共查询到20条相似文献,搜索用时 0 毫秒
1.
Vasdev S Gill V Parai S Longerich L Gadag V 《Molecular and cellular biochemistry》2002,236(1-2):107-114
The 1c subunit (DHP receptor) of the L-type Ca2+ channel is important for calcium homeostasis in cardiac muscle. The DHPr provides the primary mechanism for calcium influx during contraction. Published results demonstrate three in vitro signaling pathways that are important in the regulation of DHPr gene expression in neonatal cardiac myocytes, the protein kinase A (PKA), protein kinase C (PKC) pathways, and intracellular calcium. To determine whether these pathways are important in vivo, we treated adult rats with infusions of isoproterenol, or norepinephrine at 200 g/kg/h and assessed DHPr mRNA and protein levels. Following a 3-day infusion isoproterenol (ISO) and norepinephrine (NE) produced a small but insignificant reduction in DHPr mRNA levels. When the infusions were continued for 7 days isoproterenol increased DHPr mRNA accumulation to control levels while NE stimulated a 35% increase in DHPr mRNA levels and a 35% increase in protein abundance when compared to controls (p < 0.05). Furthermore, contractility and Ca2+ transient measurements of isolated cardiac myocytes from NE infused animals also display shortened duration of contraction/relaxation and increased intracellular free Ca2+ (DFFI) in response to electrical stimulation (p < 0.01). We conclude norepinephrine treatment alters DHPr mRNA and protein levels, and augments excitation-contraction coupling, and thus may be important for modulating cardiac calcium homeostasis in vivo. 相似文献
2.
Cytosolic calcium acts as both a coagonist and an inhibitor of the type 1 inositol 1,4,5-trisphosphate (InsP3)-gated Ca channel, resulting in a bell-shaped Ca dependence of channel activity (Bezprozvanny, I., J. Watras, and B.E. Ehrlich. 1991. Nature. 351:751-754; Finch, E.A., T.J. Turner, and S.M. Goldin. 1991. Science. 252: 443-446; Iino, M. 1990. J. Gen. Physiol. 95:1103-1122). The ability of Ca to inhibit channel activity, however, varies dramatically depending on InsP3 concentration (Combettes, L., Z. Hannaert-Merah, J.F. Coquil, C. Rousseau, M. Claret, S. Swillens, and P. Champeil. 1994. J. Biol. Chem. 269:17561-17571; Kaftan, E.J., B.E. Ehrlich, and J. Watras. 1997. J. Gen. Physiol. 110:529-538). In the present report, we have extended the characterization of the effect of cytosolic Ca on both InsP3 binding and InsP3-gated channel kinetics, and incorporated these data into a mathematical model capable of simulating channel kinetics. We found that cytosolic Ca increased the Kd of InsP3 binding approximately 3.5-fold, but did not influence the maximal number of binding sites. The ability of Ca to decrease InsP3 binding is consistent with the rightward shift in the bell-shaped Ca dependence of InsP3-gated Ca channel activity. High InsP3 concentrations are able to overcome the Ca-dependent inhibition of channel activity, apparently due to a low affinity InsP3 binding site (Kaftan, E.J., B.E. Ehrlich, and J. Watras. 1997. J. Gen. Physiol. 110:529-538). Constants from binding analyses and channel activity determinations were used to develop a mathematical model that fits the complex Ca-dependent regulation of the type 1 InsP3-gated Ca channel. This model accurately simulated both steady state data (channel open probability and InsP3 binding) and kinetic data (channel activity and open time distributions), and yielded testable predictions with regard to the regulation of this intracellular Ca channel. Information gained from these analyses, and our current molecular model of this Ca channel, will be important for understanding the basis and regulation of intracellular Ca waves and oscillations in intact cells. 相似文献
3.
The inositol 1,4,5-trisphosphate (InsP(3)) receptor (InsP(3)R) is a ligand-gated intracellular Ca(2+) release channel that plays a central role in modulating cytoplasmic free Ca(2+) concentration ([Ca(2+)](i)). The fungal metabolite adenophostin A (AdA) is a potent agonist of the InsP(3)R that is structurally different from InsP(3) and elicits distinct calcium signals in cells. We have investigated the effects of AdA and its analogues on single-channel activities of the InsP(3)R in the outer membrane of isolated Xenopus laevis oocyte nuclei. InsP(3)R activated by either AdA or InsP(3) have identical channel conductance properties. Furthermore, AdA, like InsP(3), activates the channel by tuning Ca(2+) inhibition of gating. However, gating of the AdA-liganded InsP(3)R has a critical dependence on cytoplasmic ATP free acid concentration not observed for InsP(3)-liganded channels. Channel gating activated by AdA is indistinguishable from that elicited by InsP(3) in the presence of 0.5 mM ATP, although the functional affinity of the channel is 60-fold higher for AdA. However, in the absence of ATP, gating kinetics of AdA-liganded InsP(3)R were very different. Channel open time was reduced by 50%, resulting in substantially lower maximum open probability than channels activated by AdA in the presence of ATP, or by InsP(3) in the presence or absence of ATP. Also, the higher functional affinity of InsP(3)R for AdA than for InsP(3) is nearly abolished in the absence of ATP. Low affinity AdA analogues furanophostin and ribophostin activated InsP(3)R channels with gating properties similar to those of AdA. These results provide novel insights for interpretations of observed effects of AdA on calcium signaling, including the mechanisms that determine the durations of elementary Ca(2+) release events in cells. Comparisons of single-channel gating kinetics of the InsP(3)R activated by InsP(3), AdA, and its analogues also identify molecular elements in InsP(3)R ligands that contribute to binding and activation of channel gating. 相似文献
4.
Confocal laser microscopy, in conjunction with carbocyanine dyes and calcium-sensitive fluorescent indicators, was used in slices and explant cultures of developing cerebellum to study cellular mechanisms underlying a motility of neuronal cell migration. The results indicate that a combination of voltage- and ligand-activated ion channels cooperatively regulates Ca2+ influx into the migrating cells. We suggest that molecules, present in the local cellular milieu, affect cell motility by activating specific ion channels and second messengers that influence polymerization of stiff and contractile cytoskeletal proteins. This early interaction between postmitotic neurons and surrounding cells controls the rate of their movements, sculpts their shapes, establishes their positions, and, therefore, indirectly determines their identities to prior formation of synaptic connections. © 1995 John Wiley Sons, Inc. 相似文献
5.
Favereaux A Thoumine O Bouali-Benazzouz R Roques V Papon MA Salam SA Drutel G Léger C Calas A Nagy F Landry M 《The EMBO journal》2011,30(18):3830-3841
Chronic pain states are characterized by long-term sensitization of spinal cord neurons that relay nociceptive information to the brain. Among the mechanisms involved, up-regulation of Cav1.2-comprising L-type calcium channel (Cav1.2-LTC) in spinal dorsal horn have a crucial role in chronic neuropathic pain. Here, we address a mechanism of translational regulation of this calcium channel. Translational regulation by microRNAs is a key factor in the expression and function of eukaryotic genomes. Because perfect matching to target sequence is not required for inhibition, theoretically, microRNAs could regulate simultaneously multiple mRNAs. We show here that a single microRNA, miR-103, simultaneously regulates the expression of the three subunits forming Cav1.2-LTC in a novel integrative regulation. This regulation is bidirectional since knocking-down or over-expressing miR-103, respectively, up- or down-regulate the level of Cav1.2-LTC translation. Functionally, we show that miR-103 knockdown in naive rats results in hypersensitivity to pain. Moreover, we demonstrate that miR-103 is down-regulated in neuropathic animals and that miR-103 intrathecal applications successfully relieve pain, identifying miR-103 as a novel possible therapeutic target in neuropathic chronic pain. 相似文献
6.
7.
P2X receptors are calcium permeable ligand-gated ion channels activated by ATP. Their role as cell surface receptors for extracellular ATP released physiologically by mammalian cells is well established. However, the cellular function of P2X receptor subtypes that populate the membranes of intracellular compartments is not defined. An initial report described how intracellular P2X receptors control the function of the contractile vacuole, an osmoregulatory organelle in Dictyostelium and other protists, and that genetic disruption of P2X receptors severely impaired cell volume control during hypotonic stress. However, later studies refuted a functional role of intracellular P2X receptors in Dictyostelium. Here we provide evidence that the discrepancies reported between the studies are due to the laboratory strain of Dictyostelium employed, which display different phenotypes in response to hypotonic stress and a varied dependency upon P2X receptors for osmoregulation. We use the recent discovery that intracellular P2X receptors are novel calcium release channels to provide some mechanistic insight in an effort to explain why the strain variance may exist. 相似文献
8.
Current through L-type calcium channels (CaV1.2 or dihydropyridine receptor) can be blocked by micromolar concentrations of trivalent cations like the lanthanide gadolinium (Gd3+). It has been proposed that trivalent block is due to ions competing for a binding site in both the open and closed configuration, but possibly with different trivalent affinities. Here, we corroborate this general view of trivalent block by computing conductance of a model L-type calcium channel. The model qualitatively reproduces the Gd3+ concentration dependence and the effect that substantially more Gd3+ is required to produce similar block in the presence of Sr2+ (compared to Ba2+) and even more in the presence of Ca2+. Trivalent block is explained in this model by cations binding in the selectivity filter with the charge/space competition mechanism. This is the same mechanism that in the model channel governs other selectivity properties. Specifically, selectivity is determined by the combination of ions that most effectively screen the negative glutamates of the protein while finding space in the midst of the closely packed carboxylate groups of the glutamate residues. 相似文献
9.
10.
The effects of voltage-dependent calcium channel (VDCC) antagonists and the non-specific calcium channel antagonists on both juvenile hormone acids (JHA) release and cytosolic free calcium concentration ([Ca2+]i) are investigated in the corpora allata (CA) of the adult males loreyi leafworm Mythimna loreyi. The VDCC antagonists used in this study are: the L-type antagonists diltiazem, nifedipine, and verapamil, the N-type antagonist omega-Conotoxin (CgTx) GVIA, the N- and P/Q-type antagonist omega-CgTx MVIIC, and the T-type antagonist amiloride. The non-specific calcium channel antagonists used in this study were cadmium (Cd2+), cobalt (Co2+), nickle (Ni2+), and lanthanum (La3+). The results show that both the DHPs-sensitive L-type antagonist nifedipine and the N-type antagonist omega-CgTx GVIA were able to inhibit JHA release, but only omega-CgTx GVIA was able to reduce the [Ca2+]i. Among the non-specific calcium channel antagonists, Cd2+ is the most potent in reducing JHA release but without obvious effect on the [Ca2+]i, La3+ significantly increases the [Ca2+]i but without effect on JHA release. 相似文献
11.
Transient elevations of intracellular calcium (calcium transients) play critical roles in many developmental processes, including differentiation. Although the factors that regulate calcium transients are not clearly defined, calcium influx may be controlled by molecules interacting with calcium channels, including channel regulatory subunits. Here, we describe the chick gamma4 regulatory subunit (CACNG4), the first such subunit to be characterized in early development. CACNG4 is expressed early in the cranial neural plate, and later in the cranial and dorsal root ganglia; importantly, the timing of this later expression correlates precisely with the onset of neuronal differentiation. CACNG4 expression is also observed in nonneuronal tissues undergoing differentiation, specifically the myotome and a subpopulation of differentiating myoblasts in the limb bud. Finally, within the distal cranial ganglia, we show that CACNG4 is expressed in placode-derived cells (prospective neurons), but also, surprisingly, in neural crest-derived cells, previously shown to form only glia in this location; contrary to these previous results, we find that neural crest cells can form neurons in the distal ganglia. Given the proposed role of CACNG4 in modulating calcium channels and its expression in differentiating cells, we suggest that CACNG4 may promote differentiation via regulation of intracellular calcium levels. 相似文献
12.
The skeletal and cardiac muscle dihydropyridine receptors (DHPRs) differ with respect to their rates of channel activation and in the means by which they control Ca2+ release from the sarcoplasmic reticulum (Adams, B.A., and K.G. Beam. 1990. FASEB J. 4:2809-2816). We have examined the functional properties of skeletal (SkEIIIK) and cardiac (CEIIIK) DHPRs in which a highly conserved glutamate residue in the pore region of repeat III was mutated to a positively charged lysine residue. Using expression in dysgenic myotubes, we have characterized macroscopic ionic currents, intramembrane gating currents, and intracellular Ca2+ transients attributable to these two mutant DHPRs. CEIIIK supported very small inward Ca2+ currents at a few potentials (from -20 to +20 mV) and large outward cesium currents at potentials greater than +20 mV. SkEIIIK failed to support inward Ca2+ flux at any potential. However, large, slowly activating outward cesium currents were observed at all potentials greater than + 20 mV. The difference in skeletal and cardiac Ca2+ channel activation kinetics was conserved for outward currents through CEIIIK and SkEIIIK, even at very depolarized potentials (at +100 mV; SkEIIIK: tau(act) = 30.7 +/- 1.9 ms, n = 11; CEIIIK: tau(act) = 2.9 +/- 0.5 ms, n = 7). Expression of SkEIIIK in dysgenic myotubes restored both evoked contractions and depolarization-dependent intracellular Ca(2+) transients with parameters of voltage dependence (V(0.5) = 6.5 +/- 3.2 mV and k = 9.3 +/- 0.7 mV, n = 5) similar to those for the wild-type DHPR (Garcia, J., T. Tanabe, and K.G. Beam. 1994. J. Gen. Physiol. 103:125-147). However, CEIIIK-expressing myotubes never contracted and failed to exhibit depolarization-dependent intracellular Ca2+ transients at any potential. Thus, high Ca2+ permeation is required for cardiac-type excitation-contraction coupling reconstituted in dysgenic myotubes, but not skeletal-type. The strong rectification of the EIIIK channels made it possible to obtain measurements of gating currents upon repolarization to -50 mV (Qoff) following either brief (20 ms) or long (200 ms) depolarizing pulses to various test potentials. For SkEIIIK, and not CEIIK, Qoff was significantly (P < 0.001) larger after longer depolarizations to +60 mV (121.4 +/- 2.0%, n = 6). The increase in Qoff for long depolarizations exhibited a voltage dependence similar to that of channel activation. Thus, the increase in Q(off) may reflect a voltage sensor movement required for activation of L-type Ca2+ current and suggests that most DHPRs in skeletal muscle undergo this voltage-dependent transition. 相似文献
13.
The role of protein kinase C (PKC) in the regulation of cardiac L-type Ca2+ channel activity (LCC) was investigated in L6 rat neonatal myoblasts. Depolarization of fura-2 loaded cells with 140 mM KCl activated a Ba2+ influx pathway that was blocked by nifedipine and stimulated by (−) Bay K 8644. At least two splice variants of the α1C subunit of the cardiac LCC were identified by PCR; the α1S subunit of the skeletal muscle LCC was not detected. Peptides that specifically inhibit translocation of the novel, Ca2+-independent δ and PKC isozymes reduced Ba2+ influx by 27% and 19%, respectively, whereas a corresponding peptide directed against translocation of classical PKC α had no effect. Ingenol 3,20-dibenzoate, an agent reported to selectively activate novel PKCs, increased Ba2+ uptake by 31% while ethanol, a PKC agonist, enhanced uptake by 38%. In contrast, selective activation of classical PKCs with thymeleatoxin or an agonist peptide reduced Ba2+ influx by 23–33%. Ba2+ influx was reduced by 30–40% when cells were treated with either a PKC inhibitor (Gö 6983, bisindolylmaleimide) or the PKC activator phorbol-12-myristate-13-acetate. We propose that novel, Ca2+-insensitive PKC(s) enhance cardiac Ca2+ channel activity in L6 cells under basal conditions while activation of the classical, Ca2+-sensitive PKC(s) inhibits channel activity. These findings provide the first evidence that different PKC isozymes exert class-specific opposing effects on cardiac L-type Ca2+ channel activity in L6 myoblasts. 相似文献
14.
Dimitrios E. Kouzoukas Guiying Li Maysaam Takapoo Thomas Moninger Ramesh C. Bhalla Nicholas J. Pantazis 《Journal of neurochemistry》2013,124(3):323-335
Alcohol is a potent neuroteratogen that can trigger neuronal death in the developing brain. However, the mechanism underlying this alcohol‐induced neuronal death is not fully understood. Utilizing primary cultures of cerebellar granule neurons (CGN), we tested the hypothesis that the alcohol‐induced increase in intracellular calcium [Ca2+]i causes the death of CGN. Alcohol induced a dose‐dependent (200–800 mg/dL) neuronal death within 24 h. Ratiometric Ca2+ imaging with Fura‐2 revealed that alcohol causes a rapid (1–2 min), dose‐dependent increase in [Ca2+]i, which persisted for the duration of the experiment (5 or 7 min). The alcohol‐induced increase in [Ca2+]i was observed in Ca2+‐free media, suggesting intracellular Ca2+ release. Pre‐treatment of CGN cultures with an inhibitor (2‐APB) of the inositol‐triphosphate receptor (IP3R), which regulates Ca2+ release from the endoplasmic reticulum (ER), blocked both the alcohol‐induced rise in [Ca2+]i and the neuronal death caused by alcohol. Similarly, pre‐treatment with BAPTA/AM, a Ca2+‐chelator, also inhibited the alcohol‐induced surge in [Ca2+]i and prevented neuronal death. In conclusion, alcohol disrupts [Ca2+]i homeostasis in CGN by releasing Ca2+ from intracellular stores, resulting in a sustained increase in [Ca2+]i. This sustained increase in [Ca2+]i may be a key determinant in the mechanism underlying alcohol‐induced neuronal death. 相似文献
15.
Daeshik Cho Sun A. Kim Yoshiyuki Murata Sangmee Lee Seul-Ki Jae Hong Gil Nam June M. Kwak 《The Plant journal : for cell and molecular biology》2009,58(3):437-449
Cytosolic Ca2+ ([Ca2+]cyt) mediates diverse cellular responses in both animal and plant cells in response to various stimuli. Calcium oscillation amplitude and frequency control gene expression. In stomatal guard cells, [Ca2+]cyt has been shown to regulate stomatal movements, and a defined window of Ca2+ oscillation kinetic parameters encodes necessary information for long‐term stomatal movements. However, it remains unknown how the encrypted information in the cytosolic Ca2+ signature is decoded to maintain stomatal closure. Here we report that the Arabidopsis glutamate receptor homolog AtGLR3.1 is preferentially expressed in guard cells compared to mesophyll cells. Furthermore, over‐expression of AtGLR3.1 using a viral promoter resulted in impaired external Ca2+‐induced stomatal closure. Cytosolic Ca2+ activation of S‐type anion channels, which play a central role in Ca2+‐reactive stomatal closure, was normal in the AtGLR3.1 over‐expressing plants. Interestingly, AtGLR3.1 over‐expression did not affect Ca2+‐induced Ca2+ oscillation kinetics, but resulted in a failure to maintain long‐term ‘Ca2+‐programmed’ stomatal closure when Ca2+ oscillations containing information for maintaining stomatal closure were imposed. By contrast, prompt short‐term Ca2+‐reactive closure was not affected in AtGLR3.1 over‐expressing plants. In wild‐type plants, the translational inhibitor cyclohexamide partially inhibited Ca2+‐programmed stomatal closure induced by experimentally imposed Ca2+ oscillations without affecting short‐term Ca2+‐reactive closure, mimicking the guard cell behavior of the AtGLR3.1 over‐expressing plants. Our results suggest that over‐expression of AtGLR3.1 impairs Ca2+ oscillation‐regulated stomatal movements, and that de novo protein synthesis contributes to the maintenance of long‐term Ca2+‐programmed stomatal closure. 相似文献
16.
The role of intracellular sodium in the regulation of NMDA-receptor-mediated channel activity and toxicity 总被引:2,自引:0,他引:2
Yu XM 《Molecular neurobiology》2006,33(1):63-79
Sodium (Na+) is the major cation in extracellular space and, with its entry into cells, may act as a critical intracellular second messenger
that regulates many cellular functions. Through our investigations of mechanisms underlying the activity-dependent regulation
of N-methyl-d-aspartate (NMDA) receptors, we recently characterized intracellular Na+ as a possible signaling factor common to processes underlying the upregulation of NMDA receptors by non-NMDA glutamate channels,
voltage-gated Na+ channels, and remote NMDA receptors. Furthermore, although Ca2+ influx during the activation of NMDA receptors acts as a negative feedback mechanism that downregulates NMDA receptor activity,
Na+ influx provides an essential positive feedback mechanism to overcome Ca2+-induced inhibition, thereby potentiating both NMDA receptor activity and inward Ca2+ flow. NMDA receptors may be recruited to cause excitoxicity through a Na+-dependent mechanism. Therefore, the further characterization of mechanisms underlying the regulation of NMDA receptors by
intracellular Na+ is essential to understanding activity-dependent neuroplasticity in the nervous system. 相似文献
17.
Microarray technology has been used to discover 1,25-dihydroxyvitamin D(3) (1,25-(OH)(2)D(3)) induced gene expression changes in rat small intestine in vivo. Here, we report gene expression changes related to intestinal absorption or transport, the immune system and angiogenesis in response to 1,25-(OH)(2)D(3). Vitamin D deficient rats were intrajugularly given vehicle or vehicle containing 730 ng of 1,25-(OH)(2)D(3)/kg of body weight. Intestinal mRNA was harvested from duodenal mucosa at 15 min, 1, 3, and 6 h post-injection and studied by Affymetrix microarrays. Genes significantly affected by 1,25-(OH)(2)D(3) were confirmed by quantitative RT-PCR with remarkable agreement. The most strongly affected gene in intestine was CYP24 with 97-fold increase at 6 h post-1,25-(OH)(2)D(3) treatment. Intestinal calcium absorption genes: TRPV5, TRPV6, calbindin D(9k), and Ca(2+) dependent ATPase all were up-regulated in response to 1,25-(OH)(2)D(3), supporting the currently accepted mechanism of 1,25-(OH)(2)D(3) induced transcellular calcium transport. However, a 1,25-(OH)(2)D(3) suppression of several intra-/intercellular matrix modeling proteins such as sodium/potassium ATPase, claudin 3, aquaporin 8, cadherin 17, and RhoA suggests a vitamin D regulation of tight junction permeability and paracellular calcium transport. Several other genes related to the immune system and angiogenesis whose expression was changed in response to 1,25-(OH)(2)D(3) provided evidence for an immunomodulatory and anti-angiogenic role of 1,25-(OH)(2)D(3). 相似文献
18.
Findlay I Suzuki S Murakami S Kurachi Y 《Progress in biophysics and molecular biology》2008,96(1-3):482-498
The inactivation of the L-type Ca2+ current is composed of voltage-dependent and calcium-dependent mechanisms. The relative contribution of these processes is still under dispute and the idea that the voltage-dependent inactivation could be subject to further modulation by other physiological processes had been ignored. This study sought to model physiological modulation of inactivation of the current in cardiac ventricular myocytes, based upon the recent detailed experimental data that separated total and voltage-dependent inactivation (VDI) by replacing extracellular Ca2+ with Mg2+ and monitoring L-type Ca2+ channel behaviour by outward K+ current flowing through the channel in the absence of inward current flow. Calcium-dependent inactivation (CDI) was based upon Ca2+ influx and formulated from data that was recorded during β-adrenergic stimulation of the myocytes. Ca2+ influx and its competition with non-selective monovalent cation permeation were also incorporated into channel permeation in the model. The constructed model could closely reproduce the experimental Ba2+ and Ca2+ current results under basal condition where no β-stimulation was added after a slight reduction of the development of fast voltage-dependent inactivation with depolarization. The model also predicted that under β-adrenergic stimulation voltage-dependent inactivation is lost and calcium-dependent inactivation largely compensates it. The developed model thus will be useful to estimate the respective roles of VDI and CDI of L-type Ca2+ channels in various physiological and pathological conditions of the heart which would otherwise be difficult to show experimentally. 相似文献
19.
Ghérici Hassaine Cédric Deluz Xiao-Dan Li Alexandra Graff Horst Vogel Hugues Nury 《生物化学与生物物理学报:生物膜》2013
Receptors of the Cys-loop family are central to neurotransmission and primary therapeutic targets. In order to decipher their gating and modulation mechanisms, structural data is essential. However, structural studies require large amounts of pure, functional receptors. Here, we present the expression and purification of the mouse serotonin 5-HT3 receptor to high purity and homogeneity levels. Inducible expression in human embryonic kidney 293 cells in suspension cultures with orbital shaking resulted in yields of 6–8 mg receptor per liter of culture. Affinity purification using a strep tag provided pure protein in active form. Further deglycosylation and removal of the purification tag led to a pentameric receptor after size-exclusion chromatography, at the milligram scale. This material is suitable for crystallography, as demonstrated by X-ray diffraction of receptor crystals at low resolution. 相似文献
20.
Craviso GL Poss J Lanctot C Lundback SS Chatterjee I Publicover NG 《Bioelectromagnetics》2002,23(8):557-567
This study examined whether 60 Hz magnetic field (MF) exposure alters intracellular calcium levels ([Ca(2+)](i)) in isolated bovine adrenal chromaffin cells, a classic model of neural responses. [Ca(2+)](i) was monitored by fluorescence video imaging of cells loaded with the calcium indicator fluo-4 during exposures to magnetic flux densities of 0.01, 0.1, 1.0, 1.4, or 2.0 mT. MFs generated by Helmholtz coils constructed from bifilar wire allowed both 60 Hz field and sham exposures. Following a 5 min monitoring period to establish baseline patterns, cells were subjected for 10 min to a 60 Hz MF, sham field or no field. Reference calcium responses and assessment of cell excitability were obtained by the sequential addition of the nicotinic cholinergic receptor agonist dimethylphenylpiperazinium (DMPP) and a depolarizing concentration of KCl. Throughout an 8 day culture period, cells exhibited spontaneous fluctuations in [Ca(2+)](i). Comparisons of the number of cells exhibiting transients, the number and types of calcium transients, as well as the time during monitoring when transients occurred showed no significant differences between MF exposed cells and either sham exposed or nonexposed cells. With respect to the percentage of cells responding to DMPP, differences between 1 and 2 mT exposed cells and both nonexposed and sham exposed cells reached statistical significance during the first day in culture. No statistically significant differences were observed for responses to KCl. In summary, our data indicate that [Ca(2+)](i) in chromaffin cells is unaffected by the specific 60 Hz MF intensities used in this study. On the other hand, plasma membrane nicotinic receptors may be affected in a manner that is important for ligand-receptor interactions. 相似文献