首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parthenogenetic embryos, which are produced by the spontaneous or artificial stimulation of the oocyte, partially develop in the complete absence of the male gamete but fail to produce live young in many mammalian species. The identification of developmentally regulated molecules on the cell surface of embryos has implicated their possible role in cell interactions during embryogenesis and differentiation. In this study the expression patterns of four stage-specific cell surface antigenic determinants (TEC-1, -2, -3, and -4) were investigated in both parthenogenetic and in vitro fertilized bovine embryos. When compared to embryos produced using in vitro fertilization methods the parthenogenotes, although appearing morphologically normal, differed markedly in their TEC epitope pattern of presentation. TEC-1, -2, -3, and -4 epitope presentation on in vitro fertilized embryos occurred during specific stages of preimplantation development. TEC-1 and -2 presentation was detected on oocytes and blastocysts only, TEC-3 on morulae and blastocysts, and TEC-4 on oocytes through to 8-cell embryos, with all subsequent stages negative. Parthenogenetic embryos did not show TEC-1, -2, or -3 epitope presentation whereas the TEC-4 epitope was present throughout the developmental period examined. Enzymatic cleavage of sialic acid residues on in vitro fertilized and parthenogenetic embryos resulted in presentation of the TEC epitopes during all the embryonic stages. Western blot analysis of the embryos showed the TEC epitopes to be present on all the embryonic stages examined. This study suggests the mechanisms responsible for control and presentation of each of the TEC epitopes may not be functioning the same in parthenogenetic embryos that undergo changed glycosylation or deglycosylation resulting in altered patterns of sialylation. The study also shows TEC epitope presentation may prove to be a useful indicator of parthenogenetically activated bovine embryos. J. Exp. Zool. 284:392-400, 1999.  相似文献   

2.
3.
Cell surface carbohydrates undergo marked alterations during mouse embryogenesis. In preimplantation embryos, many carbohydrate markers show stage-specific expression in diverse ways. In early postimplantation embryos, certain carbohydrate markers are localized in defined regions in the embryo. Important carriers of stage-specific carbohydrates are the lactoseries structure (Gal beta 1----4GlcNAc) and the globoseries structure (Gal alpha 1----4Gal). Notably, the glycoprotein-bound large carbohydrate of poly-N-acetyllactosamine-type ([Gal beta 1----4GlcNAc beta 1----3]n) carries a number of markers preferentially expressed in early embryonic cells. These markers are of practical value in analyzing embryogenesis and cell differentiation. For example, in order to monitor in vitro differentiation of multipotential embryonal carcinoma cells, stage-specific embryonic antigen-1 (SSEA-1) and the Lotus agglutinin receptor have been used as markers of the undifferentiated cells, and the Dolichos agglutinin receptor has been used as a marker of extraembryonic endoderm cells. Developmental control of cell surface carbohydrates is attained by controlled expression of activities of key glycosyltransferases; for example, the activity of N-acetylglucosaminide alpha 1----3 fucosyltransferase is lost during in vitro differentiation of embryonal carcinoma cells to parietal endoderm cells, in parallel to the disappearance of SSEA-1. Accumulating evidence suggests that poly-N-acetyllactosamine-type glycans that are abundant in early embryonic cells are involved in cell surface recognition of these cells.  相似文献   

4.
Embryonal carcinoma cells carry on their surfaces carbohydrate antigens that are also expressed in early embryonic cells. We report here the expression and properties of a new developmentally regulated carbohydrate epitope, which is defined by a monoclonal antibody TEC-05. This antibody was generated by immunization of a rat with mouse embryonal carcinoma cells P19S1801A1. By immunofluorescence, the TEC-5 epitope was first detected on 8-cell-stage mouse embryos and was present on all subsequent stages of preimplantation development. Absorption analysis revealed that TEC-5 epitope was expressed only on a limited number of adult mouse tissues. In the direct radioantibody binding assay, TEC-05 reacted strongly with OTF9-63 cells and with some of the mouse embryonal carcinoma cell lines tested. Its reaction with differentiated cell lines was weak or undetectable. In the course of differentiation of OTF9-63 cells induced by retinoic acid, the epitope disappeared with the onset of morphological differentiation. The binding of the antibody to OTF9-63 cells was inhibited to 50% by 10-50 microM N-acetyllactosamine and lactose. Immunolabelling of extracts from OTF9-63 cells separated by sodium-dodecyl-sulfate (SDS) polyacrylamide gel electrophoresis revealed that TEC-5 epitope was carried by high-molecular-weight glycoconjugates (molecular weight greater than 100,000). Molecules, isolated from [3H]-fucose-labelled OTF9-63 cells by indirect immunoprecipitation with TEC-05 antibody, were degraded by extensive pronase digestion or mild alkaline treatment to large carbohydrate chains that were excluded from a Sephadex G-50 column. Direct evidence that TEC-05 antibody bound to embryoglycan was obtained using a modified Farr's assay. The antibody was found to inhibit adhesion of F9 and OTF9-63 cells to substratum. The inhibitory effect, which could be abrogated by lactose, seemed to be specific, because another IgM monoclonal antibody which also binds to embryoglycan had no effect. Combined data indicated that TEC-05 antibody recognizes a carbohydrate epitope which is involved in cell-substratum adhesion of F9 cells and which provides a new marker for structure-function studies of stage-specific embryonic antigens.  相似文献   

5.
The stage-specific embryonic antigen (SSEA-1), present on embryonal carcinoma cells and on murine preimplantation embryos, is defined by a monoclonal antibody. The antigenic determinant of SSEA-1 is a carbohydrate structurally related to the human blood group antigen I. Since it has been suggested that the I antigen might represent a precursor or SSEA-1, we used antibodies to SSEA-1 and to I to analyze their expression on mouse preimplantation embryos. Both are expressed on mouse embryos; moreover, I is expressed on earlier embryos than SSEA-1. The I antigen is defined by its expression on human erythrocytes; accordingly, we examined expression of I and SSEA-1 on human peripheral blood elements. We find SSEA-1 to be expressed exclusively on human granulocytes while I is found only on erythrocytes. These results suggest that these closely related antigens can be independently expressed. Analysis of the expression of I and SSEA-1 was then extended to a series of mouse and human cell lines; some express both, some express only one, and some express neither of these antigens. The activation of specific glycosyltransferases and/or glycosidases during development and differentiation appears to be the biochemical mechanism regulating expression of these antigens.  相似文献   

6.
Mouse morulae and blastocysts express cell surface antigens that fortuitously cross-react with antisera to human chorionic gonadotropin (hCG). In the present study, the cell surface and cytoplasmic expression of these antigens was followed in mouse unfertilized oocytes, different stages of preimplantation embryos and in early post-implantation embryos cultured from blastocysts. In addition to their known stage-dependent cell surface expression on morulae and blastocysts, these antigens (1) were already present in the cytoplasm of mature unfertilized oocytes and pre-morula stages of embryos; (2) remained expressed as cell surface antigens on cells of the inner cell mass (ICM), but not on the surface of trophectodermal cells with further blastocyst development although (3) they persisted as cytoplasmic antigens in trophectodermal cells. In addition, these antigens were also detectable by antiserum to the alpha subunit of hCG.  相似文献   

7.
Monoclonal antibodies TEC-01, TEC-02, and TEC-03, which define three developmentally regulated antigens TEC-1 (SSEA-1-like), TEC-2, and TEC-3, have been used to isolate and characterize teratocarcinoma stem cell mutants with altered expression of surface glycoconjugates. Mutants lacking TEC-1 antigen have been isolated by exposing mutagenized P19S1801A1 cells to TEC-01 antibody, which was conjugated to the toxin from Ricinus communis. None of the mutants exhibits significant changes in the expression of TEC-3 antigen, but some are defective in the expression of TEC-2 antigen. Analysis of the expression of TEC-1,2,3 antigens in different lectin-resistant F9 and OTF9-63 cell lines has shown that all express TEC-1 antigen, but some lectin-resistant phenotypes exhibit reduction in the expression of TEC-2 and/or TEC-3 antigens. Mutational events in genes regulating the expression of specific glycosyltransferases or glycosidases appear to be the biochemical mechanism regulating the expression of TEC-1 and TEC-2 antigens.  相似文献   

8.
A variety of glycoconjugates, including glycosphingolipids (GSLs), expressed in mammalian tissues and cells were isolated and characterized in early biochemical studies. Later studies of virus-transformed fibroblasts demonstrated the association of GSL expression profiles with cell phenotypes. Changes of GSL expression profile were observed during mammalian embryogenesis. Cell surface molecules expressed on embryos in a stage-specific manner appeared to play key roles in regulation of cell-cell interaction and cell sorting during early development. Many mAbs showing stage-specific reactivity with mouse embryos were shown to recognize carbohydrate epitopes. Among various stage-specific embryonic antigens (SSEAs), SSEA-1 was found to react with neolacto-series GSL Lex, while SSEA-3 and SSEA-4 reacted with globo-series Gb5 and monosialyl-Gb5, respectively. GSL expression during mouse early development was shown to shift rapidly from globo-series to neolacto/lacto-series, and then to ganglio-series. We found that multivalent Lex caused decompaction of mouse embryos, indicating a functional role of Lex epitope in the compaction process. Autoaggregation of mouse embryonal carcinoma (EC) F9 cells provided a useful model of the compaction process. We showed that Lex-Lex interaction, a novel type of molecular interavction termed carbohydrate-carbohydrate interaction (CCI), was involved in cell aggregation. Similar shifting of GSL expression profiles from globo-series and neolacto/lacto-series to ganglio-series was observed during differentiation of human EC cells and embryonic stem (ES) cells, reflecting the essential role of cell surface glycoconjugates in early development.  相似文献   

9.
Embryonal carcinoma cells defective in their ability to adhere to tissue culture dishes were isolated from mutagenized P19X1 and P19S1801A1 cells. Three independently isolated variants were analyzed for their morphology, surface properties and ability to differentiate in vitro. Two of the mutant cell lines expressed similar amounts of stage-specific embryonic antigens TEC-1, TEC-4 and Thy-1 as parental cells, whereas all three showed significant reduction in the expression of uvomorulin as determined by a direct radioantibody binding assay. Variant cells exhibited a decrease in their ability to aggregate in media with or without CA2+ and were unable to form compact aggregates when cultured for two days in complete culture media. In the presence of retinoic acid variant cells formed aggregates which exhibited significantly lower frequency neuron formation after transfer to tissue culture dishes. The combined data indicate that the adhesion-defective phenotype of P19-derived cells is in part the result of a reduced surface expression of uvomorulin.  相似文献   

10.
11.
12.
13.
14.
15.
The expression and properties of mouse embryonic antigens, recognized by monoclonal antibody TEC-02, were analyzed in teratocarcinoma-derived cell lines. TEC-2 antigens were found in the majority of the parietal endoderm cells PYS-2 and in a fraction of cultured embryonal carcinoma cells but not in other cell lines tested. During the course of retinoic acid-induced differentiation of embryonal carcinoma cells F9, the expression of TEC-2 was transiently increased. Immunolabeling of extracts from F9 and PYS-2 cells separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that TEC-2 antigens are polydisperse glycoconjugates of high molecular weight (mostly greater than 100,000). The TEC-2 epitope was shown to be carbohydrate which in F9 cells might be attached to the same carrier as another developmentally regulated carbohydrate epitope TEC-1. The TEC-2 antigens, isolated by indirect immunoprecipitation, were degraded by extensive pronase digestion or mild alkaline treatment to mostly large products. Immunostaining of glycolipid standards suggested that TEC-2 epitope involves the GalNAc beta 1----4Gal beta 1----4R sequence. Combined data indicate that TEC-2 is a new developmentally regulated carbohydrate epitope carried in embryonal carcinoma cells predominantly on glycoprotein-bound large carbohydrates.  相似文献   

16.
17.
Wang H  Luan L  Ding T  Brown N  Reese J  Paria BC 《Theriogenology》2011,76(4):678-686
The objective was to study the expression of zonula occludens-2, a tight junction protein, during preimplantation hamster embryonic development, to predict its possible localization, source, and roles in trophectoderm differentiation and blastocyst formation in this species. Comparison of zonula occludens-2 expression pattern between the hamster and mouse preimplantation embryos from the zygote up to the blastocyst stage was also an objective of this study. Zonula occludens-2 localization was noted in nuclei of blastomeres in all stages of hamster and mouse embryonic development. Compared to mice, where zonula occludens-2 was first localized in the interblastomere membrane at the morula stage, hamster embryos had membranous zonula occludens-2 localization from the 2-cell stage onwards. Based on combined results of immunolocalization study in parthenogenic embryos and ovarian and epididymal sections, and quantitative PCR done in oocytes and all developmental stages of preimplantation embryos, perhaps there was a carry-over of zonula occludens-2 proteins or mRNA from the dam to the embryo. Based on these findings, we inferred that maternally derived zonula occludens-2 was involved in nuclear functions, as well as differentiation of blastomeres and blastocoel formation during preimplantation embryonic development in the hamster.  相似文献   

18.
Stage-specific embryonic antigen-1 (SSEA-1) and the antigenic determinant of monoclonal antibody EMA-1 are expressed in a stage-specific manner in mouse early embryos. To study whether these antigens generally exist in fish, expression of the antigens was examined in embryos, ovarian follicles, and adult tissues of a teleost medaka (Oryzias latipes), using immunohistochemical techniques. In 1-cell-stage embryos, these carbohydrate antigens were found in numerous cytoplasmic granules in the blastodisc and the cortical cytoplasm. These granules gradually decreased in number as the embryos developed. In 4-cell-stage embryos, the antigens appeared on the cleavage planes and were located on the cleavage planes within the blastoderm in the following cleavage stages. In blastula-stage embryos, the expression was ubiquitously found on the cell surface of blastomeres. At the mid-gastrula stage, the antigens were restricted to the enveloping layer, yolk syncytial layer, and cortical cytoplasm, but were rarely found in deep cells that contribute to formation of the embryonic body. In later-stage embryos and adult fish, the antigens were located in various tissues. In ovarian follicles, the antigens were found in granules of oocytes and granulosa cells. These observations were basically consistent with those in mice; however, expression in 1-cell-stage embryos and ovarian follicles has not been observed in mice. This unexpected finding suggests that the antigens are produced in granulosa cells and transferred to 1-cell-stage embryos via oocytes, and that the antigens involved in the early developmental process are maternally prepared in teleosts.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号