首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein kinase C (PKC) has been implicated in lipopolysaccharide (LPS)-induced endothelial cell (EC) monolayer permeability. Myristoylated alanine-rich C kinase substrate (MARCKS), as a specific PKC substrate, appears to mediate PKC signaling by PKC-dependent phosphorylation of MARCKS and subsequent modification of the association of MARCKS with filamentous actin and calmodulin (CaM). Therefore, in the present study, we investigated LPS-induced MARCKS phosphorylation in bovine pulmonary artery EC (BPAEC). LPS potentiated MARCKS phosphorylation in BPAEC in a time- and dose-dependent manner. The PKC inhibitor, calphostin C, significantly decreased LPS-induced phosphorylation of MARCKS. In addition, downregulation of PKC with phorbol 12-myristate 13-acetate (PMA) did not affect the LPS-induced MARCKS phosphorylation, suggesting that LPS and PMA activate different isoforms of PKC. Pretreatment with SB203580, a specific inhibitor of p38 MAP kinase, or genistein, a tyrosine kinase inhibitor, prevented LPS-induced MARCKS phosphorylation. Phosphorylation at appropriate sites will induce translocation of MARCKS from the cell membrane to the cytosol. However, LPS, in contrast to PMA, did not generate MARCKS translocation in BPAEC, suggesting that MARCKS translocation may not play a role in LPS-induced actin rearrangement and EC permeability. LPS also enhanced both thrombin- and PMA-induced phosphorylation of MARCKS, suggesting that LPS was able to prime these signaling pathways in BPAEC. Because the CaM-dependent phosphorylation of myosin light chains (MLC) results in EC contraction, we studied the effect of LPS on MLC phosphorylation in BPAEC. LPS induced diphosphorylation of MLC in a time-dependent manner, which occurred at lower doses of LPS, than those required to induce MARCKS phosphorylation. In addition, there was no synergism between LPS and thrombin in the induction of MLC phosphorylation. These data indicate that MLC phosphorylation is independent of MARCKS phosphorylation. In conclusion, LPS stimulated MARCKS phosphorylation in BPAEC. This phosphorylation appears to involve activation of PKC, p38 MAP kinase, and tyrosine kinases. Further studies are needed to explore the role of MARCKS phosphorylation in LPS-induced actin rearrangement and EC permeability.  相似文献   

2.
Myristoylated alanine-rich C kinase substrate (MARCKS) is a prominent protein kinase C (PKC) substrate that is targeted to the plasma membrane by an amino-terminal myristoyl group. In its nonphosphorylated form, MARCKS cross-links F-actin and binds calmodulin (CaM) reciprocally. However, upon phosphorylation by PKC, MARCKS releases the actin or CaM. MARCKS may therefore act as a CaM sink in resting cells and regulate CaM availability during cell activation. We have demonstrated previously that thrombin-induced myosin light chain (MLC) phosphorylation and increased monolayer permeability in bovine pulmonary artery endothelial cells (BPAEC) require both PKC- and CaM-dependent pathways. We therefore decided to investigate the phosphorylation of MARCKS in BPAEC to ascertain whether this occurs in a temporally relevant manner to participate in the thrombin-induced events. MARCKS is phosphorylated in response to thrombin with a time course similar to that seen with MLC. As expected, MARCKS is also phosphorylated by phorbol 12-myristate 13 acetate (PMA), a PKC activator, but with a slower onset and more prolonged duration. Bradykinin also enhances MARCKS phosphorylation in BPAEC, but histamine does not. MARCKS is distributed evenly between the membrane and cytosol in BPAEC, and neither thrombin nor PMA caused significant translocation of the protein. Specific PKC inhibitors attenuated MARCKS phosphorylation by either thrombin or PMA. Since thrombin-induced MLC phosphorylation is also attenuated by these inhibitors, MARCKS may be involved in MLC kinase activation and subsequent BPAEC contraction. W7, a CaM antagonist, enhances the phosphorylation of MARCKS. This was expected since CaM binding to MARCKS has been shown to decrease MARCKS phosphorylation by PKC. On the other hand, tyrosine kinase inhibitors, genistein and tyrphostin, attenuate MARCKS phosphorylation but have no effect on MLC phosphorylation, suggesting that MARCKS may be phosphorylated by kinases other than PKC. Phosphorylation of MARCKS outside the PKC phosphorylation domain would not be expected to induce the release of CaM. These data provide support for the hypothesis that MARCKS may serve as a regulator of CaM availability in BPAEC. © 1996 Wiley-Liss, Inc.  相似文献   

3.
Myristoylated alanine-rich C kinase substrate (MARCKS) is a calmodulin (CaM)- and actin-binding protein and prominent protein kinase C (PKC) substrate. In vitro phosphorylation of MARCKS by PKC has been shown to induce the release of both CaM and actin, leading to the suggestion that MARCKS may regulate CaM availability during agonist-induced signalling. In support of this hypothesis we previously demonstrated that thrombin-induced MARCKS phosphorylation in endothelial cells (EC) parallels activation of myosin light chain kinase, a CaM-dependent enzyme. To test this theory further, we transfected CHO cells, which normally do not express significant levels of MARCKS, with a MARCKS cDNA. The thrombin-stimulated phosphorylation of myosin light chains and the sensitivity to CaM antagonists in the MARCKS overexpressing cells was the same as that in control CHO cells. MARCKS associated with the actin cytoskeleton in EC was markedly increased upon treatment with the PKC activator, PMA, but only modestly enhanced by thrombin treatment. Similarly, colocalisation of MARCKS with actin was enhanced when the EC were challenged with PMA but not thrombin. These data may be partially explained by PKC-independent phosphorylation of MARCKS in response to thrombin stimulation.  相似文献   

4.
Role of MARCKS in regulating endothelial cell proliferation   总被引:2,自引:0,他引:2  
Myristoylated alanine-rich C kinase substrate (MARCKS), as a specificprotein kinase C (PKC) substrate, mediates PKC signaling through itsphosphorylation and subsequent modification of its association withfilamentous actin (F-actin) and calmodulin (CaM). PKC has long beenimplicated in cell proliferation, and recent studies have suggestedthat MARCKS may function as a cell growth suppressor. Therefore, in thepresent study, we investigated MARCKS protein expression, distribution,and phosphorylation in preconfluent and confluent bovine pulmonarymicrovascular endothelial cells (BPMEC) in the presence or absence ofthe vascular endothelial growth factor (VEGF). In addition, we examinedfunctional alterations of MARCKS in these cells by studying theassociation of MARCKS with F-actin and CaM-dependent myosin light chain(MLC) phosphorylation. Our results indicate that MARCKS protein isdownregulated during BPMEC proliferation. Decreased MARCKSassociation with F-actin, increased actin polymerization, andCaM-dependent MLC phosphorylation appear to mediate cell shape changesand motility during BPMEC growth. In contrast, VEGF stimulated MARCKSphosphorylation without alteration of protein expression during BPMECproliferation, which may result in reduced interaction between MARCKSand actin or CaM, leading to actin reorganization and MLCphosphorylation. Our data suggest a regulatory role of MARCKS duringendothelial cell proliferation.

  相似文献   

5.
To examine the involvement of p38 mitogen-activated protein kinase (p38 MAPK) and extra-cellular signal-regulated kinase (ERK) in the oxidative stress-induced increase of permeability in endothelial cells, the effects of a p38 MAPK inhibitor (SB203580) and ERK inhibitor (PD90859) on the H2O2-induced increase of permeability in bovine pulmonary artery endothelial cells (BPAEC) were investigated using a two-compartment system partitioned by a semi-permeable filter. H2O2 at 1 mM caused an increase of the permeation rate of fluorescein isothiocyanate (FITC)-labeled dextran 40 through BPAEC monolayers. SB203580 inhibited the H2O2-induced increase of permeability but PD98059 did not, though activation (phosphorylation) of both p38 MAPK and ERK was observed in H2O2-treated cells in Western blot analysis. An H2O2-induced increase of the intracellular Ca2+ concentration ([Ca2+]i) was also observed and an intracellular Ca2+ chelator (BAPTA-AM) significantly inhibited the H2O2-induced increase of permeability. However, it showed no inhibitory effects on the H2O2-induced phosphorylation of p38 MAPK and ERK. The H2O2-induced increase of [Ca2+]i was not influenced by SB203580 and PD98059. These results indicate that the activation of p38 MAPK and the increase of [Ca2+]i are essential for the H2O2-induced increase of endothelial permeability and that ERK is not.  相似文献   

6.
The retinal pigment epithelium (RPE) forms the outer blood–retina barrier (BRB). Most retinal diseases involve BRB breakdown, whereupon thrombin contained in serum directly contacts the RPE. Thrombin is known to promote actin stress fiber formation, an important determinant in eye diseases involving the epithelial–mesenchymal transition (EMT) and migration of RPE cells, such as proliferative vitreoretinopathy. We analyzed thrombin effect on signaling pathways leading to myosin light chain (MLC) phosphorylation and actin stress fiber formation in primary cultures of rat RPE cells, in order to support a role for thrombin in RPE transdifferentiation. MLC phosphorylation was measured by Western blot; actin cytoskeleton was visualized using immunofluorescent phalloidin, and Rho GTPase activation was assessed by ELISA. We showed that thrombin/PAR‐1 induces the time‐ and dose‐dependent phosphorylation of MLC through the activation of Rho/ROCK and myosin light chain kinase (MLCK). ROCK increased phospho‐MLC by phosphorylating MLC and by inhibiting MLC phosphatase. Thrombin effect was abolished by the ROCK inhibitor Y‐27632, whereas MLCK inhibitor ML‐7 and PLC‐β inhibitor U73122 attenuated MLC phosphorylation by ≈50%, suggesting the activation of MLCK by PLC‐β‐mediated calcium increase. Additionally, thrombin‐induced MLC phosphorylation was blocked by the inhibitory PKCζ pseudosubstrate, wortmannin, and LY294002, indicating IP3/PKCζ involvement in the control of MLC phosphorylation. Moreover, we demonstrated that thrombin effect on MLC induces actin stress fiber formation, since this effect was prevented by inhibiting the pathways leading to MLC phosphorylation. We conclude that thrombin stimulation of MLC phosphorylation and actin stress fiber formation may be involved in thrombin‐induced RPE cell transformation subsequent to BRB dysfunction. J. Cell. Physiol. 226: 414–423, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
Cultured confluent endothelial cells exhibit stable basal isometric tone associated with constitutive myosin II regulatory light chain (RLC) phosphorylation. Thrombin treatment causes a rapid increase in isometric tension concomitant with myosin II RLC phosphorylation, actin polymerization, and stress fiber reorganization while inhibitors of myosin light chain kinase (MLCK) and Rho-kinase prevent these responses. These findings suggest a central role for myosin II in the regulation of endothelial cell tension. The present studies examine the effects of blebbistatin, a specific inhibitor of myosin II activity, on basal tone and thrombin-induced tension development. Although blebbistatin treatment abolished basal tension, this was accompanied by an increase in myosin II RLC phosphorylation. The increase in RLC phosphorylation was Ca2+ dependent and mediated by MLCK. Similarly, blebbistatin inhibited thrombin-induced tension without interfering with the increase in RLC phosphorylation or in F-actin polymerization. Blebbistatin did prevent myosin II filament incorporation and association with polymerizing or reorganized actin filaments leading to the disappearance of stress fibers. Thus the inhibitory effects of blebbistatin on basal tone and induced tension are consistent with a requirement for myosin II activity to maintain stress fiber integrity. actin; blebbistatin; isometric tension; myosin light chain kinase; regulatory light chain phosphorylation; focal adhesions  相似文献   

8.
In a previous study, we showed that activation of protein kinase C (PKC) prevents oligodendrocyte differentiation at the pro‐oligodendrocyte stage. The present study was undertaken to identify downstream targets of PKC action in oligodendrocyte progenitor cells. Activation of PKC induced the predominant phosphorylation of an 80‐kD protein, identified as myristoylated alanine‐rich C‐kinase substrate (MARCKS). Upon phosphorylation, MARCKS is translocated from the plasma membrane to the cytosol. Furthermore, PKC activation perturbed the organization of the actin cytoskeleton, causing a redistribution of actin filaments to the submembranous or cortical actin cytoskeleton. As a consequence, transport of a protein traffic marker, the vesicular stomatitis virus glycoprotein, from the trans‐Golgi network to the plasma membrane becomes perturbed. The effect of disruption of the actin filament network by cytochalasin D perfectly matched the effect of PKC. These data thus favor the existence of a causal relationship between actin rearrangement and docking and/or fusion of proteins to the plasma membrane. Interestingly, neither in control cells nor in PKC‐activated cells did another protein traffic marker, influenza hemagglutinin (HA), reach the cell surface. However, an eminent and specific accumulation of HA just underneath the plasma membrane became apparent upon PKC activation. Yet, this effect could not be simulated by cytochalasin D treatment. Therefore, these observations imply that although MARCKS represents a prominent PKC target site in regulating differentiation, another target involves the differential control of cognate polarized trafficking pathways, which are apparently operating in oligodendrocyte progenitor cells. © 1999 John Wiley & Sons, Inc. J Neurobiol 41: 385–398, 1999  相似文献   

9.
Hypoxia/reoxygenation injury in vitro causes endothelial cell cytoskeletal rearrangement that is related to increased monolayer permeability. Nonmuscle filamin (ABP-280) promotes orthogonal branching of F-actin and links microfilaments to membrane glycoproteins. Human umbilical vein endothelial cell monolayers are exposed to H2O2 (100 μM) for 1–60 min, with or without modulators of cAMP-dependent second-messenger pathways, and evaluated for changes in filamin distribution, cAMP levels, and the formation of gaps at interendothelial junctions. Filamin translocates from the membrane-cytoskeletal interface to the cytosol within 1 min of exposure to H2O2. This is associated with a decrease in endothelial cell cAMP levels from 83 pmoles/mg protein to 15 pmoles/mg protein. Intercellular gaps form 15 min after H2O2 treatment and progressively increase in number and diameter through 60 min. Both filamin redistribution and actin redistribution are associated with decreased phosphorylation of filamin and are prevented by activation of the cAMP-dependent protein kinase pathway. A synthetic peptide corresponding to filamin's C-terminal, cAMP-dependent, protein kinase phosphorylation site effectively induces filamin translocation and intercellular gap formation, which suggests that decreased phosphorylation of filamin at this site causes filamin redistribution and destabilization of junctions. These data indicate that H2O2-induced filamin redistribution and interendothelial cell gap formation result from inhibition of the cAMP-dependent protein kinase pathway. J. Cell. Physiol. 172:373–381, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
High molecular weight myosin light chain kinase (MLCK210) is a multifunctional protein involved in myosin II activation and integration of cytoskeletal components in cells. MLCK210 possesses actin-binding regions both in the central part of the molecule and in its N-terminal tail domain. In HeLa cells, mitotic protein kinase Aurora B was suggested to phosphorylate MLCK210 N-terminal tail at serine residues (Dulyaninova, N. G., and Bresnick, A. R. (2004) Exp. Cell Res., 299, 303–314), but the functional significance of the phosphorylation was not established. We report here that in vitro, the N-terminal actin-binding domain of MLCK210 is located within residues 27-157 (N27-157, avian MLCK210 sequence) and is phosphorylated by cAMP-dependent protein kinase (PKA) and Aurora B at serine residues 140/149 leading to a decrease in N27-157 binding to actin. The same residues are phosphorylated in a PKA-dependent manner in transfected HeLa cells. Further, in transfected cells, phosphomimetic mutants of N27-157 showed reduced association with the detergent-stable cytoskeleton, whereas in vitro, the single S149D mutation reduced N27-157 association with F-actin to a similar extent as that achieved by N27-157 phosphorylation. Altogether, our results indicate that phosphorylation of MLCK210 at distinct serine residues, mainly at S149, attenuates the interaction of MLCK210 N-terminus with the actin cytoskeleton and might serve to regulate MLCK210 microfilament cross-linking activity in cells.  相似文献   

11.
Inhibition of Rho-associated protein kinase (ROCK) activity in glioma C6 cells induces changes in actin cytoskeleton organization and cell morphology similar to those observed in other types of cells with inhibited RhoA/ROCK signaling pathway. We show that phosphorylation of myosin light chains (MLC) induced by P2Y? receptor stimulation in cells with blocked ROCK correlates in time with actin cytoskeleton reorganization, F-actin redistribution and stress fibers assembly followed by recovery of normal cell morphology. Presented results indicate that myosin light-chain kinase (MLCK) is responsible for the observed phosphorylation of MLC. We also found that the changes induced by P2Y? stimulation in actin cytoskeleton dynamics and morphology of cells with inhibited ROCK, but not in the level of phosphorylated MLC, depend on the presence of calcium in the cell environment.  相似文献   

12.
This report entails in vivo and in vitro studies concerned with free radical species involved in brain ischemia. The participation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the early manifestation of cerebral ischemia/reperfusion was investigated in gerbils exposed to transient global ischemia using 4-OH-2,2,6,6-Tetramethylpiperidine-1-oxyl (TPL), a well-known antioxidant. TPL treatment reversed cerebral postischemic hypoperfusion and tissue edema in these animals. The findings are consistent with ROS/RNS participation in tissue injury and the reduction of cerebromicrovascular blood flow (CBF) during postischemic recirculation. The activation/deactivation of signal transduction pathway by oxidation/antioxidation [i.e., using hydrogen peroxide (H2O2)/TPL] was evaluated in cultured human brain endothelial cells (HBEC) to assess the involvement of endothelial-dependent mechanisms. The data showed that H2O2 activates various “stress” kinases and vasodilalator-stimulated phosphoprotein (VASP); activation of this pathway was reduced by inhibitors of Rho- or IP-3 kinases, as well as TPL. H2O2 also induced cytoskeleton (actin) rearrangements in HBEC; this effect was prevented by inhibitors of Rho/IP3 kinase or TPL. The observed activation/deactivation of H2O2-induced “stress” kinase is in agreement with the reported capacity of ROS/RNS to stimulate the oxidative signal transduction pathway. The noted TPL reduction of H2O2-induced phosphorylation of kinase strongly suggests that the beneficial effect of TPL implicates the stress signal transduction pathway. This may represent a mechanism for the cerebral postischemic manifestations observed by in vivo experiments.  相似文献   

13.
Abstract: The mechanism for hydrogen peroxide (H2O2)-induced phospholipase D (PLD) activation was investigated in [3H]palmitic acid-labeled PC12 cells. In the presence of butanol, H2O2 caused a great accumulation of [3H]phosphatidylbutanol in a concentration- or time-dependent manner. However, treatment with H2O2 of cell lysates exerted no effect on PLD activity. Treatment with H2O2 had only a marginal effect on phospholipase C (PLC) activation. A protein kinase C (PKC) inhibitor, Ro 31-8220, did not inhibit but rather slightly enhanced H2O2-induced PLD activity. Thus, H2O2-induced PLD activation is considered to be independent of the PLC-PKC pathway in PC12 cells. In contrast, pretreatment with tyrosine kinase inhibitor herbimycin A, genistein, or ST638 resulted in a concentration-dependent inhibition of H2O2-induced PLD activation. Western blot analysis revealed several apparent tyrosine-phosphorylated protein bands after the H2O2 treatment and tyrosine phosphorylation of these proteins was inhibited by these tyrosine kinase inhibitors. Moreover, depletion of extracellular Ca2+ abolished H2O2-induced PLD activation and protein tyrosine phosphorylation. Extracellular Ca2+ potentiated H2O2-induced PLD activation in a concentration-dependent manner. Taken together, these results suggest that a certain Ca2+-dependent protein tyrosine kinase(s) somehow participates in H2O2-induced PLD activation in PC12 cells.  相似文献   

14.
ATP-dependent movement of actin filaments on smooth muscle myosin was investigated by using the in vitro motility assay method in which myosin was fixed on the surface of a coverslip in a phosphorylated or an unphosphorylated state. Actin filaments slid on gizzard myosin phosphorylated with myosin light chain kinase (MLCK) at a rate of 0.35 micron/s, but did not slide at all on unphosphorylated myosin. The movement of actin filaments on phosphorylated myosin was stopped by perfusion of phosphatase. Subsequent perfusion with a solution containing MLCK, calmodulin, and Ca2+ enabled actin filaments to move again. The sliding velocities on monophosphorylated and diphosphorylated myosin by MLCK were not different. Actin filaments did not move on myosin phosphorylated with protein kinase C (PKC). The sliding velocity on myosin phosphorylated with both MLCK and PKC was identical to that on myosin phosphorylated only with MLCK. Gizzard tropomyosin enhanced the sliding velocity to 0.76 micron/s. Gizzard caldesmon decreased the sliding velocity with increase in its concentration. At a 5-fold molar ratio of caldesmon to actin, the movement stopped completely. This inhibitory effect of caldesmon was relieved upon addition of excess calmodulin and Ca2+.  相似文献   

15.
MARCKS (myristoylated alanine-rich C-kinase substrate) is known to interact with calmodulin, actin filaments, and anionic phospholipids at a central basic domain which is also the site of phosphorylation by protein kinase C (PKC). In the present study, cytochalasin D (CD) and calmodulin antagonists were used to examine the influence of F-actin and calmodulin on membrane interaction of MARCKS in C6 glioma cells. CD treatment for 1 h disrupted F-actin filaments, increased membrane bound immunoreactive MARCKS (from 51% to 62% of total), yet markedly enhanced the amount of MARCKS translocated to the cytosolic fraction in response to the phorbol ester 4β-12-O-tetradecanoylphorbol 13-acetate. In contrast, CD treatment had no effect on phorbol ester-stimulated phosphorylation of MARCKS or on translocation of PKCα to the membrane fraction. Staurosporine also increased membrane association of MARCKS in a PKC-independent manner, as no change in MARCKS phosphorylation was noted and bis-indolylmaleimide (a more specific PKC inhibitor) did not alter MARCKS distribution. Staurosporine inhibited the phorbol ester-induced translocation of MARCKS but not of PKCα in both CD pretreated and untreated cells. Calmodulin antagonists (trifluoperazine, calmidazolium) had little effect on the cellular distribution or phosphorylation of MARCKS, but were synergistic with phorbol ester in translocating MARCKS from the membrane without a further increase in its phosphorylation. We conclude that cytoskeletal integrity is not required for phosphorylation and translocation of MARCKS in response to activated PKC, but that interaction with both F-actin and calmodulin might serve to independently modulate PKC-regulated localization and function of MARCKS at cellular membranes.  相似文献   

16.
We have examined further the interaction between insulin surface receptors and the cytoskeleton of IM-9 human lymphoblasts. Using immunocytochemical techniques, we determined that actin, myosin, calmodulin and myosin light-chain kinase (MLCK) are all accumulated directly underneath insulin-receptor caps. In addition, we have now established that the concentration of intracellular Ca2+ (as measured by fura-2 fluorescence) increases just before insulin-induced receptor capping. Most importantly, we found that the binding of insulin to its receptor induces phosphorylation of myosin light chain in vivo. Furthermore, a number of drugs known to abolish the activation properties of calmodulin, such as trifluoperazine (TFP) or W-7, strongly inhibit insulin-receptor capping and myosin light-chain phosphorylation. These data imply that an actomyosin cytoskeletal contraction, regulated by Ca2+/calmodulin and MLCK, is involved in insulin-receptor capping. Biochemical analysis in vitro has revealed that IM-9 insulin receptors are physically associated with actin and myosin; and most interestingly, the binding of insulin-receptor/cytoskeletal complex significantly enhances the phosphorylation of the 20 kDa myosin light chain. This insulin-induced phosphorylation is inhibited by calmodulin antagonists (e.g. TFP and W-7), suggesting that the phosphorylation is catalysed by MLCK. Together, these results strongly suggest that MLCK-mediated myosin light-chain phosphorylation plays an important role in regulating the membrane-associated actomyosin contraction required for the collection of insulin receptors into caps.  相似文献   

17.
Activation of smooth muscle myosin light-chain kinase (MLCK) causes contraction. Here we have proven that MLCK controls Ca2+ entry (CE) in endothelial cells (ECs): MLCK antisense oligonucleotides strongly prevented bradykinin (BK)- and thapsigargin (TG)-induced endothelial Ca2+ response, while MLCK sense did not. We also show that the relevant mechanism is not phosphorylation of myosin light-chain (MLC): MLC phosphorylation by BK required CE, but MLC phosphorylation caused by the phosphatase inhibitor calyculin A did not trigger Ca2+ response. Most important, we provide for the first time strong evidence that, in contrast to its role in smooth muscle cells, activation of MLCK in ECs stimulates the production of important endothelium-derived vascular relaxing factors: MLCK antisense and MLCK inhibitors abolished BK- and TG-induced nitric oxide production, and MLCK inhibitors substantially inhibited acetylcholine-stimulated hyperpolarization of smooth muscle cell membrane in rat mesenteric artery. These results indicate that MLCK controls endothelial CE, but not through MLC phosphorylation, and unveils a hitherto unknown physiological function of the enzyme: vasodilation through its action in endothelial cells. The study discovers a counter-balancing role of MLCK in the regulation of vascular tone.  相似文献   

18.
In a previous study, we showed that activation of protein kinase C (PKC) prevents oligodendrocyte differentiation at the pro-oligodendrocyte stage. The present study was undertaken to identify downstream targets of PKC action in oligodendrocyte progenitor cells. Activation of PKC induced the predominant phosphorylation of an 80-kD protein, identified as myristoylated alanine-rich C-kinase substrate (MARCKS). Upon phosphorylation, MARCKS is translocated from the plasma membrane to the cytosol. Furthermore, PKC activation perturbed the organization of the actin cytoskeleton, causing a redistribution of actin filaments to the submembranous or cortical actin cytoskeleton. As a consequence, transport of a protein traffic marker, the vesicular stomatitis virus glycoprotein, from the trans-Golgi network to the plasma membrane becomes perturbed. The effect of disruption of the actin filament network by cytochalasin D perfectly matched the effect of PKC. These data thus favor the existence of a causal relationship between actin rearrangement and docking and/or fusion of proteins to the plasma membrane. Interestingly, neither in control cells nor in PKC-activated cells did another protein traffic marker, influenza hemagglutinin (HA), reach the cell surface. However, an eminent and specific accumulation of HA just underneath the plasma membrane became apparent upon PKC activation. Yet, this effect could not be simulated by cytochalasin D treatment. Therefore, these observations imply that although MARCKS represents a prominent PKC target site in regulating differentiation, another target involves the differential control of cognate polarized trafficking pathways, which are apparently operating in oligodendrocyte progenitor cells.  相似文献   

19.
We have previously shown that thrombin induces endothelial cell barrier dysfunction via cytoskeleton activation and contraction and have determined the important role of endothelial cell myosin light chain kinase (MLCK) in this process. In the present study we explored p38 MAP kinase as a potentially important enzyme in thrombin-mediated endothelial cell contractile response and permeability. Thrombin induces significant p38 MAP kinase activation in a time-dependent manner with maximal effect at 30 min, which correlates with increased phosphorylation of actin- and myosin-binding protein, caldesmon. Both SB-203580 and dominant negative p38 adenoviral vector significantly attenuated thrombin-induced declines in transendothelial electrical resistance. Consistent with these data SB-203580 decreased actin stress fiber formation produced by thrombin in endothelium. In addition, dominant negative p38 had no effect on thrombin-induced myosin light chain diphosphorylation. Thrombin-induced total and site-specific caldesmon phosphorylation (Ser789) as well as dissociation of caldesmon-myosin complex were attenuated by SB-203580 pretreatment. These results suggest the involvement of p38 MAP kinase activities and caldesmon phosphorylation in the MLCK-independent regulation of thrombin-induced endothelial cell permeability.  相似文献   

20.
Smooth muscle myosin light chain (LC) can be phosphorylated by myosin light chain kinase (MLCK) at Ser19 and Thr18 and by protein kinase C (PKC) at Thr9 and Ser1 or Ser2 under the in vitro assay conditions. Conversion of PKC to the spontaneously active protein kinase M (PKM) by proteolysis resulted in a change in the substrate specificity of the kinase. PKM phosphorylated both sets of sites in LC recognized by MLCK and PKC as analyzed by peptide mapping analysis. The PKM-catalyzed phosphorylation of these sites was not greatly affected by a MLCK inhibitor, ML-9, nor by the activators of MLCK, Ca2+ and calmodulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号