were suggestive that the placental protein adopts different conformations depending on whether the steroidal substrate has a 5α-configuration, e.g. epiandrosterone, or a C-5,C-6-double bond e.g. DHEA or pregnenolone. The lower rates of product formation obtained with placenta and fetal tissues by use of 3β-hydroxy-5-ene steroids as substrates when compared with those obtained with 3β-hydroxy-5α-reduced steroids may be explained by a combination of factors, including: (i) inhibition of 3β-HSD activity by end products of metabolism of 3β-hydroxy-5-ene steroids, e.g. 4-androstene-3,17-dione formed with DHEA as substrate; (ii) higher binding affinity of the enzyme for 3β-hydroxy-5-ene steroids—and possibly for their 3-oxo-5-ene metabolites; (iii) lack of a requirement for the isomerization step with 5α-reduced steroids as substrates, and (iv) the possible presence in fetal tissues of an enzyme with 3β-HSD activity only (i.e. no Δ5→4-isomerase).  相似文献   

7.
A Surovoy  D Waidelich  G Jung 《FEBS letters》1992,300(3):259-262
The isoforms of protein kinase C (PKC) present in rat mesangial cells were identified by immunoblot analysis with antibody raised against isotype-specific peptides. In addition to the previously observed - and -subspecies, mesangial cells also express the δ- and ζ-isoenzymes of PKC. On exposure to phorbol 12,13-dibutyrate (PDB) a complete depletion of PKC-δ is observed within 8 h. Removal of PDB results in a recovery of PKC-δ. In contrast, PKC-ζ is unaffected by addition or removal of PDB.  相似文献   

8.
In anterior pituitaries from male rats, it appeared that 5α-androstane-3β, 17β-diol was quickly metabolized into 5α-androstane-3β,6α-17β-triol and 5α-androstane-3β,7α, 17β-triol by action of 6α- and 7α-hydroxylases. Hydroxysteroid hydroxylases were located in endoplasmic reticulum and were dependent on NADPH+. Their optimum pH was 8.0, optima temperature, 37°C, and their apparent Km was 2.7 μM. Hydroxylative reactions were not reversible and not modified by gonadectomy. Hydroxylation seemed an efficient control of the pituitary level of 5α-andros-tane-3β, 17β-diol.  相似文献   

9.
In clinic, we examined the expression of protein kinase C (PKC)‐α and Dicer in the samples of bladder cancer patients, and found that the two proteins have a line correlation. Our study confirmed this correlation existing by clearing the decreasing expression of Dicer after the PKC‐α knockdown. Treatment of bladder cancer cell lines (T24, 5637) with the PKC‐α or Dicer knockdown and the PKC inhibitors (Calphostin C and Gö 6976) can promote the apoptosis. Inhibition of PKC can increase the activities of caspase‐3 and PARP, however, decrease the expression of Dicer. And knockdown of the PKC‐α or Dicer can also activate the caspase‐3 or the PARP. Considering the reduction of PKC‐α can induce the Dicer down‐regulation, we make the conclusion that the reduction of PKC‐α can promote the apoptosis via the down‐regulation of Dicer in bladder cancer.  相似文献   

10.
Estradiol (E2) is produced locally in adipose tissue and could play an important role in fat distribution and accumulation, especially in women. It is well recognized that aromatase is expressed in adipose tissue; however the identity of its estrogenic 17β-hydroxysteroid dehydrogenase (17β-HSD) partner is not identified. To gain a better knowledge about the enzyme responsible for the conversion of estrone into estradiol, we determined the activity and expression levels of known estrogenic 17β-HSDs, namely types 1, 7 and 12 17β-HSD in preadipocytes before and after differentiation into mature adipocytes using an adipogenic media. Estrogenic 17β-HSD activity was assessed using [14C]-labelled estrone, while mRNA expression levels of types 1, 7 and 12 17β-HSD were quantified using real-time PCR and protein expression levels of type 12 17β-HSD was determined using immunoblot analysis. The data indicate that there is a low conversion of E1 into E2 in preadipocytes; however this activity is increased 5-fold (p < 0.0001) in differentiated adipocytes. The increased estrogenic 17β-HSD activity is consistent with the increase in protein expression levels of 17β-HSD12.  相似文献   

11.
12.
Type 3 17β-hydroxysteroid dehydrogenase (17β-HSD), a key steroidogenic enzyme, transforms 4-androstene-3,17-dione (Δ4-dione) into testosterone. In order to produce potential inhibitors, we performed solid-phase synthesis of model libraries of 3β-peptido-3α-hydroxy-5α-androstan-17-ones with 1, 2, or 3 levels of molecular diversity, obtaining good overall yields (23–58%) and a high average purity (86%, without any purification steps) using the Leznoff's acetal linker. The libraries were rapidly synthesized in a parallel format and the generated compounds were tested as inhibitors of type 3 17β-HSD. Potent inhibitors were identified from these model libraries, especially six members of the level 3 library having at least one phenyl group. One of them, the 3β-(N-heptanoyl- -phenylalanine- -leucine-aminomethyl)-3α-hydroxy-5α-androstan-17-one (42) inhibited the enzyme with an IC50 value of 227 nM, which is twice as potent as the natural substrate Δ4-dione when used itself as an inhibitor. Using the proliferation of androgen-sensitive (AR+) Shionogi cells as model of androgenicity, the compound 42 induced only a slight proliferation at 1 μM (less than previously reported type 3 17β-HSD inhibitors) and, interestingly, no proliferation at 0.1 μM.  相似文献   

13.
We have used the X-ray crystallographic structures of rat and human dihydropteridine reductase and Streptomyces hydrogenans 20β-hydroxysteroid dehydrogenase to model parts of the 3-dimensional structure of human 11β- and 17β-hydroxysteroid dehydrogenases. We use this information along with previous results from studies of Drosophila alcohol dehydrogenase mutants to analyze the structures in binding sites for NAD(H) and NADP(H) in 11β-hydroxysteroid dehydrogenase-types 1 and 2. We also examine the structure of an -helix at catalytic site of 17β-hydroxysteroid dehydrogenase-types 1, 2, 3, and 4. This -helix contains a highly conserved tyrosine and lysine. Adjacent to the carboxyl side of this lysine is a site proposed to be important in subunit association. We find that 11β- and 17β-hydroxysteroid dehydrogenases-type 1 have the same residues at the “anchor site” and conserve other stabilizing features, despite only 20% sequence identity between their entire sequences. Similar conservation of stabilizing structures is found in the 11β- and 17β-hydroxysteroid dehydrogenases-type 2. We suggest that interactions of the dimerization surface of -helix F with proteins or membranes may be important in regulating activity of hydroxysteroid dehydrogenases.  相似文献   

14.
15.
Polyclonal antipeptide antibodies which recognize selected isozymes (α, β I, β II, and γ) of the protein kinase C family were used to identify specific subspecies in undifferentiated Friend erythroleukemia cells and in cells triggered to differentiate with hexamethylene bisacetamide. The β II isozyme of protein kinase C was the primary isozyme expressed and its abundance was significantly increased (P < 0.05) in differentiated cells. Differences in immunostaining between control and experimental groups were objectively quantitated by determining percentage transmission of light through cells based on color threshold rather than gray intensity levels. Staining was localized to the cytoplasm predominantly in differentiated cells, whereas nuclei stained more intensely in undifferentiated cells. These results provide immunocytochemical evidence to support the hypothesis that changes in the expression of the β II subspecies of protein kinase C are essential to the programmed maturation of differentiating Friend erythroleukemia cells.  相似文献   

16.
The metabolism of the illegal growth promoter ethylestrenol (EES) was evaluated in bovine liver cells and subcellular fractions of bovine liver preparations. Incubations with bovine microsomal preparations revealed that EES is extensively biotransformed into norethandrolone (NE), another illegal growth promoter. Furthermore, incubations of monolayer cultures of hepatocytes with NE indicated that NE itself is rapidly reduced to 17α-ethyl-5β-estrane-3α,17β-diol (EED). In vivo tests confirmed that, after administration of either EES or NE, EED is excreted as a major metabolite. Therefore, it was concluded that, both in urine and faeces samples, EED can be used as a biological marker for the illegal use of EES and/or NE. Moreover, by monitoring EED in urine or faeces samples, the detection period after NE administration is significantly prolonged. These findings were further confirmed by three cases of norethandrolone abuse in a routine screening program for forbidden growth promoters.  相似文献   

17.
Previous studies from our laboratory have demonstrated the presence of several isoforms of protein kinase C (PKC), Ca2+-independent and Ca2+-dependent, in both whole islets and tumor-derived beta cells. In the basal state, a major proportion of the isoform was found in the crude membrane fraction with smaller amounts found in both the cytosolic and cytoskeletal fractions. Whole islets showed a similar distribution of the isoform. These studies were done to analyze the effects of insulin secretagogues on the distribution of PKC δ to different cellular pools in isolated insulinoma beta cells. The phorbol ester, phorbol 12-myristate 13-acetate (PMA), produced a transient association of PKC δ with the beta cell cytoskeleton along with sustained decreases in cytosolic enzyme and transient increases in membrane enzyme. Neither glucose nor carbachol could acutely affect the subcellular distribution of PKC δ. Oleic acid decreased the amount of the enzyme associated with the cytoskeleton and led to a sustained decrease of cytosolic enzyme and a transient increase in membrane enzyme. Oleic acid was also able to prevent the increase in cytoskeletal enzyme induced by PMA. Both oleic acid and PMA potentiated glucose-induced insulin release but oleic acid, in contrast to PMA, was unable to initiate insulin release in the presence of substimulatory concentrations of glucose. These data demonstrate that different activators of PKC may have different effects on localization of the enzyme within the cells and suggest that there are at least three apparently distinct pools of PKC δ within the beta cell which may be important in insulin secretion or other aspects of beta cell function. © 1996 Wiley-Liss, Inc.  相似文献   

18.
Interleukin-1 (IL-1) plays an important role in cartilage destruction associated with inflammatory and degenerative arthritis because of its ability to induce matrix degrading enzymes. Previously, we have shown that the IL-1-induced chondrocyte protease activity was inhibited by transforming growth factor-β (TGF-β). In this paper, we show that TGF-β inhibits the IL-1-induced synthesis of collagenase and stromelysin by reducing the steady-state mRNA levels in rabbit articular chondrocytes. We further demonstrate that TGF-β-treated chondrocytes show reduced 125I-IL-1 binding that returns to a normal level when TGF-β is removed from the culture medium. The inhibitory effect of TGF-β is observed for both naturally occurring as well as fibroblast growth factor (FGF)-inducible binding sites (receptors). Scatchard analysis of receptor—ligand interactions demonstrate that the reduced binding is due to a reduction in the number of receptors for IL-1 and is not due to changes in affinity. Affinity cross-linking studies suggest that control chondrocytes contain two major cross-linked bands of Mr =116 and 80 kDa and a minor band of Mr =100 kDa. FGF-treated cells show enhanced levels of all the bands, plus an additional 200-kDa band. TGF-β treatment of chondrocytes results in the reduction of all of these bands in both control as well as FGF-induced cells. These observations suggest that the ability of TGF-β to down-regulate the IL-1 receptor may be a mechanism by which it exerts its effects in antagonizing the IL-1 activity on chondrocytes.  相似文献   

19.
We present a fully automatic structural classification of supersecondary structure units, consisting of two hydrogen-bonded β strands, preceded or followed by an α helix. The classification is performed on the spatial arrangement of the secondary structure elements, irrespective of the length and conformation of the intervening loops. The similarity of the arrangements is estimated by a structure alignment procedure that uses as similarity measure the root mean square deviation of superimposed backbone atoms. Applied to a set of 141 well-resolved nonhomologous protein structures, the classification yields 11 families of recurrent arrangements. In addition, fragments that are structurally intermediate between the families are found; they reveal the continuity of the classification. The analysis of the families shows that the α helix and β hairpin axes can adopt virtually all relative orientations, with, however, some preferable orientations; moreover, according to the orientation, preferences in the left/right handedness of the α–β connection are observed. These preferences can be explained by favorable side by side packing of the α helix and the β hairpin, local interactions in the region of the α–β connection or stabilizing environments in the parent protein. Furthermore, fold recognition procedures and structure prediction algorithms coupled to database-derived potentials suggest that the preferable nature of these arrangements does not imply their intrinsic stability. They usually accommodate a large number of sequences, of which only a subset is predicted to stabilize the motif. The motifs predicted as stable could correspond to nuclei formed at the very beginning of the folding process. Proteins 30:193–212, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
The increased accumulation of activated microglia containing amyloid β protein (Aβ) around senile plaques is a common pathological feature in subjects with Alzheimer's disease (AD). Much less is known, however, of intracellular signal transduction pathways for microglial activation in response to Aβ. We investigated intracellular signaling in response to Aβ stimulation in primary cultured rat microglia. We found that the kinase activity of PKC-δ but not that of PKC- or - is increased by stimulation of microglia with Aβ, with a striking tyrosine phosphorylation of PKC-δ. In microglia stimulated with Aβ, tyrosine phosphorylation of PKC-δ was evident at the membrane fraction without an overt translocation of PKC-δ. PKC-δ co-immunoprecipitated with MARCKS from microglia stimulated with Aβ. Aβ induced translocation of MARCKS from the membrane fraction to the cytosolic fraction. Immunocytochemical analysis revealed that phosphorylated MARCKS accumulated in the cytoplasm, particularly at the perinuclear region in microglia treated with Aβ. Taken together with our previous observations that Aβ-induced phosphorylation of MARCKS and chemotaxis of microglia are inhibited by either tyrosine kinase or PKC inhibitors, our results provide evidence that Aβ induces phosphorylation and translocation of MARCKS through the tyrosine kinase-PKC-δ signaling pathway in microglia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号