首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 287 毫秒
1.
Using immunohistochemistry and in situ hybridization, we attempted to identify the estrogen receptor (ER) protein and messenger RNA (mRNA) in sheep ovaries during the follicular phase of the estrous cycle. Monoclonal anti-ER antibodies H222 and 1D5 were used for localizing estrogen receptor on ovarian cryo-sections. Labeling for ER was found over the nuclei of surface epithelium, interstitial tissue, and granulosa cells of small as well as large ovarian follicles. In the preantral and small antral follicles, intense nuclear ER labeling was observed in mural granulosa cells and particularly in cumulus/granulosa cells surrounding the oocyte. In the large healthy looking follicles, greater diversity in labeling for ER was observed, which is characterized by mixed populations of granulosa cells expressing positive and more or less negative nuclear labeling. Such a pattern of labeling was particularly evident in follicles showing the signs of atresia. Generally, more intense nuclear staining was localized in granulosa cells proximal to basal membrane. In situ hybridization studies revealed the presence of ER mRNA in ovarian tissue. Autoradiographic visualization localized ER mRNA expression over the granulosa cells of healthy follicles of all sizes. Level of hybridization signal was comparable in mural and cumulus granulosa cells. In atretic follicles, the level of hybridization signal in granulosa cells was comparable to that of healthy follicles. A relatively weaker level of labeling was observed in granulosa cells dispersed in follicular antrum in follicles with advanced atretic lesions. Theca cells expressed a lower level of labeling than granulosa cells. Specificity of labeling for both ER protein and mRNA in ovary was proved by parallel probing the ovine uterus. Ovine ER recognition by both H222 and 1D5 antibodies was also proved by immunoblotting. These studies demonstrate the presence of the estrogen receptor and its messenger RNA in the sheep ovary and suggest an autocrine/paracrine role of estradiol and its receptor in the regulation of ovarian follicle development in sheep. Mol. Reprod. Dev. 48:53–62, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
Expression of gonadotropin receptors and granulosa cell sensitivity to gonadotropin hormones by small (1-3 mm) and large (3.5-7 mm) follicles were compared in Romanov (ROM, ovulation rate = 3) and Ile-de-France (IF, ovulation rate = 1) ewes in the early and late follicular phase. In healthy follicles, LH receptor levels in granulosa cells increased with increasing follicular size (p < 0. 001) while FSH receptor levels decreased (p < 0.05). In granulosa cells of large follicles, LH receptor (LHR) mRNA levels were greater in the late than in the early follicular phase (p < 0.001, p < 0.05, for ROM and IF, respectively). In the early follicular phase, LHR levels in granulosa (p < 0.001) and theca cells (p < 0.05) of small follicles were greater in ROM than in IF ewes. FSH receptor mRNA levels in granulosa cells of small and large ROM follicles were greater than in the corresponding IF follicles (p < 0.05). Finally, a greater responsiveness (increase in cAMP secretion) to both FSH and hCG was observed by granulosa cells collected during the early follicular phase from ROM vs. IF ewes. Data provide evidence that the greater ovulation rate in the ROM as compared to the IF breed is associated with a greater gonadotropin responsiveness during the early follicular phase.  相似文献   

3.
The purpose of this study was to establish a culture model for isolated intact porcine antral follicles and investigate the relationship between granulosa cell apoptosis and follicular atresia. Small (<3 mm), medium (3–5 mm) and large (>5 mm) healthy porcine follicles were isolated and cultured in serum‐free TCM199 with or without follicular stimulating hormone (FSH). Microscopic identification of healthy follicles was confirmed by histology. A spontaneous onset of apoptotic cell death in granulosa cells was observed from cultured antral follicles. The apoptotic rate of granulosa cells from small follicles cultured for 24 hr was higher than those of large and medium follicles, accompanied with high FasL mRNA abundance in granulosa cells. Supplementation with 3 or 5 IU/ml FSH significantly inhibited the percentage of granulosa cells that became apoptotic. FSH did not significantly alter estradiol secretion from cultured follicles. Progesterone secretion significantly decreased after culture for 48 hr, coinciding with the morphological changes observed. FasL and Fas mRNA were expressed in the healthy, early atretic, and progressed atretic porcine follicles regardless of follicular size. However, FasL but not Fas mRNA levels increased during follicular atresia. Addition of FSH significantly decreased FasL rather than Fas mRNA levels in granulosa cells and could attenuate apoptosis. Small follicles seemed to be more susceptible to atresia as compared to medium and large follicles. Mol. Reprod. Dev. 77: 670–678, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
We have investigated which follicular compartment and stage of follicular development are associated with endothelin-1 (ET-1) gene expression in the porcine ovary. The localization of mature ET-1 peptide and of its mRNA was determined by immunohistochemistry and by in situ hybridization. Stage of follicular development associated with ET-1 expression was investigated in terms of follicular class and occurrence of atresia. The latter was investigated by determining the occurrence of DNA fragmentation in apoptotic cells on adjacent sections to those used for ET-1 gene expression. Fifteen ovaries from 10 prepubertal pigs stimulated with gonadotropin were collected; a total of 1050 follicles were examined. Specific ET-1 immunoreactivity was restricted to the ovarian vasculature and to the granulosa cell compartment of antral follicles. The pattern of ET-1 mRNA expression was similar to that found for ET-1 immunoreactivity. Primordial, primary, and most secondary follicles did not express ET-1. The theca cell layer did not express ET-1 regardless of follicle developmental stage. ET-1 expression occurred with a significantly greater probability (P < 0.001 by the likelihood ratio test) in the granulosa cell compartment of antral follicles than in any other follicle class. Furthermore, in antral follicles, ET-1 expression occurred with a greater likelihood in large antral follicles than in small antral follicles (P < 0.001 by the likelihood ratio test). In small antral follicles, only 16.8% expressed ET-1; in contrast, 66.7% of large antral follicles exhibited ET-1 expression. It is interesting that in follicles in which ovulation had already occurred, intense ET-1 expression was found only in the prominent developing vasculature, the other cells present in the luteinized follicle did not display any ET-1 expression. The pattern of ET-1 gene expression observed in this study would be in agreement with our previous suggestion of a plausible physiological role for ET-1 in preventing premature progesterone production by granulosa cells of an antral follicle. The occurrence of atresia and expression of ET-1 in the same follicle was rare. Small and large antral follicles constituted 5.1% and 5.6%, respectively, of the examined follicles in this category. The majority of atretic follicles did not express ET-1 and, conversely, follicles that expressed ET-1 were not atretic. To the best of our knowledge, this is the first report in which large, nonatretic follicles are clearly identified as the population of follicles expressing ET-1. The results of this study delineate the follicular developmental stage and the compartment of when and where ET-1 may be physiologically meaningful.  相似文献   

5.
《Reproductive biology》2014,14(4):276-281
Follicular growth and steroidogenesis are dependent on gonadotropin binding to their receptors in granulosa and theca cells of ovarian follicles. The aim of the present study was to evaluate the expression patterns of follicle-stimulating hormone receptor (FSHR) and luteinizing hormone receptor (LHCGR) in ovarian follicular structures from cows with cystic ovarian disease (COD) as compared with those of regularly cycling cows. Relative real-time RT-PCR analysis showed that the expression of FSHR mRNA in granulosa cells was highest in small antral follicles, then decreased significantly as follicles increased in size, and was lowest in cysts. FSHR mRNA was not detected in the theca cells of any follicular category, including cysts. LHCGR mRNA expression in granulosa cells was significantly higher in large antral follicles than in cysts, and not detected in granulosa cells of small and medium antral follicles. In theca cells, the expression level of LHCGR mRNA in medium antral follicles was higher than in small and large antral follicles, whereas that in follicular cysts it was similar to those in small and medium antral follicles, but higher than that in large antral follicles. Our findings provide evidence that there is an altered gonadotropin receptor expression in bovine cystic follicles, and suggest that in conditions characterized by altered ovulation, such as COD, changes in the signaling system of gonadotropins may play a fundamental role in their pathogenesis.  相似文献   

6.
7.
The aim of the study was to determine the expression of proliferating cell nuclear antigen protein (PCNA) in the pig ovary. The localization of PCNA was demonstrated in paraffin sections of pig ovarian tissue using primary mouse monoclonal anti-PCNA antibody. In primordial follicles, no remarkable staining for PCNA either in granulosa cells or in the oocytes was observed. In primary to secondary follicles, positive staining in oocytes and in some granulosa cells was detected. The advanced preantral and particularly actively growing small to large antral follicles showed extensive PCNA labeling in the layers of granulosa and theca cells and in the cumulus cells encircling the oocyte. PCNA labeling was expressed in nuclei of oocytes in preantral and small antral follicles. In atretic follicles, the level of PCNA protein expression was dependent on the stage of atresia. Follicles demonstrating advanced atresia showed only limited or no PCNA labeled granulosa and theca cells. The results of the study demonstrate that follicular growth and development in pig ovary may be effectively monitored by determining the granulosa cell expression of PCNA.  相似文献   

8.
Little is known regarding the role of insulin-like growth factor 2 (IGF2) and the regulation of the IGF2 receptor (IGF2R) during follicular development. Granulosa cells were collected from small (1-5 mm) and large (8-22 mm) bovine follicles and were treated with IGF2 for 1-2 days in serum-free medium, and steroid production, cell proliferation, specific (125)I-IGF2 binding, and gene expression were quantified. IGF2 increased both estradiol and progesterone production by granulosa cells, and cells from large follicles were more responsive to the effects of IGF2 than those from small follicles. Abundance of aromatase (CYP19A1) mRNA was stimulated by IGF2 and IGF1. The effective dose (ED(50)) of IGF2 stimulating 50% of the maximal estradiol production was 63 ng/ml for small follicles and 12 ng/ml for large follicles, and these values were not affected by FSH. The ED(50) of IGF2 for progesterone production was 20 ng/ml for both small and large follicles. IGF2 also increased proliferation of granulosa cells by 2- to 3-fold, as determined by increased cell numbers and (3)H-thymidine incorporation into DNA. Treatment with IGF1R antibodies reduced the stimulatory effect of IGF2 and IGF1 on estradiol production and cell proliferation. Specific receptors for (125)I-IGF2 existed in granulosa cells, and 2-day treatment with estradiol, FSH, or cortisol had no significant effect on specific (125)I-IGF2 binding. Also, FSH treatment of small- and large-follicle granulosa cells had no effect on IGF2R mRNA levels, whereas IGF1 decreased IGF2R mRNA and specific (125)I-IGF2 binding. Granulosa cell IGF2R mRNA abundance was 3-fold greater in small than in large follicles. These findings support the hypothesis that both IGF2 and its receptor may play a role in granulosa cell function during follicular development. In particular, increased free IGF1 in developing follicles may decrease synthesis of IGF2R, thereby allowing for more IGF2 to be bioavailable (free) for induction of steroidogenesis and mitogenesis via the IGF1R.  相似文献   

9.
10.
11.
To assess the role of inhibitors of proteolytic enzymes, such as plasminogen activator (PA) and collagenase in the ovulatory process, inhibitor activity and mRNA levels were examined in periovulatory rat and human ovaries. In the rat, immature animals received 20 IU of pregnant mare serum gonadotropin (PMSG) followed 52 h later by 10 IU of hCG. Ovaries were removed at intervals from 0 to 20 h after human chorionic gonadotropin (hCG) administration. Inhibitor activity for metalloproteinases, such as collagenase, increased from 60.5 +/- 4.1 inhibitor units/ovary at 0 h (i.e., time of hCG treatment) to a maximum of 218.2 +/- 11.4 units/ovary at 8 h after hCG before decreasing at 12 h (time of ovulation) and 20 h (122.2 +/- 7.9 and 71.6 +/- 8.1 units/ovary, respectively). Human follicular fluid and granulosa cells were obtained from preovulatory follicles of patients in our in vitro fertilization program. Metalloproteinase inhibitor activity was evaluated in follicular fluid as well as the levels of PA and PA inhibitor (PAI) mRNA by Northern analysis. Increasing metalloproteinase inhibitor activity was positively correlated with follicular levels of estradiol (p less than 0.001) and progesterone (p less than 0.02, N = 26). Chromatographic separation of follicular fluid resulted in two peaks of metalloproteinase inhibitor activity. The large molecular weight (MW) inhibitor had an approximate size of 700 kilodaltons (kDa) and may represent alpha 2-macroglobulin, a serum-derived inhibitor. The small MW inhibitor shared many of the characteristics of tissue-derived inhibitors of metalloproteinases. Partial purification of the small MW inhibitor by Concanavalin A-Sepharose and Heparin-Sepharose chromatography demonstrated the inhibitor to be a glycoprotein with an approximate MW = 28-29 K. Northern analysis of human granulosa cell total RNA from preovulatory follicles showed little or no detectable tissue-type PA or urokinase-type PA mRNA. In contrast, two species of PA inhibitor type-1 mRNA were detected in relative abundance. The present findings demonstrate the presence of proteolytic inhibitors in periovulatory ovaries of the rat and human. These ovarian inhibitors may play a role in regulating connective tissue remodeling during follicular rupture.  相似文献   

12.
Retinol (vitamin A) is essential for reproduction, and retinoids have been suggested to play a role in ovarian steroidogenesis, oocyte maturation, and early embryonic development. Retinol is transported systemically and intercellularly by retinol-binding protein (RBP). Within the cell, cellular retinol-binding protein (CRBP) functions in retinol accumulation and metabolism. Since the actions of retinoids are mediated, in part, by retinoid-binding proteins, the objective of this study was to investigate cell-specific expression of RBP and CRBP in the bovine ovary. Immunocytochemical analysis (ICC) localized RBP to the thecal and granulosa cell layers of antral and preantral follicles with the most intense staining in the cells of large, healthy follicles. The tunica adventitia of arterial blood vessels also exhibited RBP staining. Immunostaining of CRBP was most intense in the granulosa cells of preantral follicles and present, but diminished, in thecal and granulosa cells of antral follicles. Within the corpus luteum, both proteins were observed in large luteal cells, but only RBP was observed in small luteal cells. Northern blot analysis demonstrated that thecal and granulosa cells from antral follicles and luteal tissue expressed RBP and CRBP mRNA. Synthesis and secretion of RBP by thecal cells, granulosa cells, and luteal cells were demonstrated by immune-complex precipitation of radiolabeled RBP from the medium of cultured cells or explants, followed by SDS-PAGE and fluorography. Follicular fluid was collected from small (<5 mm) and large (8-14 mm) follicles, pooled according to follicular size, and analyzed for retinol, RBP, estradiol-17beta, and progesterone. Concentrations of retinol, RBP, and estradiol were greater in the fluid of large follicles. Results demonstrate retinoid-binding protein expression by bovine ovaries and provide physical evidence that supports the concept that retinoids play a role in ovarian function.  相似文献   

13.
Calcitonin (CALCA), a hormone primarily known for its role in calcium homeostasis, has recently been linked to reproduction, specifically as a marker for embryo implantation in the uterus. Although CALCA expression has been documented in several tissues, there has been no report of production of CALCA in the ovary of any vertebrate species. We hypothesized that the Calca gene is expressed in the chicken ovary, and its expression will be altered by follicular maturation or gonadal steroid administration. Using RT-PCR, we detected Calca mRNA and the calcitonin receptor (Calcr) mRNA in the granulosa and theca layers of preovulatory and prehierarchial follicles. Both CALCA and Calca mRNA were localized in granulosa and thecal cells by confocal microscopy. Using quantitative PCR analysis, F1 follicle granulosa layer was found to contain significantly greater Calca mRNA and Calcr mRNA levels compared with those of any other preovulatory or prehierarchial follicle. The granulosa layer contained relatively greater Calca and Calcr mRNA levels compared with the thecal layer in both prehierarchial and preovulatory follicles. Progesterone (P(4)) treatment of sexually immature chickens resulted in a significantly greater abundance of ovarian Calca mRNA, whereas estradiol (E(2)) or P(4) + E(2) treatment significantly reduced ovarian Calca mRNA quantity. Treatment of prehierarchial follicular granulosa cells in vitro with CALCA significantly decreased FSH-stimulated cellular viability. Collectively, our results indicate that follicular maturation and gonadal steroids influence Calca and Calcr gene expression in the chicken ovary. We conclude that ovarian CALCA is possibly involved in regulating follicular maturation in the chicken ovary.  相似文献   

14.
In the mammalian ovary, the microvasculature in the thecal layer of follicles is associated with follicular development. Apelin and its receptor, APJ, are expressed in the tissues and organs which include the vasculature. The aims of the present study were to examine the mRNA expression of apelin and the APJ receptor in granulosa cells and theca tissue of bovine follicles and the effects of steroid hormone and gonadotrophins on the expression of these genes in cultured granulosa cells and theca cells. The expression of apelin mRNA was not found in the granulosa cells of bovine follicles. The expression of the APJ gene was increased in granulosa cells of estrogen-inactive dominant follicles. The expression of apelin mRNA increased in theca tissues of estrogen-inactive dominant follicles. APJ expression in theca tissues increased with follicle growth. Progesterone stimulated the expression of APJ mRNA in the cultured granulosa cells. FSH stimulated the expression of APJ mRNA in the cultured granulosa cells. LH induced the expression of apelin and APJ receptor mRNAs in cultured theca cells. Taken together, our data indicate that the APJ receptor in granulosa cells and both apelin and the APJ receptor in theca tissues are expressed in bovine ovary, that APJ in granulosa cells may be involved in the appearance of the cell apoptosis, and that LH stimulates the expression of apelin and APJ genes in theca cells.  相似文献   

15.
Adiponectin is one of the most important, recently discovered adipocytokines that acts at various levels to control male and female fertility through central effects on the hypothalamus-pituitary axis or through peripheral effects on the ovary, uterus, and embryo. We studied simultaneous changes in the gene expression pattern of adiponectin and adiponectin receptors 1 and 2 (AdipoR1 and AdipoR2) in granulosa and theca cells, cumulus-oocyte complex, and in corpus luteum in healthy bovine (Bos tarus) follicles at different stages of development. The expression levels of adiponectin, AdipoR1, and AdipoR2 mRNA were lower (P < 0.05) in granulosa and cumulus cells in comparison with that in theca cells and oocyte. In contrast with the oocyte, AdipoR1 in granulosa, theca, and luteal cells was expressed (P < 0.05) more than AdipoR2. Adiponectin expression increased (P < 0.05) in granulosa cells and in cumulus-oocyte complex during follicular development from small to large follicles. Opposite results were observed in theca cells. Expression of adiponectin was highest in the late stages of corpus luteum (CL) regression, whereas lower expression was recorded in active CL (P < 0.05). AdipoR1 and AdipoR2 expression increased during the terminal follicular growth in granulosa and theca cells (P < 0.05) and during the luteal phase progress in CL. There was positive correlation between adiponectin mRNA level in granulosa cells from large follicles and follicular fluid estradiol concentration (r = 0.48, P < 0.05) and negative correlation between adiponectin mRNA abundance in theca cells and follicular fluid progesterone concentration (r = -0.44, P < 0.05). In conclusion, we found that the physiologic status of the ovary has significant effects on the natural expression patterns of adiponectin and its receptors in follicular and luteal cells of bovine ovary.  相似文献   

16.
Granulosa cell-inhibitory factor (GCIF), a low molecular weight factor from bovine follicular fluid, inhibits the proliferation of bovine granulosa cells in vitro and the growth of large follicles in rats in vivo. In this study the effects of (1) immunization of rats against GCIF on follicular growth and (2) immunization of sheep against GCIF on ovulation rate were studied. The ability of antiserum from sheep immunized against GCIF to reduce the inhibitory effect of GCIF on bovine granulosa cell proliferation in culture was also examined. Immunization of rats against GCIF increased the number of large follicles (P < 0.001) but decreased the number of small follicles (P < 0.05) per ovary. Ovarian mass (P < 0.05) and uterine wet (P < 0.05) and dry (P < 0.01) masses were increased in immunized rats. Immunization of sheep against GCIF, followed by boosting over two breeding seasons, increased ovulation rate (P < 0.01). Addition of antiserum from sheep immunized against GCIF reduced or abolished the inhibitory effect of GCIF on granulosa cell proliferation (P < 0.01). These data provide further evidence that GCIF has an important role in controlling follicle growth and ovulation in vivo.  相似文献   

17.
The present immunocytochemical study examines in the rat ovary the pattern of expression of connexin 43 (Cx43), a subunit of gap junctions. Using a well-characterized specific antiserum against rat Cx43, immunoreactivity was not detected in the fetal ovary, i.e., prior to follicular formation. However, in the ovary of 20-day-old, 35-day-old, and adult rats, strong Cx43-immunore-activity was associated with the cell borders of the follicular epithelium/granulosa cells of all developmental stages (primordial follicles, preantral and antral secondary follicles). In general, immunoreactivity of the granulosa cells of large antral follicles appeared more intense than the one of smaller follicles. Staining was also seen in oocytes (cytoplasmic staining). Theca cells of large antral follicles, but not of small follicles were immunoreactive. Immunoreactive interstitial cells were not seen in ovaries of 20- and 35-day-old animals, but staining in these cells was present in adult rats. In large follicles with signs of atresia, granulosa cells lacked Cx43-immunoreactivity, whereas Cx43-immunoreactivity in their theca interna strikingly increased. Corpora lutea in the cyclic adult rats were heterogeneously stained, with either no detectable immunoreactivity, staining of cell borders of most luteal cells, or with conspicuous staining of only a few cells. In the pregnant animals on gestation days (GD) 12, 14, and 17, all luteal cells stained strongly for Cx43 at the cell surface. Shortly before delivery (GD 21), however, the staining pattern vanished and only few, presumably luteal cells remained immunoreactive. In Western blots (using homogenates of whole ovaries), the Cx43 antiserum recognized a major band of approximate Mr 43 × 103, together with minor bands, which may reflect the presence of several differently phosphorylated Cx43 forms. This is indicated by treatment with alkaline phosphatase, which reduced the banding pattern to one single band. In summary, the gap junction molecule Cx43 is abundantly expressed in all endocrine compartments of the rat ovary. The staining pattern obtained in the present study indicates that Cx43 and presumably gap-junctional communication are associated with follicular development, atresia, and the development of the interstitial gland, as well as with the development and regression of the corpus luteum. The heterogeneous staining within the ovary furthermore hints to a contribution of the local intraovarian factors in the regulation of Cx43 expression. © 1995 Wiley-Liss, Inc.  相似文献   

18.
The factors that control the rate of granulosa cell proliferation during follicular development are unknown. The object of this study was to test the hypothesis that growth rates of small and medium follicles may be modulated by cyclic alterations in endogenous hormone concentrations. Follicular growth in adult cycling rats was compared with hypophysectomized rats, untreated prepubertal rats, and prepubertal rats treated with exogenous gonadotropins. Cell kinetics was studied using a metaphase arrest technique and by long-term infusion of [3H]thymidine. Many follicles of hypophysectomized rats showed evidence of continued cell proliferation despite the absence of gonadotropins. In hypophysectomized rats, follicular growth was able to proceed to the size of the largest healthy non-preovulatory follicles in the proestrous rat ovary. Follicular growth in prepubertal rats progressed little beyond this same size range. Granulosa cell proliferation rates differed in immature rats and cycling rats. Granulosa cells in small follicles (80-180 cells in the largest cross-section) of cycling rats grew slowly. However, granulosa cells in small follicles of immature rats were among the fastest growing in the ovary. These results suggest that, although gonadotropins are not absolutely required to maintain granulosa cell proliferation in small follicles, the rate at which these follicles grow varies under different hormonal conditions.  相似文献   

19.
Reactive oxygen species scavenging enzymes like catalase play diverse role in mammals. The presence of catalase in mammalian ovary is now well established. In the present investigation, changes in catalase activity in granulosa cells isolated from follicles at various stages of differentiation in response to FSH were studied. The follicles were dissected out from goat ovaries and classified as small (<3 mm), medium (3–6 mm) or large (>6 mm). Granulosa cells were isolated from categorized follicles. Results showed that there was a three-fold increase in catalase activity in granulosa cells from large follicles as compared to small and medium follicles. The catalase activity was stimulated significantly when granulosa cells were treated with FSH in vitro. The minimum effective dose that could stimulate catalase activity and estradiol secretion in case of granulosa cells from small and medium sized follicles was 100 ng/ml; for larger follicles, this value was 200 ng/ml. Concomitant to the increase in catalase activity, the estradiol secretion was significantly enhanced when cultured goat granulosa cells were treated with FSH. It was concluded that enzyme catalase may have a functional role in goat ovarian follicular development under endocrine regulation.  相似文献   

20.
The ovary of the brushtail possum (Trichosurus vulpecula) secretes steroids; however, little is known about the identity of the steroidogenic cells in the ovary. The aim of the present study was to determine the identity of the ovarian cell types expressing mRNAs encoding proteins important for steroidogenesis and determine at what stage of follicular development they are expressed. The genes examined were those for steroidogenic factor-1 (SF-1), steroidogenic acute regulatory protein (StAR), cytochrome p450 side chain cleavage (P450scc), 3beta-hydroxysteroid dehydrogenase/Delta5,Delta4 isomerase (3betaHSD), cytochrome p45017alphahydroxylase (p45017alphaOH), and p450 aromatase (p450arom). None of the genes examined were expressed in oocytes at any stage of follicular development. SF-1 was expressed in granulosa cells from the type 2 or the primary stage of development and thereafter to the preovulatory stage. In addition, the theca interna of small and medium-size antral but not preovulatory follicles and the interstitial glands and corpora lutea expressed SF-1 mRNA. Granulosa cells of preantral and small to medium-size antral follicles were not capable of synthesizing steroids from cholesterol because they did not contain p450scc mRNA. However, granulosa cells of many of the small to medium-size antral follicles expressed p450arom and 3betaHSD mRNA. The interstitial glands, theca interna, and corpus luteum expressed StAR, p450scc, 3betaHSD, and p45017alphaOH mRNA, suggesting that these tissues are capable of synthesizing progestins and androgens. The corpus luteum expressed p450arom, indicating that this tissue also has the potential to secrete estrogens in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号