首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Exosomes are attracting considerable interest in the cardiovascular field as the wide range of their functions is recognized in acute myocardial infarction (AMI). However, the regulatory role of exosomal long non‐coding RNAs (lncRNAs) in AMI remains largely unclear. Exosomes were isolated from the plasma of AMI patients and controls, and the sequencing profiles and twice qRT‐PCR validations of exosomal lncRNAs were performed. A total of 518 differentially expressed lncRNAs were detected over two‐fold change, and 6 kinds of lncRNAs were strikingly elevated in AMI patients with top fold change and were selected to perform subsequent validation. In the two validations, lncRNAs ENST00000556899.1 and ENST00000575985.1 were significantly up‐regulated in AMI patients compared with controls. ROC curve analysis revealed that circulating exosomal lncRNAs ENST00000556899.1 and ENST00000575985.1 yielded the area under the curve values of 0.661 and 0.751 for AMI, respectively. Moreover, ENST00000575985.1 showed more significant relationship with clinical parameters, including inflammatory biomarkers, prognostic indicators and myocardial damage markers. Multivariate logistic model exhibited positive association of ENST00000575985.1 with the risk of heart failure in AMI patients. In summary, our data demonstrated that circulating exosomal lncRNAs ENST00000556899.1 and ENST00000575985.1 are elevated in patients with AMI, functioning as potential biomarkers for predicting the prognosis of pateints with AMI.  相似文献   

2.
The rat model of myocardial infarction is characterized by progressive cardiac hypertrophy and failure. Rats with infarcts greater than 30% of the left ventricle exhibited early and moderate, stages of heart failure 4 and 8 weeks after the occlusion of the left coronary artery, respectively. As heart failure is usually associated with remodeling of the extracellular matrix, a histological and biochemical study of cardiac collagenous proteins was carried out using failing hearts. Total collagen content in the right ventricle increased at 2, 4, and 8 weeks following occlusion of the left coronary artery whereas such a change in viable left ventricle was seen after 4 and 8 weeks. Total cardiac hydroxyproline concentration was increased in both right and left ventricular samples from the infarcted animals when compared to those of control; this increase was due to elevation of pepsin-insoluble collagen fraction. The myocardial noncollagenous/collagenous protein ratio was decreased in experimental right and left ventricular samples when compared to control samples. These findings suggest that an increase in cross-linking of cardiac collagen as well as disparate synthesis of collagenous and noncollagenous proteins occurs in this model of congestive heart, failure.  相似文献   

3.
The purpose of the present study was to evaluate whether endostatin overexpression could improve cardiac function, hemodynamics, and fibrosis in heart failure (HF) via inhibiting reactive oxygen species (ROS). The HF models were established by inducing ischemia myocardial infarction (MI) through ligation of the left anterior descending (LAD) artery in Sprague–Dawley (SD) rats. Endostatin level in serum was increased in MI rats. The decrease in cardiac function and hemodynamics in MI rats were enhanced by endostatin overexpression. Endostatin overexpression inhibited the increase in collagen I, collagen III, α-smooth muscle actin (α-SMA), connective tissue growth factor (CTGF), matrix metalloproteinase (MMP)-2 and MMP9 in the hearts of MI rats. MI-induced cardiac hypertrophy was reduced by endostatin overexpression. The increased levels of malondialdehyde (MDA), superoxide anions, the promoted NAD(P)H oxidase (Nox) activity, and the reduced superoxide dismutase (SOD) activity in MI rats were reversed by endostatin overexpression. Nox4 overexpression inhibited the cardiac protective effects of endostatin. These results demonstrated that endostatin improved cardiac dysfunction and hemodynamics, and attenuated cardiac fibrosis and hypertrophy via inhibiting oxidative stress in MI-induced HF rats.  相似文献   

4.
Toll‐like receptors (TLRs) are essential immunoreceptors involved in host defence against invading microbes. Recent studies indicate that certain TLRs activate immunological autophagy to eliminate microbes. It remains unknown whether TLRs regulate autophagy to play a role in the heart. This study examined this question. The activation of TLR3 in cultured cardiomyocytes was observed to increase protein levels of autophagic components, including LC3‐II, a specific marker for autophagy induction, and p62/SQSTM1, an autophagy receptor normally degraded in the final step of autophagy. The results of transfection with a tandem mRFP‐GFP‐LC3 adenovirus and use of an autophagic flux inhibitor chloroquine both suggested that TLR3 in cardiomyocytes promotes autophagy induction without affecting autophagic flux. Gene‐knockdown experiments showed that the TRIF‐dependent pathway mediated the autophagic effect of TLR3. In the mouse model of chronic myocardial infarction, persistent autophagy was observed, concomitant with up‐regulated TLR3 expression and increased TLR3‐Trif signalling. Germline knockout (KO) of TLR3 inhibited autophagy, reduced infarct size, attenuated heart failure and improved survival. These protective effects were abolished by in vivo administration of an autophagy inducer rapamycin. Similar to the results obtained in cultured cardiomyocytes, TLR3‐KO did not prevent autophagic flux in mouse heart. Additionally, this study failed to detect the involvement of inflammation in TLR3‐KO‐derived protection, as wild‐type and TLR3‐KO hearts were comparable in inflammatory activity. It is concluded that up‐regulated TLR3 expression and signalling contributes to persistent autophagy following MI, which promotes heart failure and lethality.  相似文献   

5.
Recent studies have revealed the role of microRNAs (miRNAs) in a variety of basic biological and pathological processes and the association of miRNA signatures with human diseases. Circulating miRNAs have been proposed as sensitive and informative biomarkers for multiple cancers diagnosis. We have previously documented aberrant up-regulation of miR-1 expression in ischemic myocardium and the consequent slowing of cardiac conduction. However, whether miR-1 could be a biomarker for predicting acute myocardial infarction (AMI) is unclear. In the present study, we recruited 159 patients with or without AMI for quantification of miR-1 level in plasma using real-time RT-PCR method. We performed Wilcoxon rank sum and signed rank tests for comparison. Univariable linear regression and logistics regression analyses were performed to assess the potential correlation between miR-1 and known AMI markers. We also conducted receiver-operator characteristic curve (ROC) analysis to evaluate the diagnostic ability of miR-1. We found that: miR-1 level was significantly higher in plasma from AMI patients compared with non-AMI subjects and the level was dropped to normal on discharge following medication. Increased circulating miR-1 was not associated with age, gender, blood pressure, diabetes mellitus or the established biomarkers for AMI. However, miR-1 level was well correlated with QRS by both univariable linear and logistics regression analyses. The area under ROC curve (AUC) was 0.7740 for separation between non-AMI and AMI patients and 0.8522 for separation AMI patients under hospitalization and discharge. Collectively, our results revealed that circulating miR-1 may be a novel, independent biomarker for diagnosis of AMI.  相似文献   

6.
Changes in fatty acid composition of myocardial lipids were examined in rats with heart failure following myocardial infarction. Left ventricular systolic pressure (LVSP) was decreased and left ventricular end-diastolic pressure (LVEDP) was elevated 24 h, 1 and 12 weeks after left coronary artery ligation (CAL), suggesting the development of heart failure at these periods in this model. Hearts were isolated 24 h, 1 week and 12 weeks after the operation. Myocardial lipids in the infarcted scar tissue, non-infarcted remaining left ventricle including interseptum and right ventricle were separated into phospholipid (PL), triacylglycerol (TG), diacylglycerol (DAG) and free fatty acid (FFA) fractions. In the scar tissue PL content markedly decreased whereas TG, DAG and FFA contents increased 24 h after CAL. Despite a marked decrease in constituted fatty acids of PL fraction in the scar tissue the percentage of arachidonic acid in PL was elevated 12 weeks after CAL, suggesting that release of arachidonic acid during PL degradation was suppressed. In the non-infarcted viable left ventricle PL content remained unchanged throughout the experiment whereas TG, DAG and FFA contents were elevated 24 h after CAL. Despite no changes in PL and other lipid contents in the non-infarcted tissue the percentage of linoleic acid in PL was reduced and that of docosahexaenoic acid in PL was elevated 12 weeks after CAL. Our findings showed that myocardial lipid composition of the non-infarcted left ventricle was altered only in an early stage of the development of heart failure and fatty acid compositions of PL was exchanged in a late stage of the development of heart failure. The exchange may be related to cardiac dysfunction or myocardial remodelling in the rat with heart failure.  相似文献   

7.
Heart failure (HF) remains a common complication after acute ST-segment elevation myocardial infarction (STEMI). Here, we aim to identify critical genes related to the developed HF in patients with STEMI using bioinformatics analysis. The microarray data of GSE59867, including peripheral blood samples from nine patients with post-infarct HF and eight patients without post-infarct HF, were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) between HF and non-HF groups were screened by LIMMA package. Functional enrichment analyses of DEGs were conducted, followed by construction of a protein-protein interaction (PPI) network. The dynamic messenger RNA (mRNA) level of the hub genes during the follow-up was analyzed to further elucidate their role in HF development. A total of 58 upregulated and 75 downregulated DEGs were screen out. They were mainly enriched in biological processes about inflammatory response, extracellular matrix organization, response to cAMP, immune response, and positive regulation of cytosolic calcium ion concentration. Pathway analysis revealed that the DEGs were also involved in hematopoietic cell lineage, pathways in cancer, and extracellular matrix-receptor interaction. In the PPI network consisting of 58 nodes and 72 interactions, CXCL8 (degree = 15), THBS1 (degree = 8), FOS (degree = 7), and ITGA2B (degree = 6) were identified as the hub genes. In the comparison of patients with and without post-infarct HF, the mRNA level of these hub genes were all higher within 30 days but reached similar at 6 months after STEMI. In conclusion, CXCL8, THBS1, FOS, and ITGA2B may play important roles in the development of HF after acute STEMI.  相似文献   

8.
Timely prediction of the risk of heart failure in acute myocardial infarction patients is critical for better prognosis. This article aims to evaluate the predictive value of serum soluble growth stimulation expressed gene 2 (sST2) and interleukin-33 in patients with acute myocardial infarction complicated by heart failure. A total of 42 healthy controls and 144 acute myocardial infarction patients were recruited in the study. According to Killip cardiac function classification as the basis for concurrent heart failure, they were distributed into non-heart failure group (n = 76) and heart failure group (n = 68). ELISA was utilized to determine the serum sST2 and interleukin-33 levels, and the diagnostic efficiency was evaluated by receiver operating characteristics curve. sST2 and interleukin-33 levels in patients with acute myocardial infarction were significantly increased when compared with normal healthy controls, and were further enhanced in the heart failure group. With the increased Killip cardiac function classification, interleukin-33 and sST2 levels were gradually elevated. Multivariate analysis indicated that interleukin-33 and sST2 could be used as independent predictors for heart failure combined with acute myocardial infarction.  相似文献   

9.
The current standard biomarker for myocardial infarction (MI) is high‐sensitive troponin. Although powerful in clinical setting, search for new markers is warranted as early diagnosis of MI is associated with improved outcomes. Extracellular vesicles (EVs) attracted considerable interest as new blood biomarkers. A training cohort used for diagnostic modelling included 30 patients with STEMI, 38 with stable angina (SA) and 30 matched‐controls. Extracellular vesicle concentration was assessed by nanoparticle tracking analysis. Extracellular vesicle surface‐epitopes were measured by flow cytometry. Diagnostic models were developed using machine learning algorithms and validated on an independent cohort of 80 patients. Serum EV concentration from STEMI patients was increased as compared to controls and SA. EV levels of CD62P, CD42a, CD41b, CD31 and CD40 increased in STEMI, and to a lesser extent in SA patients. An aggregate marker including EV concentration and CD62P/CD42a levels achieved non‐inferiority to troponin, discriminating STEMI from controls (AUC = 0.969). A random forest model based on EV biomarkers discriminated the two groups with 100% accuracy. EV markers and RF model confirmed high diagnostic performance at validation. In conclusion, patients with acute MI or SA exhibit characteristic EV biomarker profiles. EV biomarkers hold great potential as early markers for the management of patients with MI.  相似文献   

10.
11.
12.
The proinflammatory cytokines interleukin (IL)-1 and IL-6 are increased after acute myocardial infarction (MI). Moreover, serum IL-6 level is elevated after MI, but has also been associated with heart failure. In the present study, heart function was monitored in a rat model of chronic MI. Cytokine expression in the infarcted and non-infarcted myocardium as well as in hearts of sham-operated controls was measured by the ribonuclease-protection assay. To identify the cells contributing to the increased cytokine expression, we further analyzed myocytes and non-myocytes isolated in the acute phase as well as during congestive heart failure (CHF) after MI. There was a strong induction in cytokine expression in the myocytes of the infarct area 6 h after MI. In the non-infarcted myocardium, cytokine expression increased only slightly in the non-myocytes after 6 h. This was not different from sham-operated controls and may, therefore, be induced by stress and catecholamines. In CHF, however, cytokine expression level in myocytes was normal. It increased slightly but significantly in the non-myocytes 4 and 8 weeks after MI. In conclusion, we suggest that pro-inflammatory cytokines, produced by the ischemic myocytes may be involved in the initiation of wound healing of the necrotic area, whereas the effect of pro-inflammatory cytokines in CHF, if any, seems not to be crucial.  相似文献   

13.
We have investigated the blood levels of sub-classes of stem cells (SCs) [mesenchymal stem cells (MSCs), haematopoietic stem cells (HSCs), endothelial progenitor cells/circulating endothelial cells (EPCs/CECs) and tissue-committed stem cells (TCSCs)] in heart failure (HF) patients at different stage of pathology and correlated it with plasmatic levels of proangiogenic cytokines. Peripheral blood level of SCs were analysed in 97 HF patients (24 in NYHA class I, 41 in class II, 17 in class III and 15 in class IV) and in 23 healthy controls. Plasmatic levels of PDGF-BB, bFGF, HGF, vascular endothelial growth factor (VEGF), SDF-1α, TNF-α and NTproBNP were also measured. Compared with healthy individuals, MSC, and in particular the sub-classes CD45CD34CD90+, CD45CD34CD105+ and CD45CD34CXCR4+ were significantly enhanced in NYHA class IV patients (16.8-, 6.4- and 2.7-fold, respectively). Level of CD45CD34CD90+CXCR4+cells progressively increased from class II to class IV (fold increases compared with controls: 8.5, 12 and 21.5, respectively). A significant involvement of CXCR4+ subpopulation of HSC (CD45+CD34+CD90+CXCR4+, 1.4 versus 13.3 cells/μl in controls and NYHA class III patients, respectively) and TCSC (CD45CD34+CXCR4+, 1.5 cells/ μl in controls versus 12.4 and 28.6 cells/μl in NYHA classes II and IV, respectively) were also observed. All tested cytokines were enhanced in HF patients. In particular, for PDGF-BB and SDF-1α we studied specific ligand/receptors pairs. Interestingly, the first one positively correlated with TCSCs expressing PDGFR (r = 0.52, P = 0.001), whereas the second one correlated with TCSCs (r = 0.34, P = 0.005) and with MSCs CD90+ expressing CXCR4 (r = 0.39, P = 0.001). HF is characterized by the increase in the circulating levels of different MSC, HSC, EPC and TCSC subsets. Both the entity and kinetic of this process varied in distinct cell subsets. Specifically, differently from HSCs and EPCs/CECs, MSCs and TCSCs significantly increased with the progression of the disease, suggesting a possible distinct role of these cells in the pathophysiology of HF.  相似文献   

14.
《Biomarkers》2013,18(4):325-331
Background: Procalcitonin is involved in the inflammatory response and is associated with adverse prognosis in certain conditions.

Aims: To investigate the association between procalcitonin and major adverse cardiac events (MACE), left ventricular (LV) function and remodelling following acute myocardial infarction (AMI).

Methods: Plasma procalcitonin was measured in 977 patients with AMI. Subjects were followed for MACE (median 671 days). A subgroup underwent echocardiography at discharge and follow-up LV function and volume assessment.

Results: Procalcitonin was associated with MACE on uni- and multivariable analysis. Kaplan–Meier assessment revealed an adverse outcome in subjects with procalcitonin above the median. Procalcitonin was related to markers of LV dysfunction and remodelling.

Conclusion: Procalcitonin is associated with MACE, LV dysfunction and remodelling post-AMI.  相似文献   

15.
The release of cytoplasmic heart fatty acid-binding protein (H-FABP) into the plasma of cardiac patients up to 38 hr after the onset of the first clinical symptoms of acute myocardial infarction (AMI) was studied, using a sensitive direct and noncompetitive Enzyme Linked Immunosorbent Assay of the antigen capture type (sandwich ELISA), newly developed for the measurement of small amounts of human H-FABP in plasma samples. Plasma levels of H-FABP were compared with plasma activity levels of the myocardial cytoplasmic enzymes creatine kinase MB (CK-MB) and alpha-hydroxybutyrate dehydrogenase (-HBDH). Upper normal levels of H-FABP (19g/l), CK-MB (10 U/l) and -HBDH (160 U/l) as determined in plasma from 72 blood donors served as threshold levels. H-FABP levels were significantly elevated above their threshold level within 3 hr after AMI. Peak levels of H-FABP, CK-MB and -HBDH were reached 4.1 ± 0.9 hr, 8.4 ± 1.4 hr and 25.0 ± 9.5 hr (means ± S.D., n = 10) after acute myocardial infarction, respectively. Serial time curves of the plasma contents of H-FABP reveal that after myocardial infarction H-FABP is released in substantial amounts from human hearts. In 18 out of 22 patients with established AMI the plasma FABP level was at or above the threshold level in blood-samples taken within 3.5 hr after the first onset of symptoms of AMI, while for CK-MB this applied to 9 patients and for -HBDH to 6 patients. These findings suggest that for an early indication of acute myocardial infarction in man cytoplasmic heart fatty acid-binding protein is more suitable than heart type creatine kinase MB and/or alpha-hydroxybutyrate dehydrogenase. (Mol Cell Biochem116: 155–162,1992)Abbreviations H-FABP (cytoplasmic) Heart Fatty Acid-Binding Protein - LDH Lactate Dehydrogenase, -HBDH--Hydroxybutyrate Dehydrogenase - CK-MB Creatine Kinase-MB - AMI Acute Myocardial Infarction - PBS Phosphate Buffered Saline - BSA Bovine Serum Albumin  相似文献   

16.
Protein kinase C βII (PKCβII) levels increase in the myocardium of patients with end‐stage heart failure (HF). Also targeted overexpression of PKCβII in the myocardium of mice leads to dilated cardiomyopathy associated with inflammation, fibrosis and myocardial dysfunction. These reports suggest a deleterious role of PKCβII in HF development. Using a post‐myocardial infarction (MI) model of HF in rats, we determined the benefit of chronic inhibition of PKCβII on the progression of HF over a period of 6 weeks after the onset of symptoms and the cellular basis for these effects. Four weeks after MI, rats with HF signs that were treated for 6 weeks with the PKCβII selective inhibitor (βIIV5‐3 conjugated to TAT47–57 carrier peptide) (3 mg/kg/day) showed improved fractional shortening (from 21% to 35%) compared to control (TAT47–57 carrier peptide alone). Formalin‐fixed mid‐ventricle tissue sections stained with picrosirius red, haematoxylin and eosin and toluidine blue dyes exhibited a 150% decrease in collagen deposition, a two‐fold decrease in inflammation and a 30% reduction in mast cell degranulation, respectively, in rat hearts treated with the selective PKCβII inhibitor. Further, a 90% decrease in active TGFβ1 and a significant reduction in SMAD2/3 phosphorylation indicated that the selective inhibition of PKCβII attenuates cardiac remodelling mediated by the TGF‐SMAD signalling pathway. Therefore, sustained selective inhibition of PKCβII in a post‐MI HF rat model improves cardiac function and is associated with inhibition of pathological myocardial remodelling.  相似文献   

17.
18.
The pharmacological inhibition or genetic ablation of cyclophilin-D (CypD), a critical regulator of the mitochondrial permeability transition pore (mPTP), confers myocardial resistance to acute ischemia-reperfusion injury, but its role in post-myocardial infarction (MI) heart failure is unknown. The aim of this study was to determine whether mitochondrial CypD is also a therapeutic target for the treatment of post-MI heart failure. Wild-type (WT) and CypD(-/-) mice were subjected to either sham surgery or permanent ligation of the left main coronary artery to induce MI, and were assessed at either 2 or 28 days to determine the long-term effects of CypD ablation. After 2 days, myocardial infarct size was smaller and left ventricular (LV) function was better preserved in CypD(-/-) mice compared to WT mice. After 28 days, when compared to WT mice, in the CypD(-/-) mice, mortality was halved, myocardial infarct size was reduced, LV systolic function was better preserved, LV dilatation was attenuated and in the remote non-infarcted myocardium, there was less cardiomyocyte hypertrophy and interstitial fibrosis. Finally, ex vivo fibroblast proliferation was found to be reduced in CypD(-/-) cardiac fibroblasts, and in WT cardiac fibroblasts treated with the known CypD inhibitors, cyclosporin-A and sanglifehrin-A. Following an MI, mice lacking CypD have less mortality, smaller infarct size, better preserved LV systolic function and undergo less adverse LV remodelling. These findings suggest that the inhibition of mitochondrial CypD may be a novel therapeutic treatment strategy for post-MI heart failure.  相似文献   

19.
Objective: To investigate how many patients with acute heart failure (AHF) hypersecrete relaxin-2 concentrations similar to those of pregnant women and determine their long-term outcome.

Methods: In consecutive AHF patients relaxin-2 was quantified by ELISA sandwich method. Patients were divided into pregnancy-like group (PLG, relaxin-2 ≥?500?pg/mL) and control group (CG, relaxin-2 10?days), combined endpoint (death, rehospitalisation, ED revisit) 30?days after discharge, and 30-day, one-year and three-year death rates.

Results: We included 814 patients [81 (SD?=?9) years; 53.0% women] followed during 1.9 (SD 2.8) years; 517 (63.5%) died. Twenty patients (2.5%) formed the PLG (median relaxin-2?=?1459?pg/mL; IQR?=?1722) and 794 the CG (median?=?26; IQR?=?44). There was no interaction with variables included on adjustment (age, sex, ischaemic cardiomyopathy, NT-proBNP, glycaemia, and sodium). PLG patients did not have better short-term secondary endpoints, but did show a significantly lower three-year mortality [ORadjusted?=?0.17 (0.05–0.5), p?=?0.003].

Conclusions: The small proportion of AHF patients achieving relaxin-2 concentrations similar to those observed in pregnancy may survive longer.  相似文献   

20.
目的:实验观察左心室脱血回注循环辅助法对急性心肌梗死血流动力学的改善作用.方法:18只杂种犬分两组制作急性心肌梗死泵衰竭模型,治疗组给予左心室脱血回注循环辅助,对照组不进行治疗.观察比较两组间心律失常、死亡率、外周动脉压、肺动脉毛细血管楔嵌压(PCWP)、左心室舒张末期压(LVEDP)、左心室内径的变化.结果:治疗组室性期外收缩、心室纤颤发生率和死亡率显著低于对照组;对照组的外周动脉收缩压低于80 mmHg以下,治疗组维持在100mmHg以上(P<0.01);治疗组PCWP和LVEDP值在45 min以后的各时段低于对照组(P<0.01);治疗组的左室舒张末期内径小于对照组(P<0.01).结论:左心室脱血回注循环辅助法能够减少急性心肌梗死泵衰竭的心室纤颤发生率和死亡率,有显著改善血流动力学、防止梗死后心肌扩张和有效的左心室辅助作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号