首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To determine whether angiotensin II (Ang II) can induce apoptosis of neonatal ventricular myocytes, these cells were exposed to 10−9MAng II for 24 hin vitroand the effects of this intervention on programmed myocyte cell death were examined by the terminal deoxynucleotidyl transferase assay and DNA gel electrophoresis. Ang II resulted morphologically in a 2.5-fold increase in the percentage of myocytes with double strand cleavage of the DNA and biochemically in the formation of DNA fragments equal in size to mono- and oligonucleosomes. Moreover, Ang II stimulation was characterized by a 37% increase in resting level of intracellular calcium and the activation of calcium-dependent endogenous endonuclease. In contrast, pH-dependent endogenous endonuclease was not enhanced by the addition of Ang II. Ang II-induced DNA damage was inhibited by the AT1receptor antagonist, losartan. Similarly, the calcium chelator, BAPTA-AM, prevented Ang II-mediated cell death. Conversely, the calcium ionophore, A23187, triggered programmed cell death. Finally, the selective AT2receptor subtype blocker, PD123319, failed to reduce myocyte apoptosis. In conclusion, ligand binding of AT1receptors may initiate programmed myocyte cell death via an elevation in cytosolic calcium and the stimulation of calcium-dependent endogenous endonuclease.  相似文献   

2.
Angiotensin II (Ang II) elicits a variety of physiological effects through specific Ang II receptors in numerous tissues. In addition, Ang II is a modulator of cellular growth and exerts a positive or negative effect on cell growth depending on which receptor subtype is activated. Expression of the intrarenal AT2 receptors occurs at its highest levels in the fetal kidney, with a rapid decline after birth. In the present paper, we performed a study on the signaling mechanism of Ang II receptors in rat fetal (E20) kidney, a rich source of AT2 receptors, where both Ang II receptor subtypes are present. Ang II induces Tyr-dephosphorylation of proteins in rat fetal kidney membranes. The response is dose-dependent, with a reduction of 20% with respect to the control (100%), signal that is completely reversed by Ang II AT2 competitor PD123319. Orthovanadate, the inhibitor of phospho-Tyr-phosphatases (PTPase), reverts Ang II effect, suggesting the involvement of a protein tyrosine phosphatase. The peptide analog of Ang II, CGP42112, exhibits an agonist effect, which is dose-dependent. Thus, in rat fetal (E20) kidney, the Ang-induced protein Tyr-dephosphorylation of several proteins is mediated by AT2 receptors, mechanism that involves an orthovanadate sensitive PTPase.  相似文献   

3.
Objective: The fat cell hormone leptin is known to be implicated in the pathogenesis of hypertension and cardiovascular disease. Here we tested whether angiotensin (Ang) II is involved in the control of leptin release from human adipocytes. Research Methods and Procedures: Leptin secretion was assessed from in vitro differentiated human adipocytes by radioimmunoassay. Western blot experiments were used to test for the signaling pathway activated by Ang II. Results: Ang II increased leptin secretion into the culture medium in a dose‐ and time‐dependent fashion. At 10?5 M Ang II, the leptin concentration in the medium was increased at 24 hours by 500 ± 222% compared with control cultures (p < 0.05). This effect was also seen at the mRNA level. Similar effects were seen after exposure of fat cells to Ang III and Ang IV. Preincubation of fat cells with candesartan, an angiotensin II type 1 receptor antagonist, or the extracellular‐signal‐regulated kinases 1 and 2 inhibitor UO126 completely abolished the effect of Ang II on leptin production. The peroxisome proliferator‐activated receptor‐gamma agonist troglitazone modestly attenuated leptin release. Discussion: In conclusion, Ang II and its metabolites stimulated leptin production in human adipocytes. This effect is mediated through an extracellular‐signal‐regulated kinases 1 and 2‐dependent pathway and includes the angiotensin II type 1 receptor subtype.  相似文献   

4.
Angiotensin II (Ang II) plays an important role in the maintenance of bone mass and integrity by activation of the mitogen-activated protein kinases (MAPKs) and by modulation of balance between resorption by osteoclasts and formation by osteoblasts. However, the role of Ang II in the turnover of extracellular matrix (ECM) in osteoid by osteoblasts remains unclear. Therefore, we examined the effect of Ang II on the expression of matrix metalloproteinases (MMPs), plasminogen activators (PAs), and their inhibitors [i.e., tissue inhibitors of metalloproteinases (TIMPs) and PA inhibitor-1 (PAI-1)] using osteoblastic ROS17/2.8 cells. Treatment with Ang II strikingly increased the expressions of MMP-3 and -13 and promoted cell proliferation associated with reduced alkaline phosphatase activity as well as enhanced phosphorylated expression of extracellular signal-regulated kinase (ERK)1/2, p38 MAPK, and stress-activated protein kinases/c-jun N-terminal kinases (SAPK/JNK) in ROS17/2.8 cells. However, Ang II had no effect on the expression of MMP-2, -9, -14, urokinase-type PA, tissue-type PA, TIMP-1, -2, -3, and PAI-1 in cells. Losartan (AT1 receptor blocker) blocked Ang II-induced expression of MMP-3 and -13, whereas PD123319 (AT2 receptor blocker) did not completely block these responses. Losartan also blocked the Ang II-induced phosphorylation of ERK1/2, p38 MAPK, and SAPK/JNK. MAPK kinase 1/2 inhibitor PD98059 and JNK inhibitor SP600125 suppressed Ang II-induced expression of MMP-3 and -13. These results suggested that Ang II stimulated the degradation process that occurs during ECM turnover in osteoid by increasing the production of MMP-3 and -13 through MAPK signaling pathways via the AT1 receptor in osteoblasts. Furthermore, our findings suggest that Ang II does not influence the plasminogen/plasmin pathway in osteoblasts.  相似文献   

5.
To determine the effects of transforming growth factor-beta (TGF-beta) on the different cell types that exist in bone, cell populations (I-IV), progressively enriched in osteoblastic cells relative to fibroblastic cells, were prepared from fetal rat calvaria using timed collagenase digestions. TGF-beta did not induce anchorage-independent growth of these cells, nor was anchorage-dependent growth stimulated in most populations studied, despite a two- to threefold increase in the synthesis of cellular proteins. In all populations the synthesis of secreted proteins increased 2-3.5-fold. In particular, collagen, fibronectin, and plasminogen activator inhibitor synthesis was stimulated. However, different degrees of stimulation of individual proteins were observed both within and between cell populations. A marked preferential stimulation of plasminogen activator inhibitor was observed in each population, together with a slight preferential stimulation of collagen; the effect on collagen expression being directed primarily at type I collagen. In contrast, the synthesis of SPARC (secreted protein acidic rich in cysteine/osteonectin was stimulated approximately two-fold by TGF-beta, but only in fibroblastic populations. Collectively, these results demonstrate that TGF-beta stimulates matrix production by bone cells and, through differential effects on individual matrix components, may also influence the nature of the matrix formed by different bone cell populations. In the presence of TGF-beta, osteoblastic cells lost their polygonal morphology and alkaline phosphatase activity was decreased, reflecting a suppression of osteoblastic features. The differential effects of TGF-beta on bone cell populations are likely to be important in bone remodeling and fracture repair.  相似文献   

6.
While androgens have important skeletal effects, the mechanism(s) of androgen action on bone remain unclear. Current osteoblast models to study androgen effects have several limitations, including the presence of heterogeneous cell populations. In this study, we examined the effects of androgens on the proliferation and differentiation of a novel human fetal osteoblastic cell line (hFOB/AR-6) that expresses a mature osteoblast phenotype and a physiological number (∼4,000/nucleus) of androgen receptors (AR). Treatment with 5α-dihydrotestosterone (5α-DHT) inhibited the proliferation of hFOB/AR-6 cells in a dose-dependent fashion, while it had no effect on the proliferation of hFOB cells, which express low levels of AR (<200/nucleus). In hFOB/AR-6 cells, co-treatment with the specific AR antagonist, hydroxyflutamide abolished 5α-DHT-induced growth inhibition. Steady-state levels of transforming growth factor-β1 (TGF-β1) and TGF-β-induced early gene (TIEG) mRNA decreased after treatment of hFOB/AR-6 cells with 5α-DHT, suggesting a role for the TGF-β1-TIEG pathway in mediating 5α-DHT-induced growth inhibition of hFOB/AR-6 cells. In support of this, co-treatment of hFOB/AR-6 cells with TGF-β1 (40 pg/ml) reversed the 5α-DHT-induced growth inhibition, whereas TGF-β1 alone at this dose had no effect on hFOB/AR-6 cell proliferation. Furthermore, treatment of hFOB/AR-6 cells with 5α-DHT and testosterone (10−8 M) inhibited basal and 1,25-(OH)2D3-induced alkaline phosphatase (ALP) activity and type I collagen synthesis without affecting osteocalcin production. Thus, in this fetal osteoblast cell line expressing a physiological number of AR, androgens decrease proliferation and the expression of markers associated with osteoblast differentiation. These studies suggest that the potential anabolic effect of androgens on bone may not be mediated at the level of the mature osteoblast. J. Cell. Biochem. 71:96–108, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
The renin-angiotensin system plays a pivotal role in the regulation of fluid, electrolyte metabolism and blood pressure. Molecular cloning and pharmacological studies have defined two major classes of Angiotensin II (Ang II) receptors, designated AT1 and AT2. Recently, it has been well recognized that Ang II, beside its classical physiological actions, is a profibrogenic peptide and displays characteristics of a growth factor. The emerging picture suggests that angiotensin receptor subtypes exert opposing features in many aspects of their biological function, most importantly in cellular growth and proliferation. Accordingly, the proliferative and/or growth-promoting effects of Ang II are thought to be mediated by AT1 receptor, whereas the AT2 receptor subtype may have growth-inhibitory properties. The novel finding that Ang II is able to induce apoptosis by AT2 receptors in diverse cell types is of great scientific interest, as recent studies revealed a role for apoptosis as a deliberate form of cell death in the pathogenesis of various cardiovascular diseases such as heart failure and vascular remodeling. Furthermore apoptotic cell death might occur during the development of progressive glomerulosclerosis. It is tempting to speculate that autocrine-paracrine vasoactive substances such as Ang II might regulate these apoptotic processes during pathogenic conditions.  相似文献   

8.
In hypertension studies, anti-inflammatory cytokine interleukin-10 (IL-10) has been shown to prevent angiotensin II (Ang II)-induced vasoconstriction and regulate vascular function by down-regulating pro-inflammatory cytokine and superoxide production in vascular cells. However, little is known about the mechanism behind the down-regulatory effect of IL-10 on Ang II-induced hypertensive mediators. In this study, we demonstrated the effects of IL-10 on expression of dimethylarginine dimethylaminohydrolase (DDAH)-1, a regulator of NO bioavailability, as well as the down-regulatory mechanism of action of IL-10 in relation to Ang II-induced hypertensive mediator expression and cell proliferation in vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rats (SHR). IL-10 increased DDAH-1 but not DDAH-2 expression and increased DDAH activity. Additionally, IL-10 attenuated Ang II-induced DDAH-1 inhibition in SHR VSMCs. Increased DDAH activity due to IL-10 was mediated mainly through Ang II subtype II receptor (AT2 R) and AMP-activated protein kinase (AMPK) activation. DDAH-1 induced by IL-10 partially mediated the inhibitory action of IL-10 on Ang II-induced 12-lipoxygenase (LO) and endothelin (ET)-1 expression in SHR VSMCs. In addition, the inhibitory effect of IL-10 on proliferation of Ang II-induced VSMCs was mediated partially via DDAH-1 activity. These results suggest that DDAH-1 plays a potentially important role in the anti-hypertensive activity of IL-10 during Ang II-induced hypertension.  相似文献   

9.
Bone cells synthesize and respond to IGF-I and IGF-II which contribute to bone remodeling and linear growth. In osteoblasts, prostaglandin (PG)E2 stimulates IGF-I but not IGF-II synthesis through a cAMP-dependent protein kinase A (PKA)-related event. However, protein kinase C (PKC) activation by PGE2 enhances replication and protein synthesis by less differentiated periosteal cells more so than in osteoblast-enriched cultures from fetal rat bone. Using various PGs and other PKA and PKC pathway activators, the importance of these aspects of PGE2 activity has now been examined on IGF receptors in these bone cell culture models. PGE2 and other agents that activate PKA enhanced 125I-IGF-II binding to type 2 IGF receptors on both cell populations. In contrast, agents that activate PKC enhanced 125I-IGF-I binding to type 1 receptors on less differentiated bone cells, and of these, only phorbol myristate acetate (PMA), which activates PKC in a receptor-independent way, was effective in osteoblast-enriched cultures. No stimulator increased total type 1 receptor protein in either cell population. Consequently, ligand binding to type 1 and type 2 IGF receptors is differentially modulated by specific intracellular pathways in bone cells. Importantly, changes in apparent type 1 receptor number occur rapidly and may do so at least in part through post-translational effects. These results may help to predict new ways to manipulate autocrine or paracrine actions by IGFs in skeletal tissue. J. Cell. Biochem. 68:446–456, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
Adenosine has been found to be cardioprotective during episodes of cardiac ischemia/reperfusion through activation of the A1 and possibly A3 receptors. Therefore, we have investigated whether activation of these receptors can protect also against apoptotic death induced by angiotensin II (Ang II) in neonatal rat cardiomyocyte cultures. Exposure to Ang II (10 nM) resulted in a 3-fold increase in programmed cell death (p < 0.05). Pretreatment with the A1 adenosine receptor agonist 2-chloro-N6-cyclopentyladenosine (CCPA, 1 M), abolished the effects of Ang II on programmed cardiomyocyte death. Moreover, exposure of cells to the A1 adenosine receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (CPX) before pretreatment with CCPA, prevented the protective effect of the latter. Pretreatment with the A3 adenosine receptor agonist N6-(3-iodobenzyl) adenosine-5-N-methyluronamide (IB-MECA, 0.1 M), led to a partial decrease in apoptotic rate induced by Ang II. Exposure of myocytes to Ang II caused an immediate increase in the concentration of intracellular free Ca2+ that lasted 40–60 sec. Pre-treatment of cells with CCPA or IB-MECA did not block Ang II-induced Ca2+ elevation. In conclusion, activation of adenosine A1 receptors can protect the cardiac cells from apoptosis induced by Ang II, while activation of the adenosine A3 receptors confers partial cardioprotection.  相似文献   

11.
Two osteoblastic cell populations, calvarial and marrow stromal cells, were exposed to estrogen derivatives in vitro. The hormonal effect was monitored by following intracellular Ca+2 levels [Ca+2]i and gap-junction communication. We measured fast changes in intracellular Ca+2 levels in response, of these cells, to the steroid hormones. The changes were dose dependent revealing maximal activity at 100 pM by 17-β-Estradiol and 1 nM by estradiol-CMO. Additionally, the effect of estrogen, on functional coupling of the cells, was measured using fluorescence dye migration and counting the number of neighboring cells coupled by gap junctions. An uncoupling effect was demonstrated in response of these cells to estrogen treatment. The quick stereospecific effect was achieved in the presence of 17-β-estradiol but not in the presence of 17-α-estradiol. These results suggest the involvement of plasma membrane receptors in addition to the already known nuclear receptors in transducing the hormone effects in the osteoblastic cells. J. Cell. Biochem. 69:282–290, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
We investigated the effects of AT1 receptor stimulation by angiotensin II (Ang II) on human ether-a-go-go-related gene (hERG) potassium channel protein in a heterogeneous expression system with the human embryonic kidney (HEK) 293 cells which stably expressed hERG channel protein and were transiently transfected with the human AT1 receptors (HEK293/hERG). Western-blot analysis showed that Ang II significantly decreased the expression of mature hERG channel protein (155-kDa band) in a time- and dose-dependent manner without affecting the level of immature hERG channel protein (135-kDa band). The relative intensity of 155-kDa band was 64.7 ± 6.8% of control (P < 0.01) after treatment of Ang II at 100 nM for 24 h. To investigate the effect of Ang II on the degradation of mature hERG channel protein, we blocked forward trafficking from ER to Golgi with a Golgi transit inhibitor brefeldin A (10 μM). Ang II significantly enhanced the time-dependent reduction of mature hERG channel protein. In addition, the proteasomal inhibitor lactacystin (5 μM) inhibited Ang II-mediated the reduction of mature hERG channel protein, but the lysosomal inhibitor bafilomycin A1 (1 μM) had no effect on the protein. The protein kinase C (PKC) inhibitor bisindolylmaleimide 1 (1 μM) antagonized the reduction of mature hERG channel protein induced by Ang II. The results indicate that sustained stimulation of AT1 receptors by Ang II reduces the mature hERG channel protein via accelerating channel proteasomal degradation involving the PKC pathway.  相似文献   

13.
Otosclerosis is a complex disease characterized by an abnormal bone turnover of the otic capsule resulting in conductive hearing loss. Recent findings have shown that angiotensin II (Ang II), a major effector peptide of the renin–angiotensin system, plays an important role in the pathophysiology of otosclerosis, most likely by its proinflammatory effects on the bone cells. Because reactive oxygen species play a role both in inflammation and in the cellular signaling pathway of Ang II, the appearance of protein adducts of the “second messenger of free radicals,” the aldehyde 4-hydroxynonenal (HNE), in otosclerotic bone has been analyzed. Immunohistochemical analysis of HNE-modified proteins in tissue samples of the stapedial bones performed on 15 otosclerotic patients and 6 controls revealed regular HNE–protein adducts present in the subperiosteal parts of control bone specimens, whereas irregular areas of a pronounced HNE–protein adduct presence were found within stapedial bone in cases of otosclerosis. To study possible interference by HNE and Ang II in human bone cell proliferation, differentiation, and induction of apoptosis we used an in vitro model of osteoblast-like cells. HNE interacted with Ang II in a dose-dependent manner, both by forming HNE–Ang II adducts, as revealed by immunoblotting, and by modifying its effects on cultured cells. Namely, treatment with 0.1 nM Ang II and 2.5 μM HNE stimulated proliferation, whereas treatment with 10 μM HNE or in combination with Ang II (0.1, 0.5, and 1 nM) decreased cell proliferation. Moreover, 10 μM HNE alone and with Ang II (except if 1 nM Ang II was used) increased cellular differentiation and apoptosis. HNE at 5 μM did not affect differentiation nor significantly change apoptosis. On the other hand, when cells were treated with lower concentrations of HNE and Ang II we observed a decrease in cellular differentiation (combination of 1.0 or 2.5 μM HNE with 0.1 nM Ang II) and decrease in apoptosis (0.1 and 0.5 nM Ang II). Cellular necrosis was increased with 5 and 10 μM HNE if given alone or combined with Ang II, whereas 0.5 nM Ang II and combination of 1 μM HNE with Ang II (0.1 and 0.5 nM) reduced necrosis. These results indicate that HNE and Ang II might act mutually dependently in the regulation of bone cell growth and in the pathophysiology of otosclerosis.  相似文献   

14.
Angiotensin II (Ang II) plays an important role on the pathogenesis of cardiac fibrosis. Prolong and overstimulation of angiotensin II type 1 receptor with Ang II-induced collagen synthesis and myofibroblast differentiation in cardiac fibroblasts, leading to cardiac fibrosis. Although adenosine and its analogues are known to have cardioprotective effects, the mechanistic by which adenosine A2 receptors (A2Rs) inhibit Ang II-induced cardiac fibrosis is not clearly understood. In the present study, we examined the effects of exogenous adenosine and endogenous adenosine on Ang II-induced collagen and myofibroblast differentiation determined by α-smooth muscle action (α-SMA) overexpression and their underlying signal transduction. Elevation of endogenous adenosine levels resulted in the inhibition of Ang II-induced collagen type I and III and α-SMA synthesis in cardiac fibroblasts. Moreover, treatment with exogenous adenosine which selectively stimulated A2Rs also suppressed Ang II-induced collagen synthesis and α-SMA production. These antifibrotic effects of both endogenous and exogenous adenosines are mediated through the A2B receptor (A2BR) subtype. Stimulation of A2BR exhibited antifibrotic effects via the cAMP-dependent and Epac-dependent pathways. Our results provide new mechanistic insights regarding the role for cAMP and Epac on A2BR-mediated antifibrotic effects. Thus, A2BR is one of the potential therapeutic targets against cardiac fibrosis.  相似文献   

15.
1) In the rat pituitary, angiotensin type 1B receptors (AT1B) are located in lactotrophs and corticotrophs.2) Activation of AT1B receptors are coupled to Gq/11 (Guanine protein coupled receptor, or GPCR); they increase phospholipase C (PLC) activity resulting in inositol 1,4,5 triphosphate (InsP3) and diacylglycerol (DAG) formation. A biphasic increase in [Ca2+]itriggered by InsP3 and DAG ensues.3) As many GPCRs, AT1B pituitary receptors rapidly desensitize.4) This was observed in the generation of InsP3, the mobilization of intracellular Ca2+, and in prolactin release. Both homologous and heterologous desensitization was evidenced.5) Desensitization of the angiotensin II type 1 (AT1) receptor in the pituitary shares similarities and differences with endogenously expressed or transfected AT1 receptors in different cell types.6) In the pituitary hyperplasia generated by chronic estrogen treatment there was desensitization or alteration in angiotensin II (Ang II) evoked intracellular Ca2+ increase, InsP3 generation, and prolactin release. This correlates with a downregulation of AT1 receptors.7) In particular, in hyperplastic cells Ang II failed to evoke a transient acute peak in [Ca2+]i, which was replaced by a persistent plateau phase of [Ca2+]i increase.8) Different calcium channels participate in Ang II induced [Ca2+]i increase in control and hyperplastic cells. While spike phase in control cells is dependent on intracellular stores sensitive to thapsigargin, in hyperplastic cells plateau increase is dependent on extracellular calcium influx.9) Signal transduction of the AT1 pituitary receptor is greatly modified by hyperplasia, and it may be an important mechanism in the control of the hyperplastic process.10) In the hypothalamus and brain stem there is a predominant expression of AT1A and AT2 mRNA.11) Ang II acts at specific receptors located on neurons in the hypothalamus and brain stem to elicit alterations in blood pressure, fluid intake, and hormone secretion.12) Calcium channels play important roles in the Ang II induced behavioral and endocrine responses.13) Ang II, in physiological concentrations, can activate AT1 receptors to stimulate both Ca2+ release from intracellular stores and Ca2+ influx from the extracellular space to increase [Ca2+]i in polygonal and stellate astroglia of the hypothalamus and brain stem.14) In primary cell culture of neurons from newborn rat hypothalamus and brain stem, it has also been determined that Ang II elicits an AT1 receptor mediated inhibition of delayed rectifier K(+) current and a stimulation of Ca2+ current.15) In primary cell cultures derived from the subfornical organ or the organum vasculosum laminae terminalis of newborn rat pups, Ang II produced a pronounced desensitization of the [Ca2+]i response.16) Hypothalamic and pituitary Ang II systems are involved in different functions, some of which are related. At both levels Ang II signals through [Ca2+]i in a characteristic way.  相似文献   

16.
Abstract

Mesenteric artery smooth muscle cells were grown in culture media containing high, normal, or low concentrations of potassium to study the effects on angiotensin II (Ang II) receptor regulation. Cell growth was similar among cells grown in the different culture media. Cells grown in high potassium media (K=5.8 mEq/L) had an equilibrium dissociation constant, Kd, of 1.59 ± 0.2 nM, whereas those grown in normal potassium media (K=4.1 mEq/L) had a Kd of 1.79 ± 0.2 nM and those grown in a low potassium media (K=2.9 mEq/L) had a Kd of 1.19 ± 0.12 nM (not significantly different, NS). Binding capacity of smooth muscle cells grown in high potassium media was 81 ± 16.7 fmol/mg prot, 95.1 ± 12.4 fmol/mg prot in those grown in normal potassium media and those grown in low potassium media 86.4 ± 24.1 fmol/mg prot (NS). Binding of radiolabelled Ang II was reduced by approximately 70% in cells exposed to unlabelled Ang II for 30 or 60 minutes. However, this effect of exposure to Ang II to reduce subsequent binding of Ang II was identical in cells grown in high and low potassium medium. Therefore, we were unable to identify a direct effect of low potassium to induce changes in Ang II receptor binding affinity or binding capacity. Previously observed changes in these Ang II binding parameters in potassium-depleted rats was probably a consequence of other factors which were simultaneously altered by potassium deficiency.  相似文献   

17.
Scavenger receptor class B, type I (SR-BI) mediates the selective uptake of lipids from high density lipoproteins and is expressed in several types of tissues. However, to date little is known about its role in adipocytes. In this study, we investigated the cellular distribution of SR-BI in 3T3-L1 adipocytes and its regulation by hormones known to increase lipid storage such as angiotensin II (Ang II) and insulin. SR-BI was mainly distributed in the cytoplasm as determined by laser-scanning confocal analysis of the immunofluorescence labeling of SR-BI or the study of an enhanced green fluorescent protein-tagged SR-BI fusion protein. Exposure of cells to either insulin or Ang II (1-2 h) induced the mobilization of SR-BI from intracellular pools to the plasma membrane. This was further confirmed by Western blotting on purified plasma membrane and by fluorescence-activated cell sorter analysis of the SR-BI receptor. Similar results were also observed in primary adipocytes. We also demonstrated that, in the presence of either insulin or Ang II, SR-BI translocation to the cell membrane is functional, because insulin and Ang II induced a significant increase in the high density lipoprotein-delivered 22-(N-7-nitrobenz-2-oxa-1,3-diazo-4-yl)-amino-23,24-bisnor-5-cholen-3-ol uptake and in total cholesterol content. These data demonstrate that SR-BI can be acutely mobilized from intracellular stores to the cell surface by insulin or Ang II, two hormones that exert lipogenic effects in adipocytes. This suggests that SR-BI might participate in the storage of lipids in the adipose tissue.  相似文献   

18.
Clinical and experimental data show an increase in sodium reabsorption on the proximal tubule (PT) in essential hypertension. It is well known that there is a link between essential hypertension and renal angiotensin II (Ang II). The present study was designed to examine ouabain-insensitive Na+-ATPase activity and its regulation by Ang II in spontaneously hypertensive rats (SHR). We observed that Na+-ATPase activity was enhanced in 14-week-old but not in 6-week-old SHR. The addition of Ang II from 10− 12 to 10− 6 mol/L decreased the enzyme activity in SHR to a level similar to that obtained in WKY. The Ang II inhibitory effect was completely reversed by a specific antagonist of AT2 receptor, PD123319 (10− 8 mol/L) indicating that a system leading to activation of the enzyme in SHR is inhibited by AT2-mediated Ang II. Treatment of SHR with losartan for 10 weeks (weeks 4-14) prevents the increase in Na+-ATPase activity observed in 14-week-old SHR. These results indicate a correlation between AT1 receptor activation in SHR and increased ouabain-insensitive Na+-ATPase activity. Our results open new possibilities towards our understanding of the pathophysiological mechanisms involved in the increased sodium reabsorption in PT found in essential hypertension.  相似文献   

19.
Recent studies have shown that monocytes possess pluripotent plasticity. We previously reported that monocytes could differentiate into hepatic stellate cells. Although stellate cells are also present in the pancreas, their origin remains unclear. An accumulation of enhanced green fluorescent protein (EGFP)+CD45 cells was observed in the pancreases and livers of chimeric mice, which were transplanted with a single hematopoietic stem cell isolated from EGFP-transgenic mice and treated with carbon tetrachloride (CCl4). Because the vast majority of EGFP+CD45 cells in the pancreas expressed stellate cell-associated antigens such as vimentin, desmin, glial fibrillary acidic protein, procollagen-I, and α-smooth muscle actin, they were characterized as pancreatic stellate cells (PaSCs). EGFP+ PaSCs were also observed in CCl4-treated mice adoptively transferred with monocytes but not with other cell lineages isolated from EGFP-transgenic mice. The expression of monocyte chemoattractant protein-1 (MCP-1) and angiotensin II (Ang II) increased in the pancreas of CCl4-treated mice and their respective receptors, C-C chemokine receptor 2 (CCR2) and Ang II type 1 receptor (AT1R), were expressed on Ly6Chigh monocytes isolated from EGFP-transgenic mice. We examined the effect of an AT1R antagonist, irbesartan, which is also a CCR2 antagonist, on the migration of monocytes into the pancreas. Monocytes migrated toward MCP-1 but not Ang II in vitro. Irbesartan inhibited not only their in vitro chemotaxis but also in vivo migration of adoptively transferred monocytes from peripheral blood into the pancreas. Irbesartan treatment significantly reduced the numbers of EGFP+F4/80+CCR2+ monocytic cells and EGFP+ PaSCs in the pancreas of CCl4-treated chimeric mice receiving EGFP+ bone marrow cells. A specific CCR2 antagonist RS504393 inhibited the occurrence of EGFP+ PaSCs in injured mice. We propose that CCR2+ monocytes migrate into the pancreas possibly via the MCP-1/CCR2 pathway and give rise to PaSCs.  相似文献   

20.
Expression of estrogen receptor-alpha in cells of the osteoclastic lineage   总被引:10,自引:0,他引:10  
 Estrogen deficiency at the menopause is associated with an increased rate of bone loss and subsequent risk of skeletal fracture. Whilst cells of the osteoblastic lineage are known to express estrogen receptors, the presence of estrogen receptors in osteoclasts remains controversial. We have examined expression of the classic estrogen receptor, estrogen receptor-alpha (ERα), during osteoclast differentiation. In situ mRNA hybridisation with a digoxygenin-labelled riboprobe to ERα mRNA, together with immunocytochemical analysis using a human ERα-specific monoclonal antibody demonstrated similar findings and confirmed the expression of ERα in chondroblasts and osteoblasts from human fetal bone and mineralising human bone marrow cultures. ERα expression was detected in human bone marrow cultures treated with 1,25(OH)2D3 and macrophage colony-stimulating factor and in macrophage cultures treated with 1,25(OH)2D3. However, in an in vitro model of human osteoclast formation, no ERα expression was observed in the osteoclasts that developed. The human preosteoclast TCG 51 cell line showed strong expression of ERα in contrast to the low levels observed in the more mature bone resorptive TCG 23 cell line. No expression was detectable in osteoclasts cultured from giant cell tumour of bone (GCTB) tissue or in osteoclasts in Pagetic, GCTB, or hyperparathyroid bone tissues. In conclusion, preosteoclasts express detectable levels of ERα, but osteoclast maturation and bone resorption is associated with loss of ERα expression. This indicates that ERα expression and regulation may play a role in osteoclast formation. Accepted: 4 November 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号